
ar
X

iv
:1

40
2.

49
58

v1
 [

cs
.D

C
]

20
 F

eb
 2

01
4

Erasure-Coded Byzantine Storage with Separate Metadata

Elli Androulaki∗ Christian Cachin∗ Dan Dobre† Marko Vukolić‡

26 July 2021

Abstract

Although many distributed storage protocols have been introduced, a solution that combines the
strongest properties in terms of availability, consistency, fault-tolerance, storage complexity and the
supported level of concurrency, has been elusive for a long time. Combining these properties is
difficult, especially if the resulting solution is requiredto be efficient and incur low cost.

We present AWE, the firsterasure-codeddistributed implementation of a multi-writer multi-
reader read/write storage object that is, at the same time: (1) asynchronous, (2) wait-free, (3) atomic,
(4) amnesic, (i.e., with data nodes storing a bounded numberof values) and (5) Byzantine fault-
tolerant (BFT) using the optimal number of nodes. Furthermore, AWE is efficient since it does
not use public-key cryptography and requires data nodes that support only reads and writes, further
reducing the cost of deployment and ownership of a distributed storage solution. Notably, AWE
stores metadata separately fromk-out-of-n erasure-coded fragments. This enables AWE to be the
first BFT protocol that uses as few as2t+ k data nodes to toleratet Byzantine nodes, for anyk ≥ 1.

1 Introduction

Background. Erasure codingis a key technology that saves space and retains robustness against faults
in distributed storage systems. In short, an erasure code splits a large data object inton fragments
such that from anyk of them the input value can be reconstructed. The utility of erasure coding is
demonstrated by large-scale erasure-coding storage systems that have been deployed today [22, 27].
These distributed storage systems offer large capacity, high throughput, and resilience to faults.

Whereas the storage systems in production use today only tolerate component crashes or outages,
storage systems in theByzantine failure modelsurvive also more severe faults, ranging from arbitrary
state corruption to malicious attacks on components. In this paper, we consider a model whereclients
directly access a storage service provided by distributed servers, callednodes— a fraction of the nodes
may be Byzantine, whereas clients may fail as well, but only by crashing.

Although Byzantine-fault tolerant (BFT) erasure-coded distributed storage systems have received
some attention in the literature [4, 9, 14, 16, 19], our understanding of their properties lies behind that
of replicated storage. In fact, most existing BFT erasure-coded storage approaches have drawbacks that
prevented their wide-spread use. For example, they relied on the nodes storing an unbounded number of
values [16], required the nodes to communicate with each other [9], used public-key cryptography [9,
19], or might have blocked clients due to concurrent operations of other clients [19].

We consider an abstractwait-freestorage register withatomicsemantics [21], accessed concurrently
by multiple readers and writers (MRMW). Wait-free termination means that any client operation termi-
nates irrespective of the behavior of the Byzantine nodes and of other clients. This is not easy to achieve
with Byzantine nodes [1] even in systems that replicate the data. Therefore, previous works have often

∗IBM Research - Zurich, Rüschlikon, Switzerland,{lli,cca}@zurich.ibm.com.
†NEC Labs Europe, Germany,dan.dobre@neclab.eu.
‡Eurécom, Sophia Antipolis, France,vukolic@eurecom.fr.

1

http://arxiv.org/abs/1402.4958v1

used a weaker notion of liveness calledfinite-write (FW) termination, which ensures that read operations
progress only in executions with a finite number of writes.

Contribution. This paper introduces AWE, thefirst asynchronous, wait-free distributed BFT erasure-
coded storage protocol with optimal resilience. As in previous work, we assume there aren nodes
and up tot of them may exhibit non-responsive (NR-)arbitrary faults,that is, Byzantine corruptions.
The best resilience that has been achieved so far isn > 3t, which is optimal for Byzantine storage [24].
However, our protocol features a separation of metadata anderasure coded fragments; with this approach
our protocol may reduce the number ofdata nodes, i.e., those that store a fragment, to lower values than
n for k ≤ t. In particular, our protocol takes only2t+ k data nodes; this idea saves resources, as in the
separation of agreement and execution for BFT services [28]. For implementing the metadata service,
n > 3t nodes are still needed.

Our protocol employs simple, passive data nodes; they cannot execute code and they only support
read and write operations, such as the key-value stores (KVS) provided by popular cloud storage ser-
vices. The metadata service itself is an atomic snapshot object, which has only weak semantics and may
be implemented in a replicated asynchronous system from simple read/write registers [3]. The protocol
is alsoamnesic[11], i.e., the nodes store a bounded number of values and mayerase obsolete data. The
protocol uses only simple cryptographic hash functions butno (expensive) public-key operations.

In summary, protocol AWE, introduced in Section 3, is the first erasure-coded distributed imple-
mentation of a MRMW storage object that is, at the same time: (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (5) tolerates the optimal number of Byzantine nodes, and (6) does not use public-
key cryptography. Furthermore, AWE can be implemented fromnon-programmable nodes (KVS) that
only support reads and writes (in the vein of Disk Paxos [1]).In practice, the KVS interface is offered by
commodity cloud storage services, which could be used as AWEdata nodes to reduce the cost of AWE
deployment and ownership. While some of these desirable properties have been achieved in different
combinations so far, they have never been achieved togetherwith erasure-coded storage, as explained
later. Combining these properties has been a longstanding open problem [16].

Related work. We provide a brief overview of the most relevant literature on the subject. Table 1
summarizes this section.

Earlier designs for erasure-coded distributed storage have suffered from potential aborts due to con-
tention [15] or from the need to maintain an unbounded numberof fragments at data nodes [16]. In the
crash-failure model, ORCAS [14] and CASGC [10] achieve optimal resiliencen > 2t and low commu-
nication overhead, combined with wait-free (ORCAS) and FW-termination (CASGC), respectively.

In the model with Byzantine nodes, Cachin and Tessaro (CT) [9] introduced the first wait-free proto-
col with atomic semantics and optimal resiliencen > 3t. CT uses a verifiable information dispersal pro-
tocol but needs node-to-node communication, which lies outside our model. Hendricks et al. (HGR) [19]
present an optimally resilient protocol that comes closestto our protocol among the existing solutions. It
offers many desirable features, that is, it has as low communication cost, works asynchronously, achieves
optimal resilience, atomicity, and is amnesic. Compared toour work, it uses public-key cryptography,
achieves only FW-termination instead of wait-freedom, andrequiresprocessingby the nodes, i.e., the
ability to execute complex operations beyond simple reads and writes.

To be fair, much of the (cryptographic) overhead inherent inthe CT and HGR protocols defends
against poisonous writes from Byzantine clients, i.e., malicious client behavior that leaves the nodes
in an inconsistent state. We do not consider Byzantine clients in this work, since permitting arbitrary
client behavior is problematic. Such a client might write garbage to the storage system at any time and
wipe out the stored value. Furthermore, the standard formalcorrectness notions such as linearizability
fail when clients misbehave (apart from crashing). Hendricks [18] discusses correctness notions in the

2

Protocol BFT Liveness Data nodes Type Amnesic Cryptogr.
ORCAS [14] — Wait-free 2t+ 1 Proc. — N/A
CASGC [10] — FW-term. 2t+ 1 Proc. X

∗ N/A
CT [9] X∗ Wait-free∗ 3t+ 1 Msg. — Public-key
HGR [19] X∗ FW-term. 2t+ k, for k > t Proc. X∗ Public-key
M-PoWerStore [12] X

∗ Wait-free∗ 3t+ 1 Proc. — Hash func.∗

DepSky [4] X
∗ Obstr.-free 3t+ 1 R/W ∗ — Public-key

AWE (Sec. 3) X∗ Wait-free∗ 2t+ k, for k ≥ 1 ∗ R/W ∗ X∗ Hash func.∗

Table 1: Comparison of erasure-coded distributed storage solutions. An asterisk (∗) denotes optimal
properties. The column labeledTypestates the computation requirements on nodes:Proc.denotes pro-
cessing;Msg.means sending messages to other nodes, in addition to processing; R/Wmeans a register
object supporting only read and write.

presence of Byzantine clients. However, even without the steps that protect against poisonous writes,
HGR still requires processing by the nodes and is not wait-free.

The M-PoWerStore protocol [12] employs a cryptographic “proof of writing” for wait-free atomic
erasure-coded distributed storage. It is the first wait-free BFT solution without node-to-node commu-
nication. Similar to other protocols, M-PoWerStore uses nodes with processing capabilities and is not
amnesic.

Several systems have recently addressed how to store erasure-coded data on multiple redundant
cloud services but only few of them focus on wait-free concurrent access. HAIL [5], for instance, uses
Byzantine-tolerant erasure coding and provides data integrity through proofs of retrievability; however,
it does not address concurrent operations by different clients. DepSky [4] achieves regular semantics
and uses lock-based concurrency control; therefore, one client may block operations of other clients.

A key aspect of AWE lies in the differentiation of (small) metadata from (large) bulk data: this
enables a modular protocol design and an architectural separation for implementations. The FARSITE
system [2] first introduced such a separation for replicatedstorage; their data nodes and their metadata
abstractions require processing, however, in contrast to AWE. Non-explicit ways of separating metadata
from data can already be found in several previous erasure coding-based protocols. For instance, the
cross checksum, a vector with the hashes of alln fragments, has been replicated on the data nodes to
ensure consistency [9,16].

Finally, a recent protocol called MDStore [6] has shown thatseparating metadata from bulk data
permits to reduce the number of data nodes in asynchronous wait-free BFT distributed storage imple-
mentations to only2t + 1. When protocol AWE is reduced to use replication with the trivial erasure
code (k = 1), it uses as few nodes as MDStore to achieve the same wait-free atomic semantics; unlike
AWE, however, MDStore is not amnesic and uses processing nodes.

Structure. The paper continues with the model in Section 2 and presents Protocol AWE in Section 3.
The communication and storage complexities of AWE are compared to those of existing protocols in
Section 4. Section 5 contains a formal proof for the properties of AWE.

2 Definitions

System model. We consider an asynchronous distributed system of components (or processes) that
communicate with each other. The components contain a setC of m clients, a setD of n data nodes
d1, . . . , dn, and further process abstractions. The components interact asynchronously via exchanging
events. A protocol specifies a collection of programs with instructions for all components.

3

A component may fail by crashing or by exhibitingByzantinefaults; the latter means they may
deviate arbitrarily from their specification. We assume that clients can only crash; on the other hand, up
to t data nodes can be Byzantine and behave adversarially (NR-arbitrary faults). A component that does
not fail is calledcorrect.

Notation. Protocols are presented in a modular way using an event-based notation [7]. A component
is specified through itsinterface, containing the events that it exposes to other components that may
call it, and itsproperties, which define its behavior. A component may react to a received event by
doing computation and triggering further events. Every component is named by an identifier. Events
are qualified by the component identifier to which the event belongs and may take parameters. An event
Sampleof a componentmwith a parameterx is denoted by〈 m-Sample| x 〉.

Components interact asynchronously with others through exchanging events. We assume that all
events communicated from one component to another are delivered in FIFO-order. There are two kinds
of events in a component’s interface:input eventsthat it receives from other components, typically to
invoke its services, andoutput events, through which the component delivers information or signals a
condition to another component. The behavior of a componentis typically stated through a number of
properties or through a sequential implementation.

Objects and histories. An object is a special type of component for which every input event (called
an invocationin this context) triggers exactly one output event (called aresponse). Every such pair of
invocation and response define anoperationof the object. An operationcompleteswhen its response
occurs.

A historyσ of an execution of an objectO consists of the sequence of invocations and responses ofO
occurring inσ. An operation is calledcompletein a history if it has a matching response. An operationo
precedesanother operationo′ in a sequence of eventsσ, denotedo <σ o′, whenevero completes before
o′ is invoked inσ. If o precedeso′ theno′ follows o. A sequence of eventsπ preserves the real-time
order of a historyσ if for every two operationso ando′ in π, if o <σ o′ theno <π o′. Two operations
areconcurrentif neither one of them precedes the other. A sequence of events issequentialif it does not
contain concurrent operations. We often simplify the terminology by exploiting that everysequential
sequence of events corresponds naturally to a sequence of operations.

An execution iswell-formedif the events at every object are alternating invocations and matching
responses, starting with an invocation. An execution isfair, informally, if it does not halt prematurely
when there are still steps to be taken or triggered events to be consumed (see the standard literature for
a formal definition [23]).

Registers. A read/write register ris an object that stores a value from a domainV and supports exactly
two operations, for writing and reading the value. More precisely:

• A Write operation tor is triggered by an invocation〈 r-Write | v 〉 that takes a valuev ∈ V as
parameter and terminates by generating a response〈 r-WriteAck 〉 with no parameter.

• A Readoperation fromr is triggered by an invocation〈 r-Read〉 with no parameter; the register
signals that the read operation completes by triggering a response〈 r-ReadResp| v 〉, which
contains a parameterv ∈ V.

The behavior of a register is given through its sequential specification, which requires that everyr-Read
operation returns the value written by the last precedingr-Write operation in the execution, or the special
symbol⊥ 6∈ V if no such operation exists. For simplicity, we will assume that every distinct value is
written only once.

4

In this work, any client may invoke the operations of the emulated register object; such registers are
also calledmulti-reader multi-writer (MRMW) registers. Furthermore, we assume that all clients invoke
a well-formed sequence of operations.

Consistency and availability. Recall that clients interact with an objectO through its operations,
defined in terms of an invocation and a response event ofO. We say that a clientc executesan operation
between the corresponding invocation and response events.When accessed concurrently by multiple
processes, executions of objects considered in this work are linearizable, that is, the object appears to
execute all operationsatomically.

Definition 1 (View). A sequence of eventsπ is called aviewof a historyσ at a clientc w.r.t. an objectO
whenever:

1. π is a sequential permutation of some subsequence of completeoperations inσ;

2. all complete operations executed byc appear inπ; and

3. π satisfies the sequential specification ofO.

Definition 2 (Linearizability [21]). A history σ is linearizable w.r.t. an objectO if there exists a se-
quence of eventsπ such that:

1. π is a view ofσ at all clients w.r.t.O; and

2. π preserves the real-time order ofσ.

The goal of this work is to describe a protocol that emulates alinearizable register abstraction among
the clients; such a register is also calledatomic. Some of the clients may crash and some nodes may be
Byzantine, but every client operation should terminate in all cases, irrespective of how other clients and
nodes behave.

Definition 3 (Wait-freedom [20]). A protocol is calledwait-freeif every operation invoked by a correct
client eventually completes.

Cryptography. We make use of cryptographic hash functions. One can imaginethat the cryptographic
schemes are implemented by a distributed oracle accessibleto all components [7]. A hash functionH
maps a bit stringx of arbitrary length to a short, unique representation of fixed length. We use acollision-
freehash function; this property means that no process, not evena Byzantine component, can find two
distinct valuesx andx′ such thatH(x) = H(x′).

3 Protocol AWE

This section introduces theasynchronous wait-free erasure-coded Byzantine distributed storage protocol
(AWE).

3.1 Abstractions

Erasure code. An (n, k)-erasure code (EC)with domainV is given by an encoding algorithm, denoted
Encode, and a reconstruction algorithm, calledReconstruct. Given a (large) valuev ∈ V, algorithm
Encodek,n(v) produces a vector[f1, . . . , fn] of n fragments, which are from a domainF . A fragment
is typically much smaller than the input, and anyk fragments contain all information ofv, that is,
|V| ≈ k|F|.

5

For ann-vectorF ∈
(

F ∪ {⊥}
)n

, whose entries are either fragments or the symbol⊥, algorithm
Reconstructk,n(F) outputs a valuev ∈ V or ⊥. An output value of⊥ means that the reconstruction
failed. Thecompletenessproperty of an erasure code requires that an encoded value can be reconstructed
from anyk fragments. In other words, for everyv ∈ V, when one computesF ← Encodek,n(v) and
then erases up ton− k entries inF by setting them to⊥, algorithmReconstructk,n(F) outputsv. More
details are available in the literature [25,26].

Metadata service. The metadata service is implemented by a standardatomic snapshot object[3],
calleddir, that serves as adirectory. A snapshot object extends the simple storage function of a register
to a service that maintains one value for each client and allows for better coordination. Like an array
of multi-reader single-writer (MRSW) registers, it allowsevery client toupdateits value individually;
for reading it supports ascanoperation that returns the vector of the stored values, one for every client.
More precisely, the operations ofdir are:

• An Updateoperation todir is triggered by an invocation〈 dir-Update| c, v 〉 by clientc that takes
a valuev ∈ V as parameter and terminates by generating a response〈 r-UpdateAck 〉 with no
parameter.

• A Scanoperation ondir is triggered by an invocation〈 dir-Scan〉 with no parameter; the snap-
shot object returns a vectorV of m = |C| values toc as the parameter in the response〈 r-
ScanResp| V 〉, with V [c] ∈ V for c ∈ C.

The sequential specification of the snapshot object followsdirectly from the specification of an array of
m MRSW registers (hence, the snapshot initially stores the special symbol⊥ 6∈ V in every entry). When
accessed concurrently from multiple clients, its operations appear to take place atomically, i.e., they are
linearizable. Snapshot objects are weak — they can be implemented from read/write registers [3], which,
in turn, can be implemented from a set of a distributed processes subject to Byzantine faults. Wait-free
amnesic implementations of registers with the optimal number of n > 3t processes are possible using
existing constructions [13,17].

3.2 Protocol overview

The high-level architecture of AWE uses the metadata directory dir to maintain pointers to the fragments
stored at the data nodes. As in standard implementations of multi-writer distributed storage [7], every
value is associated to a timestamp, which consists of a sequence numbersn and the identifierc of
the writing client, i.e.,ts = (sn, c) ∈ Timestamps= N0 × (C ∪ {⊥}); timestamps are initialized
to T0 = (0,⊥). The metadata contains the timestamp of the most recently written value for every
client, and readers determine the value to read by retrieving all timestamps, determining their maximum,
and accessing the fragments associated to the highest timestamp. Comparisons among timestamps use
the standard ordering, wherets1 > ts2 for ts1 = (sn1, c1) and ts2 = (sn2, c2) if and only if sn1 >
sn2 ∨ (sn1 = sn2 ∧ c1 > c2).

The directory stores an entry for every writer; it contains the timestamp of its most recently written
value, the identities of those nodes that have acknowledgedto store a fragment of it, a vector with the
hashes of the fragments for ensuring data integrity, and additional metadata to support concurrent reads
and writes. The linearizable semantics of protocol AWE are obtained from the atomicity of the metadata
directory.

At a high level, the writer first invokesdir-Scanon the metadata to read the highest stored timestamp,
increments it, and uses this as the timestamp of the value to be written. Then it encodes the value to
n fragments and sends one fragment to each data node. The data nodes store it and acknowledge the
write. After the writer has received acknowledgments fromt + k data nodes, it writes their identities

6

(together with the timestamp and the hashes of the fragments) to the metadata throughdir-Update. The
reader proceeds accordingly: it first invokesdir-Scanto obtain the entries of all writers; it determines
the highest timestamp among them and extracts the fragment hashes and the identities of the data nodes;
finally, it contacts the data nodes and reconstructs the value after obtainingk fragments that match the
hashes in the metadata.

Although this simplified algorithm achieves atomic semantics, it does not address timely garbage-
collection of obsolete fragments, the main problem to be solved for amnesic erasure-code distributed
storage. It is easy to see that overwriting the fragments during the next write operation may cause a
reader to stall.

Protocol AWE uses two mechanisms to address this: first, the writer retainsthose values that may be
accessed concurrently and exempts them from garbage collection so that their fragments remain intact
for concurrent readers, which gives the reader enough time to retrieve its fragments. Secondly, some of
the retained values may also befrozenin response to concurrent reads; this forces a concurrent read to
retrieve a value that is guaranteed to exist at the data nodesrather than simply the newest value, thereby
effectively limiting the amount of stored values. A similarfreezing method has been used for wait-
free atomic storage with replicated data [13, 17], but it must be changed for erasure-coded storage with
separated metadata. The retention technique together withthe separation of metadata appears novel.

For the two mechanisms, every reader maintains areader index, both in its local variablereadindex
and in its metadata. The reader index serves for coordination between the reader and the writers. The
reader increments its index whenever it starts a newr-Readand immediately writes it todir, thereby
announcing its intent to read. Writers access the reader indices after updating the metadata for a write
and before (potentially) erasing obsolete fragments. Every writer w maintains a tablefrozenindexwith
its most recent recollection of all reader indices. When thenewly obtained index of a readerc has
changed, thenw detects thatc has started a new operation at some time after the last write of w.

Whenw detects a new operation ofc, it does not know whetherc has retrieved the timestamp
from dir before or after thedir-Updateof the current write. The reader may access either value; the
writer thereforeretainsboth the current and the preceding value forc by storing a pointer to them in
frozenptrlistand in reservedptrlist. Clearly, both values have to be excluded from garbage collection
by w in order to guarantee that the reader completes.

However, the operation of the readerc may accessdir after thedir-Updateof one or more subsequent
write operation byw, which means that the nodes would have to retain every value subsequently written
by w as well. To prevent this from happening and to limit the number of stored values,w freezesthe
currently written timestamp (as well as the value) and forces c to read this timestamp when it accesses
dir within the same operation. In particular, the writer storesthe current timestamp infrozenptrlistat
indexc and updates the reader index ofc in frozenindex; then, the writer pushes both tables,frozenindex
andfrozenptrlist, to the metadata service during its nextr-Write. The values designated byfrozenptrlist
(they are calledfrozen) and reservedptrlist(they are calledreserved) are retained and excluded from
garbage collection untilw detects the next read ofc, i.e., the reader index ofc increases. Thus, the
current read may span many concurrent writes ofw and the fragments remain available untilc finishes
reading.

On the other hand, a reader must consider frozen values. Whena slow read operation spans multiple
concurrent writes, the readerc learns that it should retrieve the frozen value through its entry in the
frozenindextable of the writer. More precisely, whenc retrieves the metadata fromdir and finds that
writer w’s frozenindex[c] entry equals itsreadindexvariable, thenw has frozen the value designated by
frozenptrlist[c] for c.

The protocol is amnesic because each writer retains at most two values per reader, a frozen value
and a reserved value. Every data node therefore stores at most two fragments for every reader-writer pair
plus the fragment from the currently written value. The combination of freezing and retentions ensures
that readers never wait.

7

3.3 Details

Data structures. We use abstract data structures for compactness. In particular, given a timestamp
ts= (sn, c), its two fields can be accessed asts.snandts.c. A data typePointersdenotes a set of tuples
of the form(ts, set,hash) with ts ∈ Timestamps, set⊆ [1, n], andhash[i] ∈ Σ∗ for i ∈ [1, n]. Their
initialization value isNullptr = ((0,⊥), ∅, [⊥, . . . ,⊥]).

A Pointersstructure contains the relevant information about one stored value. For example, the
writer locally maintainswriteptr ∈ Pointersdesignating to the most recently written value. More specif-
ically, writeptr.ts contains the timestamp of the written value,writeptr.setcontains the identities of the
nodes that have confirmed to have stored the written value, and writeptr.hashcontains the cross check-
sum, the list of hash values of the data fragments, of the written value.

The metadata directorydir contains a vectorM with a tuple for every clientp ∈ C of the form

M [p] =
(

writeptr, frozenptrlist, frozenindex, readindex
)

,

where the fieldwriteptr ∈ Pointersrepresents thewritten value, the fieldfrozenptrlistis an array indexed
by c ∈ C such thatfrozenptrlist[c] ∈ Pointersdenotes a valuefrozen byp for readerc, and the integer
readindexdenotes the reader-index ofp.

For preventing that concurrently accessed fragments are garbage-collected, the writer maintains two
tables,frozenptrlist, andreservedptrlist, each containing onePointersentry for every reader inC. The
second one,reservedptrlist, is stored only locally, together with thefrozenindextable, which denotes the
writer’s most recently obtained copy of the reader indices.For the operations of the reader, only the
local readindexcounter is needed.

Every client maintains the following variables between operations:writeptr, frozenptrlist, frozenin-
dex, andreservedptrlistimplement freezing, reservations, and retentions for writers as mentioned, and
readindexcounts the reader operations.

When clients accessdir, they may not be interested to retrieve all fields or to updateall fields. For
clarity we replace the fields to be ignored by∗ in thosedir-Scananddir-Updateoperations.

Operations. At the start of a write operation, the writerw saves the current value ofwriteptr in prevptr,
to be used later during its operation, ifw should reserve and retain that value. Thenw determines the
timestamp of the current operation, which is stored inwriteptr.ts. After computing the fragments ofv,
sending them to the data nodes, and obtainingt+ k acknowledgements, the writer updates its metadata
entry. It writeswriteptr, pointing tov, together withfrozenptrlistandfrozenindex, as they resulted after
the previous write todir. Thenw invokesdir-Scanand acquires the current metadataM , which it
uses to determine values to freeze and to retain. It comparesthe acquired reader indices with the ones
obtained during its last write (as stored infrozenindex). Whenw detects a read operation byc because
M [c].readindex> frozenindex[c], it freezes the current value (by settingfrozenptrlist[p] to writeptr) and
reserves the previously written value (by settingreservedptrlist[p] to prevptr). Finally, the writer deletes
all fragments at the data nodes except for those of the currently written and the retained values.

To determine the timestamps for retrieving fragments, the reader uses the following two functions:

function readfrom(M, c, p, index) is
if index> M [p].frozenindex[c] then

return M [p].writeptr
else // index= M [p].frozenindex[c]

return M [p].frozenptrlist[c]

function highestread(M, c, index) is
max← Nullptr
forall p ∈ C do

ptr← readfrom(M, c, p, index)
if ptr.ts> max.ts then

max←ptr
return max

8

Upon retrieving the arrayM from dir, the reader setsreadptr← highestread(M, c, readindex), which
implements the logic of accessing frozen timestamps. The two functions above ensure that

readfrom(M, c, p, index) =
(

ptr ∈ Pointers :
(ptr = M [p].writeptr∧ index> M [p].frozenindex[c])
∨ (ptr = M [p].frozenptrlist[c] ∧ index= M [p].frozenindex[c])

)

highestread(M, c, index) =
argmaxptr∈Readset

{

ptr.ts
}

, whereReadset= {readfrom(M, c, p, index) | p ∈ C}

The details of protocol AWE appear in Algorithms 1–3.

Remarks. Note that AWE does not need a majority of correct data nodes and neither refers to quorum
systems for correctness; these aspects are all encapsulated in the directory service. For liveness, though,
the protocol needs to obtain responses fromt + k data nodes during write operations, which is only
possible ifn ≥ 2t+ k.

In the current formulation of AWE, every writer retains exactly two values for each reader, regardless
of whether the reader has completed its operation. In fact, avalue continues to be retained for a readerc
until c invokes a subsequentr-Read(and concurrently or later, the writer invokes anotherr-Write). In
order to avoid retaining unnecessary values, one could introduce an additional field in the metadata for
each reader, through which the reader can signal when it completes a read operation. The writer would
periodically check this and remove the values no longer needed.

The data nodes can be implemented from a key-value store (KVS) abstraction that has become a
prominent interface for cloud-storage systems. A KVS can beimplemented from read/write registers,
as shown by Cachin et al. [8], though their implementation does not preserve the space complexity.

4 Complexity comparison

This section compares the communication and storage complexities of AWE to existing erasure-coded
distributed storage solutions, in a setting withn data nodes andm clients. We denote the size of each
stored valuev ∈ V by ℓ = ⌈log2 |V|⌉. In line with the intended deployment scenarios, we assume thatℓ
is much larger (by several orders of magnitude) thann2 andm2 , i.e.,ℓ≫ n2 andℓ≫ m2.

We examine the worst-case communication and storage costs incurred by a client in the protocol and
distinguish metadata operations (ondir) from operations on the data nodes with data (i.e., erasure-coded
fragments of data values).

For protocol AWE, the metadata of one value written todir consists of a pointer, containing the
cross checksum withn hash values, thet + k identities of the data nodes that store a data fragment,
and a timestamp. Moreover, the metadata entry of one writer contains also the list ofm pointers to
frozen values, them indices relating to the frozen values, and the writer’s reader index. Assuming a
collision-resistant hash function with output sizeλ bits and timestamps no larger thanλ bits, the total
size of the metadata isO(m2nλ). (Note that a2λ-bit counter suffices for all protocol executions where
the hash function is secure, as collisions in hash functionscan be found with about2λ/2 operations.)
In the remainder of this section, the size of the metadata is considered to be negligible and is ignored,
though it would incur in practice.

According to the above assumption, the complexity of AWE is dominated by the data itself. When
writing a valuev ∈ V, the writer sends a fragment of sizeℓ/k and a timestamp of sizeλ to each of
then data nodes. Assuming further thatℓ ≫ λ, the total storage space occupied byv at the data nodes
amounts tonℓ/k bits. Similarly, a read operation incurs a communication cost of (t+ k)k/ℓ bits.

9

Algorithm 1. Protocol AWE, atomic register instancer for client c (part 1).
Uses

Atomic snapshot object,instancedir
Data nodes,instancesd1, . . . , dn

State
// State maintained across write and read operations
writeptr ∈ Pointers, initially Nullptr // Metadata of the currently written value
frozenptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Value frozen and retained for readerp
reservedptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Value reserved and retained for readerp
frozenindex[p] ∈ N0, initially 0, for p ∈ C // Last known reader index ofp
readindex∈ N0, initially 0 // Reader index ofc
// Temporary state during operations
prevptr∈ Pointers, initially Nullptr // Metadata of the value written byc prior to current write
readptr∈ Pointers, initially Nullptr // Metadata of the value to be read byc
readlist[i] ∈ Σ∗, initially ⊥, for i ∈ [1, n] // List of nodes that have responded during read

upon 〈 r-Write | v 〉 do
prevptr← writeptr
invoke 〈 dir-Scan〉; wait for 〈 dir-ScanResp|M 〉
(wsn, ∗)← max{M [p].writeptr.ts | p ∈ C} // Highest timestamp fieldts in awriteptr in M
writeptr.ts← (wsn+ 1, c) // Construct metadata of the currently written value
writeptr.set← ∅
[v1, . . . , vn]← Encodek,n(v)
forall i ∈ [1, n] do

writeptr.hash[i]← H(vi)
invoke 〈 di-Write | writeptr.ts, vi 〉

upon 〈 di-WriteAck | ats〉 such thatats= writeptr.ts∧ |writeptr.set| < t+ k do
writeptr.set← writeptr.set∪ {i}
if |writeptr.set| = t+ k then

// Update metadata atdir with currently written value and with frozen values from previous write
invoke 〈 dir-Update| c, (writeptr, frozenptrlist, frozenindex, ∗) 〉; wait for 〈 dir-UpdateAck〉
// Obtain current reader indices
invoke 〈 dir-Scan〉; wait for 〈 dir-ScanResp|M 〉
freets← {prevptr.ts}
forall p ∈ C \ {c} do

(∗, ∗, ∗, index)←M [p]
if index> frozenindex[p] then // Clientp may be concurrently readingprevptror writeptr

freets← freets∪ {frozenptrlist[p].ts, reservedptrlist[p].ts}
frozenptrlist[p]← writeptr; frozenindex[p]← index
reservedptrlist[p]← prevptr

freets← freets\
⋃

p∈C
{frozenptrlist[p].ts, reservedptrlist[p].ts}

forall j ∈ [1, n] do // Clean up all fragments except for current, frozen, and reserved values
invoke 〈 dj-Free| freets〉

invoke 〈 r-WriteAck 〉

10

Algorithm 2. Protocol AWE, atomic register instancer for client c (part 2).
upon 〈 r-Read〉 do

forall i ∈ [1, n] do readlist[i]← ⊥
readindex← readindex+ 1
invoke 〈 dir-Update| c, (∗, ∗, ∗, readindex) 〉; wait for 〈 dir-UpdateAck〉
// Parse the content ofdir and extract the highest timestamp, potentially frozen forc
invoke 〈 dir-Scan〉; wait for 〈 dir-ScanResp|M 〉
readptr← highestread(M, c, readindex)
if readptr.ts= (0,⊥) then

invoke 〈 r-ReadResp| ⊥ 〉
else// Contact the data nodes to obtain the data fragments

forall i ∈ readptr.setdo
invoke 〈 di-Read| readptr.ts 〉

upon 〈 di-ReadResp| vts, v 〉 such thatvts= readptr.ts∧ readlist[i] = ⊥ do
if v 6= ⊥ ∧H(v) = readptr.hash[i] then

readlist[i]← v
if
∣

∣{j|readlist[j] 6= ⊥}
∣

∣ = k then
readptr← Nullptr
retval←Reconstructk,n(readlist)
invoke 〈 r-ReadResp| retval 〉

Algorithm 3. Protocol AWE, implementation of data nodedi.
State

data[ts] ∈ Σ∗, initially ⊥, for ts∈ Timestamps // Stored data values indexed by timestamp

upon 〈 di-Write | ts, v 〉 do
data[ts]← v
invoke 〈 di-WriteAck | ts 〉

upon 〈 di-Read| ts 〉 do
invoke 〈 di-ReadResp| ts, data[ts] 〉

upon 〈 di-Free| freets〉 do
forall ts∈ freetsdo

data[ts]← ⊥
invoke 〈 di-FreeAck| ts 〉

11

Protocol Communication cost Storage cost
Write Read

ORCAS-A [14] (1 +m)nℓ 2nℓ nℓ

ORCAS-B [14] (1 +m)nℓ/k 2nℓ/k mnℓ/k

CASGC [10] nℓ/k ∗ ∞ mnℓ/k

CT [9] (n+m)nℓ/(k + t) ℓ ∗ nℓ/(k + t) ∗

HGR [19] nℓ/k ∗ ∞ mnℓ/k

M-PoWerStore [12] nℓ/k ∗ nℓ/k ∞
DepSky [4] nℓ/k ∗ nℓ/k ∞
AWE (Sec. 3) nℓ/k ∗ (t+ k)ℓ/k 2m2nℓ/k

Table 2: Comparison of the communication and space complexities of erasure-coded distributed storage
solutions. There arem clients,n data nodes, the erasure code parameter isk = n − 2t, and the data
values are of sizeℓ bits. An asterisk (∗) denotes optimal properties.

With respect to storage complexity, protocol AWE freezes and reserves two timestamps and their
fragments for each writer-reader pair, and additionally stores the fragments of the last written value
for each writer. This means that the storage cost is at most2m2nℓ/k bits in total. The improvement
described in a remark of Section 3.3 reduces this to2mnℓ/k in the best case.

Table 2 shows the communication and storage costs of protocol AWE and the related protocols.
We use the wait-free semantics achieved by AWE and others as the base case; in CASGC [10] and
HGR [19], a read operation concurrent with an unbounded number of writes may not terminate, hence
we state their cost as∞. In contrast to AWE, DepSky [4] is neither wait-free nor amnesic and M-
PoWerStore [12] is not amnesic. It is easy to see that AWE performs better than most storage solutions
in terms communication complexity.

5 Analysis

In this section we prove that protocol AWE, given by Algorithms 1–3, emulates an atomic read/write
register and is wait-free.

Whenever the metadata directorydir contains an entryts = M [c].frozenptrlist[p].ts we say that
timestampts is frozen byc for p. If ts is frozen by somec for any p, then ts is simply frozen. Fur-
thermore, considering the state of writerc, a timestampts is said to beretained byc for p when either
frozenptrlist[p].ts= ts (this includes thatts is frozen byc for p) or whenreservedptrlist[p].ts= ts (which
means thatts is reserved byc for p). A timestamp isretainedby c when it is retained byc for somep.
We call the timestampM [c].writeptr.ts thewritten timestamp ofc.

Lemma 1 (Frozen timestamps).At any time the timestamps that a client has frozen are no larger than
its written timestamp. More precisely, for allc, p ∈ C,

M [c].writeptr.ts > M [c].frozenptrlist[p].ts.

Moreover, during any dir-Updateoperation ofc, the timestampM [c].writeptr.ts and all timestamps
M [c].frozenptrlist[p].ts may only increase.

Proof. From Algorithm 1 it follows that for any clientc, the timestamps stored inM [c].writeptr.ts in suc-
cessiver-Write operations ofc increase. From the same algorithm, it is clear thatM [c].frozenptrlist[p].ts
is only updated through ar-Write operation ofc, and is set to the written timestamp of the preceding
r-Write operation ofc, which is strictly smaller than the written timestamp stored in M [c].writptr .ts.
The second inequality follows analogously. Thus, the values stored inM [c].frozenptrlist[p].ts only in-
crease.

12

We define thetimestamp of a register operationo as follows: (i) for anr-Write operation, the
timestamp ofo is the value assigned to variablewriteptr.ts duringo; (ii) wheno is anr-Readoperation,
then its timestamp is the value assigned to variablereadptr.tsby highestread. Note that the timestamp of
anr-Readoperation is(0,⊥) if and only if o returns⊥. Furthermore, we say that a valuev is associated
to a timestamptswhenever the timestamp of the register operation that writes v is ts.

According tohighestread, the timestamp in the returned pointer may be frozen (taken from the
frozenptrlistfield of M) or written (taken from thewriteptr field ofM), but not both.

Lemma 2 (Read frozen timestamp).If the timestamp ts of a r-Readoperationor by clientc has been
frozen forc by a clientw, thenw executes two r-Write operations concurrently toor, where the dir-
Scanoperation of the former r-Write operationow,1 and the dir-Updateoperation of the latter r-Write
operationow,2 occur between dir-Updateand dir-Scanoperations ofor. Moreover, the timestamp of the
r-Readoperationor is ts, the one associated with the value written byow,1.

Proof. From Algorithm 2 it follows that forhighestreadwithin or to return a frozen timestamp, then, if
M is the metadata snapshot returned by thedir-Scanoperation duringor, it holdsM [w].frozenindex[c] =
readindex. This means thatw invokeddir-Updatewith the most recent value ofreadindexbefore the
dir-Scanduringor. To do that,w must have detected the change of thereadindexentry inM [c] caused
by or through thedir-Scanoperation invoked duringow,1. From Algorithm 1, this can only be the
operation through whichw wrote the value associated tots.

Lemma 3 (Partial order). Let o ando′ be two distinct operations on register r with timestamps ts and
ts′, respectively, such thato precedeso′. Then ts≤ ts′. Furthermore, ifo′ is of type r-Write, then ts< ts′.

Proof. We distinguish between two cases, depending on the type ofo.

Case 1: If o is of typer-Write, the claim follows directly from Lemma 1 and from the algorithm of the
writer. In particular, ifo′ is of type r-Read, then, if there is no concurrentr-Write operation of
the same clientw aso, ts is returned as written timestamp by thereadfromfunction when called
for w and reader ofo′. In addition, ifo′ runs concurrently with ar-Write of w, then one of the
two hold: (i) ts (or a higher timestamp if manyr-Write operations have intervened) is frozen for
o′ and is returned by thereadfromoperation invoked byhighestreadin o′ for w, (ii) ts (or a higher
timestamp if manyr-Write operations have intervened) has not yet been frozen byw, in which
case a written timestamp greater or equal tots (by Lemma 1) is returned by thereadfromoperation
invoked byhighestreadin o′ for w.

Case 2: If o is of typer-Read, then letts∗ be the maximum value of the timestamp fieldts in awriteptr
at the time when thedir-Scanoperation invoked byo returns. Note thathighestreadobtainsts as
this maximum or as a frozen timestamp. Lemma 1 implies now that ts≤ ts∗.

We now show thatts ≤ ts′ by distinguishing two cases. First, ifo′ is of typer-Write, the writer
callsdir-Scanaftero completes and determines the maximum value of thetsfield in anywriteptr.
Then it increments that timestamp to obtaints′. This ensures thatts′ > ts∗ ≥ ts, as claimed.

Second, ifo′ is of type r-Read, then ts′ may either have been a written timestamp or a frozen
timestamp (at the time when the client obtained the responseof its dir-Scan). If ts′ has been
written, thents′ is the maximum value of thets field in anywriteptr, which is at least as large as
ts∗ by Lemma 1 and by the atomicity ofdir.

Alternatively, if ts′ has been frozen by writerw, then Lemma 2 applies and shows that there exist
two r-Write operations byw that are concurrent too′, of which the first writes the value associated
to ts′. As such, iftsw is the timestamp returned by thereadfromfunction invoked by anyr-Read
operationo that precedeso′ and for writerw, then tsw ≤ ts′. Since this can be extended to all
writers, it holds thatts≤ ts′.

13

Lemma 4 (Unique writes).If o and o′ are two distinct operations of type r-Write with timestamps ts
and ts′, respectively, then ts6= ts′.

Proof. If o ando′ are executed by different clients, then the two timestamps differ in their second com-
ponent. Ifo ando′ are executed by the same client, then the client executed them sequentially. By
Lemma 3, it holdsts 6= ts′.

Lemma 5 (Integrity). Let or be an operation of type r-Readwith timestamp tsr that returns a value
v 6= ⊥. Then there is a unique operationow of type r-Write that writesv with timestamp tsw = tsr.

Proof. Operationor by clientc returnsv and is, thus, complete. This means that the client has processed
k events of typedi-ReadRespfrom distinct nodes in a setDk; according to the protocol, the client has
verified that the response from everydi ∈ Dk contains a timestampvtsi and a fragmentvi such that
vtsi = tsr andH(vi) = readptr.hash[i].

According to the code, the valuereadptr is computed from awriteptr or a frozenptr[c] entry stored
in the metadata directorydir. This pointer must have been computed during the write operation with
timestamptsw and was later stored indir by the same client. Note that by Lemma 4, no other write has
timestamptsw. From the algorithm of the writer, it follows that the entries in readhashwere generated
as hash values of the fragments, i.e.,readhash[i] = H(v̄i), wherev̄i for i = 1, . . . , n represent the
erasure-coded fragments of some valuev̄.

Based on the check by the reader and the security property of the hash function, this means that
vi = v̄i for all i ∈ Dk. The completeness of the erasure code now implies that the reconstruction yields
v̄ = v, the value associated totsw and written byow.

Lemma 6 (Read concurrent with multiple writes). Consider an operationor of type r-Readinvoked
by a readerc, with timestamp tsr. At the time whenc determines tsr (by highestread), there are at least
k distinct correct data nodes that store a data fragment (different from⊥) under timestamp tsr and they
do not free this fragment beforec completesor.

Proof. Suppose thattsr = (sn, w) and the writer is clientw. Consider a sequenceow,1, . . . , ow,m

of r-Write operations executed byw with respective timestampstsw,1, . . . , tsw,m, of which some are
concurrent toor. Now consider the linearization ofdir and letow,i be the last one among theser-
Write operations whosedir-Update(denoted bydir-Updatew,i) precedes thedir-Updateoperation of
the reader duringor (denoted bydir-Updater). Let readindexdenote the reader’s index at the time
whenc invokesdir-Updater.

W.l.o.g. suppose thatdir-Updater follows at least onedir-Updateoperation that is triggered by an
r-Write operation ofw; furthermore, suppose thatw executes at least one morer-Write operationdir-
Updatew,i+1 afterdir-Updatew,i.

We claim thattsr = tsw,i ∨ tsr = tsw,i+1. To show this, we distinguish four cases, considering the
linearization of operations ondir. Let dir-Scanw,i denote the second invocation ofdir-Scanduringow,i,
the one from which the writer takesreadindex.

Case 1: Suppose thatdir-Updater precedesdir-Scanw,i; this means thatw detects the concurrent reador
duringow,i, in the sense thatw updates its variablefrozenindex[c] to readindex.

(Case 1.a) If thedir-Scanoperation of the readerc duringor, denoted bydir-Scanr, precedesdir-
Updatew,i+1, thenc obtainstsr = tsw,i as the highest timestamp stored inM by the algorithm.

(Case 1.b) Otherwise,dir-Scanr follows dir-Updatew,i+1; then the readerc obtainsM such that
M [w].frozenindex[c] is equal toreadindexandtsr = M [w].frozenptrlist[c].ts = tsw,i, according
to readfromin the protocol and becauseM [w].frozenindex[c] is equal toreadindex.

14

Case 2: Suppose thatdir-Updater follows dir-Scanw,i. This means thatdir-Updater takes place be-
tweendir-Scanw,i anddir-Updatew,i+1 andw detects the concurrent reador only duringow,i+1,
after executingdir-Scanw,i+1. The same two sub-cases may occur now.

(Case 2.a) Ifdir-Scanr precedesdir-Updatew,i+1, thentsr = tsw,i, analogous to Case 1.a.

(Case 2.b) Otherwise,dir-Scanr follows dir-Updatew,i+1 and the reader obtainstsr = tsw,i+1.
To see this, suppose that (Case 2.b.i)dir-Scanr precedes thedir-Updatew,i+2 in the subsequent
r-Write operation ofw or there is no suchr-Write; then, the valuereadindexof c remains greater
thanM [w].frozenindex[c] and thusc setstsr = tsw,i+1. Alternatively (Case 2.b.ii), suppose that
dir-Scanr follows dir-Updatew,i+2; then, according to the protocol, the writer has already set
M [w].frozenindex[c] = readindexduring dir-Updatew,i+2 andc setstsr = tsw,i+1 analogous to
Case 1.b.

Suppose the reader determines thatreadptr.ts = tsr; then the correct nodes inreadptr.setstore a
fragment of the associated value because at leastt + k nodes inreadptr.set have sent adi-WriteAck
for tsr to the writer. Accounting for the up tot faulty nodes, at leastk correct nodes have once stored
a fragment indata[tsr]. It remains to argue why these nodes do not free this fragmentbeforec com-
pletesor.

In Case 1.a, the writer detects the concurrent read duringow,i and therefore excludes the data frag-
ments associated totsr from garbage collection forc, by settingfrozenptrlist[r].ts to tsr in its state.
According to the logic of the protocol,tsr remains frozen and the corresponding fragments are retained
at least untilc invokes a subsequent read operation.

In Case 2.a, almost the same happens duringow,i+1, when the writer detects the concurrent read. The
writer setsreservedptrlist[r].ts to tsr in its state. Again according to the protocol,tsr remains reserved
and the writer retains the corresponding fragments at leastuntil c invokes a subsequent read.

Intuitively, Cases 1.a and 2.a demonstrate whyw retains two values during a write (the one being
written and the one written before):w does not know which one of the two the reader is about to access.

In Case 2.b.i, if the writer detects the concurrent read during ow,i+2, then it reserves and retainstsr
and the claim follows analogously to Case 2.a.

In Cases 1.b and 2.b.ii, the reader accesses a frozen value. Again, according to the protocol,tsr
remains frozen and is retained at least untilc invokes a subsequent read operation. The lemma follows.

Theorem 7 (Atomicity). Given a atomic snapshot object dir, protocol AWE emulates anatomic MRMW
register r.

Proof. We show that every executionσ of the protocol is linearizable with respect to an MRMW register.
By Lemma 5, the timestamp of ar-Readeither has been written by somer-Write operation orr-Read
returns⊥.

We first construct an executionτ from σ by completing all operations of typer-Write for those
valuesv that have been returned by somer-Readoperation. Then we obtain a sequential permutationπ
from τ as follows: (1) order all operations according to their timestamps; (2) among the operations
with the same timestamp, place ther-Readoperations immediately after the uniquer-Write with this
timestamp; and (3) arrange all non-concurrent operations in the same order as inτ . Note that concurrent
r-Readoperations with the same timestamp may appear in arbitrary order.

For proving thatπ is a view of τ at a clientc w.r.t. a register, we must show that everyr-Read
operation returns the value written by the latest precedingr-Write that appears before inπ or⊥ if there
is no such operation.

Let or be an operation of typer-Readwith timestamptsr that returns a valuev. If v = ⊥, then by
constructionor is ordered before any write operation inπ. Otherwise, it holdsv 6= ⊥ and according
to Lemma 5, there exists anr-Write operationow that writesv with the same timestamp. In this case,

15

ow is placed inπ beforeor by construction. No otherr-Write operation appears betweenow andor
because all other write operations have a different timestamp and therefore appear inπ either beforeow
or afteror.

It remains to show thatπ preserves the real-time order ofσ. Consider two operationso ando′ in
τ with timestampstso andts′o, respectively, such thato precedeso′. From Lemma 3, we havets′ ≥ ts.
If ts′ > ts theno′ appears aftero in π by construction. Otherwisets′ = ts ando′ must be an operation
of type r-Read. If o is of type r-Write, theno′ appears aftero since we placed eachr-Readafter the
r-Write with the same timestamp. Otherwise,o is a r-Readand the twor-Readoperations appear inπ
in the same order as inτ by construction.

Theorem 8 (Wait-freedom).Given an atomic snapshot object dir and assuming thatn ≥ 2t + k,
protocol AWE is wait-free.

Proof. As the atomic snapshotdir operates correctly, all its operations eventually complete indepen-
dently of other processes. It remains to show that nor-Write and nor-Readoperation blocks.

For a r-Write operation, the client needs to receivet + k di-WriteAck events from distinct data
nodes before completing. As there aren nodes and up tot may be faulty, the assumptionn ≥ 2t + k
implies this.

During ar-Readoperation, the reader needs to obtaink valid fragments, i.e., fragments that pass
the verification of their hash value. According to Lemma 6, there are at leastk correct data nodes
designated byreadptr.set that store a fragment under timestamptsr until the operation completes. As
the reader contacts these nodes and waits fork fragments, these fragments eventually arrive and can be
reconstructed to the value written by the writer by the completeness of the erasure code.

6 Conclusion

This paper has presented AWE, the firsterasure-codeddistributed implementation of a multi-writer
multi-reader read/write storage object that is, at the sametime: (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (i.e., with data nodes storing a bounded number of values) and (5) Byzantine fault-
tolerant (BFT) using the optimal number of nodes. AWE is efficient since it does not use public-key
cryptography and requires data nodes that support only reads and writes, further reducing the cost of
deployment and ownership of a distributed storage solution. Notably, AWE stores metadata separately
from k-out-of-n erasure-coded fragments. This enables AWE to be the first BFTprotocol that uses as
few as2t+ k data nodes to toleratet Byzantine nodes, for anyk ≥ 1.

Future work should address how to optimize protocol AWE and to reduce the storage consumption
for practical systems; this could be done at the cost of increasing its conceptual complexity and losing
some of its ideal properties. For instance, when the metadata service is moved from a storage abstraction
to a service with processing, it is conceivable that fewer values have to be retained at the nodes.

Acknowledgment

We thank Alessandro Sorniotti, Nikola Knežević, and RaduBanabic for inspiring discussions during the
early stages of this work. This work is supported in part by the EU CLOUDSPACES (FP7-317555) and
SECCRIT (FP7-312758) projects.

References

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine disk Paxos: Optimal resilience with
Byzantine shared memory.Distributed Computing, 18(5):387–408, 2006.

16

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. InProc. 5th Symp. Operating Systems Design and Implementa-
tion (OSDI), 2002.

[3] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory.Journal of the ACM, 40(4):873–890, 1993.

[4] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSky: Dependable and secure
storage in a cloud-of-clouds. InProc. 6th European Conference on Computer Systems (EuroSys),
pages 31–46, 2011.

[5] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and integrity layer for cloud
storage. InProc. 16th ACM Conference on Computer and Communications Security (CCS), pages
187–198, 2009.

[6] C. Cachin, D. Dobre, and M. Vukolić. BFT storage with2t + 1 data replicas. Report
arXiv:1305.4868, CoRR, 2013.

[7] C. Cachin, R. Guerraoui, and L. Rodrigues.Introduction to Reliable and Secure Distributed Pro-
gramming (Second Edition). Springer, 2011.

[8] C. Cachin, B. Junker, and A. Sorniotti. On limitations ofusing cloud storage for data replication.
Proc. WRAITS, 2012.

[9] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed storage. In
Proc. International Conference on Dependable Systems and Networks (DSN-DCCS), pages 115–
124, 2006.

[10] V. R. Cadambe, N. Lynch, M. Medard, and P. Musial. Coded atomic shared memory emulation for
message passing architectures. CSAIL Technical Report MIT-CSAIL-TR-2013-016, MIT, 2013.

[11] G. Chockler, R. Guerraoui, and I. Keidar. Amnesic distributed storage. In G. Taubenfeld, editor,
Proc. 21th International Conference on Distributed Computing (DISC), volume 4731 ofLecture
Notes in Computer Science, pages 139–151. Springer, 2007.

[12] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolić. PoWerStore: Proofs of writing
for efficient and robust storage. InProc. ACM Conference on Computer and Communications
Security (CCS), 2013.

[13] D. Dobre, M. Majuntke, and N. Suri. On the time-complexity of robust and amnesic storage.
In T. P. Baker, A. Bui, and S. Tixeuil, editors,Proc. 12th Conference on Principles of Distributed
Systems (OPODIS), volume 5401 ofLecture Notes in Computer Science, pages 197–216. Springer,
2008.

[14] P. Dutta, R. Guerraoui, and R. R. Levy. Optimistic erasure-coded distributed storage. In G. Tauben-
feld, editor,Proc. 22th International Conference on Distributed Computing (DISC), volume 5218
of Lecture Notes in Computer Science, pages 182–196. Springer, 2008.

[15] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. A decentralized algorithm for erasure-
coded virtual disks. InProc. International Conference on Dependable Systems and Networks
(DSN-DCCS), pages 125–134, 2004.

17

http://arxiv.org/abs/1305.4868

[16] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.Efficient Byzantine-tolerant erasure-
coded storage. InProc. International Conference on Dependable Systems and Networks (DSN-
DCCS), pages 135–144, 2004.

[17] R. Guerraoui, R. R. Levy, and M. Vukolić. Lucky read/write access to robust atomic storage. In
Proc. International Conference on Dependable Systems and Networks (DSN-DCCS), pages 125–
136, 2006.

[18] J. Hendricks.Efficient Byzantine Fault Tolerance for Scalable Storage and Services. PhD thesis,
School of Computer Science, Carnegie Mellon University, July 2009.

[19] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage. In
Proc. 21st ACM Symposium on Operating Systems Principles (SOSP), 2007.

[20] M. Herlihy. Wait-free synchronization.ACM Transactions on Programming Languages and Sys-
tems, 11(1):124–149, Jan. 1991.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[22] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, et al. Erasure coding in Windows
Azure Storage. InProc. USENIX Annual Technical Conference, 2012.

[23] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[24] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In D. Malkhi, editor,Proc.
16th International Conference on Distributed Computing (DISC), volume 2508 ofLecture Notes
in Computer Science, pages 311–325. Springer, 2002.

[25] J. S. Plank. Erasure codes for storage applications. Tutorial, presented at the Usenix Conference
on File and Storage Technologies (FAST), 2005.

[26] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.
Journal of the ACM, 36(2):335–348, 1989.

[27] W. Wong. Cleversafe grows along with customers’ data storage needs. Chicago Tribune, Nov.
2013.

[28] J. Yin, J.-P. Martin, A. V. L. Alvisi, and M. Dahlin. Separating agreement from execution in
Byzantine fault-tolerant services. InProc. 19th ACM Symposium on Operating Systems Principles
(SOSP), pages 253–268, 2003.

18

	1 Introduction
	2 Definitions
	3 Protocol AWE
	3.1 Abstractions
	3.2 Protocol overview
	3.3 Details

	4 Complexity comparison
	5 Analysis
	6 Conclusion

