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Abstract

Although many distributed storage protocols have beermdhiced, a solution that combines the
strongest properties in terms of availability, consisyefault-tolerance, storage complexity and the
supported level of concurrency, has been elusive for a lang.t Combining these properties is
difficult, especially if the resulting solution is requiremlbe efficient and incur low cost.

We present AWE, the firstrasure-codedlistributed implementation of a multi-writer multi-
reader read/write storage object that is, at the same tif)@synchronous, (2) wait-free, (3) atomic,
(4) amnesic, (i.e., with data nodes storing a bounded numibealues) and (5) Byzantine fault-
tolerant (BFT) using the optimal number of nodes. Furtheem@WE is efficient since it does
not use public-key cryptography and requires data hodéstipgport only reads and writes, further
reducing the cost of deployment and ownership of a distedbgtorage solution. Notably, AWE
stores metadata separately frérout-of-n erasure-coded fragments. This enables AWE to be the
first BFT protocol that uses as few 25+ £ data nodes to tolerateByzantine nodes, for any > 1.

1 Introduction

Background. Erasure codings a key technology that saves space and retains robustessizaults

in distributed storage systems. In short, an erasure cdite aplarge data object inta fragments
such that from anyt of them the input value can be reconstructed. The utility rasere coding is
demonstrated by large-scale erasure-coding storagensydteat have been deployed today![22, 27].
These distributed storage systems offer large capacgi, throughput, and resilience to faults.

Whereas the storage systems in production use today omlsatelcomponent crashes or outages,
storage systems in tH&yzantine failure modedurvive also more severe faults, ranging from arbitrary
state corruption to malicious attacks on components. Ephper, we consider a model whetents
directly access a storage service provided by distribugedess, callecdhodes— a fraction of the nodes
may be Byzantine, whereas clients may fail as well, but oglgdashing.

Although Byzantine-fault tolerant (BFT) erasure-codestrifbuted storage systems have received
some attention in the literaturel [4]9, 14][16, 19], our ustdarding of their properties lies behind that
of replicated storage. In fact, most existing BFT erasu@ed storage approaches have drawbacks that
prevented their wide-spread use. For example, they retigtl@nodes storing an unbounded number of
values [16], required the nodes to communicate with eacérdflj, used public-key cryptography![9,
[19], or might have blocked clients due to concurrent openatof other clients [19].

We consider an abstrasfit-freestorage register withtomicsemantics [21], accessed concurrently
by multiple readers and writers (MRMW). Wait-free termioatmeans that any client operation termi-
nates irrespective of the behavior of the Byzantine nodd&ather clients. This is not easy to achieve
with Byzantine nodes [1] even in systems that replicate tta.dTherefore, previous works have often
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used a weaker notion of liveness calfetdte-write (FW) terminationwhich ensures that read operations
progress only in executions with a finite number of writes.

Contribution.  This paper introduces AWE, thigst asynchronous, wait-free distributed BFT erasure-
coded storage protocol with optimal resilience. As in poagi work, we assume there atenodes
and up tot of them may exhibit non-responsive (NR-)arbitrary fauttst is, Byzantine corruptions.
The best resilience that has been achieved so faris3t, which is optimal for Byzantine storage [24].
However, our protocol features a separation of metadate@stire coded fragments; with this approach
our protocol may reduce the numberdafta nodesi.e., those that store a fragment, to lower values than
n for k < t. In particular, our protocol takes ond}¢ + k data nodes; this idea saves resources, as in the
separation of agreement and execution for BFT services [2&] implementing the metadata service,
n > 3t nodes are still needed.

Our protocol employs simple, passive data nodes; they ¢axacute code and they only support
read and write operations, such as the key-value stores YIg«®ided by popular cloud storage ser-
vices. The metadata service itself is an atomic snapshetlyhich has only weak semantics and may
be implemented in a replicated asynchronous system fromlsiread/write registers|[3]. The protocol
is alsoamnesid11], i.e., the nodes store a bounded number of values ancenagg obsolete data. The
protocol uses only simple cryptographic hash functionsoufexpensive) public-key operations.

In summary, protocol AWE, introduced in Sectibh 3, is thet fesasure-coded distributed imple-
mentation of a MRMW storage object that is, at the same timig:agéynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (5) tolerates the optimal number ofaByine nodes, and (6) does not use public-
key cryptography. Furthermore, AWE can be implemented fnmm-programmable nodes (KVS) that
only support reads and writes (in the vein of Disk Pakos [lhpractice, the KVS interface is offered by
commodity cloud storage services, which could be used as A&f& nodes to reduce the cost of AWE
deployment and ownership. While some of these desirablgepiies have been achieved in different
combinations so far, they have never been achieved togeitteerasure-coded storage, as explained
later. Combining these properties has been a longstangieg problem[[16].

Related work. We provide a brief overview of the most relevant literaturetbe subject. Tablgl 1
summarizes this section.

Earlier designs for erasure-coded distributed storage kaffered from potential aborts due to con-
tention [15] or from the need to maintain an unbounded nurob&lagments at data nodes [16]. In the
crash-failure model, ORCAS[14] and CASGC]10] achievemptiresiliencen > 2t and low commu-
nication overhead, combined with wait-free (ORCAS) and te&Whination (CASGC), respectively.

In the model with Byzantine nodes, Cachin and Tessaro ((T{@®duced the first wait-free proto-
col with atomic semantics and optimal resilience- 3¢t. CT uses a verifiable information dispersal pro-
tocol but needs node-to-node communication, which liesidetour model. Hendricks et al. (HGR)[19]
present an optimally resilient protocol that comes closestir protocol among the existing solutions. It
offers many desirable features, that is, it has as low conigatian cost, works asynchronously, achieves
optimal resilience, atomicity, and is amnesic. Comparedutowork, it uses public-key cryptography,
achieves only FW-termination instead of wait-freedom, eegliresprocessingoy the nodes, i.e., the
ability to execute complex operations beyond simple readsmites.

To be fair, much of the (cryptographic) overhead inhererthin CT and HGR protocols defends
against poisonous writes from Byzantine clients, i.e.,ici@ls client behavior that leaves the nodes
in an inconsistent state. We do not consider Byzantine tslianthis work, since permitting arbitrary
client behavior is problematic. Such a client might writelgaye to the storage system at any time and
wipe out the stored value. Furthermore, the standard foocmméctness notions such as linearizability
fail when clients misbehave (apart from crashing). Herndrid €] discusses correctness notions in the



Protocol BFT | Liveness Data nodes Type | Amnesic | Cryptogr.
ORCAS [14] — | Wait-free 2t +1 Proc. — N/A
CASGC [10] — | FW-term. 2t +1 Proc. v N/A
CT[9] v* | Wait-free* 3t+1 Msg. — Public-key
HGR [19] Ve FW-term. | 2t +k,fork >t | Proc. v Public-key
M-PoWerStore[[12]| v* | Wait-free* 3t+1 Proc. — Hash func.*
DepSky [4] v* | Obstr.-free 3t+1 R/W * — Public-key
AWE (Sec[3B) v* | Wait-free* | 2t + k,fork >1* | RIW* v* Hash func.*

Table 1: Comparison of erasure-coded distributed storafygiens. An asterisk*) denotes optimal
properties. The column label@ypestates the computation requirements on noé&esc. denotes pro-
cessing;Msg. means sending messages to other nodes, in addition to pirgd?/W means a register
object supporting only read and write.

presence of Byzantine clients. However, even without tbpssthat protect against poisonous writes,
HGR still requires processing by the nodes and is not waé-fr

The M-PoWerStore protocdl [12] employs a cryptographicotgrof writing” for wait-free atomic
erasure-coded distributed storage. It is the first wad-8& T solution without node-to-node commu-
nication. Similar to other protocols, M-PoWerStore usedasowith processing capabilities and is not
amnesic.

Several systems have recently addressed how to store exasied data on multiple redundant
cloud services but only few of them focus on wait-free conenir access. HAILL[5], for instance, uses
Byzantine-tolerant erasure coding and provides datarityetirough proofs of retrievability; however,
it does not address concurrent operations by differenbtslieDepSky([4] achieves regular semantics
and uses lock-based concurrency control; therefore, ot chay block operations of other clients.

A key aspect of AWE lies in the differentiation of (small) radata from (large) bulk data: this
enables a modular protocol design and an architecturatatigafor implementations. The FARSITE
system|[[2] first introduced such a separation for replicatedage; their data nodes and their metadata
abstractions require processing, however, in contrasti& ANon-explicit ways of separating metadata
from data can already be found in several previous erasutmgdased protocols. For instance, the
cross checksum, a vector with the hashes ofhidlagments, has been replicated on the data nodes to
ensure consistency|[9,/16].

Finally, a recent protocol called MDStore [6] has shown thgparating metadata from bulk data
permits to reduce the number of data nodes in asynchronoi$ree BFT distributed storage imple-
mentations to onl2¢ + 1. When protocol AWE is reduced to use replication with theidtierasure
code ¢ = 1), it uses as few nodes as MDStore to achieve the same waitfoeic semantics; unlike
AWE, however, MDStore is not amnesic and uses processingsnod

Structure. The paper continues with the model in Secfibn 2 and preseateddl AWE in Sectionl3.
The communication and storage complexities of AWE are coatpto those of existing protocols in
Sectiorl 4. Sectionl5 contains a formal proof for the propertif AWE.

2 Definitions

System model. We consider an asynchronous distributed system of comp®ifenprocesses) that
communicate with each other. The components contain & eétmn clients a setD of n data nodes
di,...,dy, and further process abstractions. The components imtasgochronously via exchanging
events. A protocol specifies a collection of programs wistrinctions for all components.



A component may fail by crashing or by exhibitiyzantinefaults; the latter means they may
deviate arbitrarily from their specification. We assumé tti@nts can only crash; on the other hand, up
to t data nodes can be Byzantine and behave adversarially (bifRaay faults). A component that does
not fail is calledcorrect

Notation. Protocols are presented in a modular way using an eventtmaation [7]. A component
is specified through itinterface containing the events that it exposes to other componbatsntay
call it, and itsproperties which define its behavior. A component may react to a redeexent by
doing computation and triggering further events. Every ponent is named by an identifier. Events
are qualified by the component identifier to which the evefdrizgss and may take parameters. An event
Sampleof a componenimwith a parametes: is denoted by m-Sample| x ).

Components interact asynchronously with others througthanxging events. We assume that all
events communicated from one component to another areedsiiin FIFO-order. There are two kinds
of events in a component’s interfaceput eventghat it receives from other components, typically to
invoke its services, andutput eventsthrough which the component delivers information or sigraa
condition to another component. The behavior of a compoiseypically stated through a number of
properties or through a sequential implementation.

Objects and histories. An objectis a special type of component for which every input evenitéda
aninvocationin this context) triggers exactly one output event (calladsponsg Every such pair of
invocation and response define aperationof the object. An operatiomompletesvhen its response
occurs.

A historyo of an execution of an obje€? consists of the sequence of invocations and responges of
occurring ino. An operation is calledompletdn a history if it has a matching response. An operation
precedesanother operation’ in a sequence of events denotet <, o/, whenevew completes before
o' is invoked ino. If o precedes’ theno' followso. A sequence of events preserves the real-time
order of a historyo if for every two operation® ando’ in , if 0 <, o' theno <, ¢o’. Two operations
areconcurrentif neither one of them precedes the other. A sequence ofgiasgquentialf it does not
contain concurrent operations. We often simplify the taiwtogy by exploiting that evergequential
sequence of events corresponds naturally to a sequencerattiops.

An execution iswell-formedif the events at every object are alternating invocatiors raatching
responses, starting with an invocation. An executiofails informally, if it does not halt prematurely
when there are still steps to be taken or triggered events tmhsumed (see the standard literature for
a formal definition[[28]).

Registers. A read/write register lis an object that stores a value from a domdiand supports exactly
two operations, for writing and reading the value. More wely:

e A Write operation tor is triggered by an invocatiofr-Write | v ) that takes a value € V as
parameter and terminates by generating a resppns&’riteAck ) with no parameter.

¢ A Readoperation fron is triggered by an invocationr-Read) with no parameter; the register
signals that the read operation completes by triggeringsporese( r-ReadResqg v ), which
contains a parameterc ).

The behavior of a register is given through its sequentiatifigation, which requires that everyRead
operation returns the value written by the last precediiigrite operation in the execution, or the special
symbol L ¢ V if no such operation exists. For simplicity, we will assurhattevery distinct value is
written only once.



In this work, any client may invoke the operations of the eated register object; such registers are
also calledmulti-reader multi-writer (MRMW) registerg-urthermore, we assume that all clients invoke
a well-formed sequence of operations.

Consistency and availability. Recall that clients interact with an objeG through its operations,
defined in terms of an invocation and a response evefit &ffe say that a client executegn operation
between the corresponding invocation and response evé¥tien accessed concurrently by multiple
processes, executions of objects considered in this werkrerarizable that is, the object appears to
execute all operatioratomically.

Definition 1 (View). A sequence of eventsis called aviewof a historyo at a clientc w.r.t. an objecO
whenever:

1. 7 is a sequential permutation of some subsequence of conggetations irv;
2. all complete operations executedbgppear inr; and
3. 7 satisfies the sequential specification(af

Definition 2 (Linearizability [21]). A history o is linearizable w.r.t. an objea if there exists a se-
guence of events such that:

1. 7 is aview ofo at all clients w.r.t.O; and
2. 7 preserves the real-time order ®f

The goal of this work is to describe a protocol that emulat@searizable register abstraction among
the clients; such a register is also calldmic Some of the clients may crash and some nodes may be
Byzantine, but every client operation should terminatélinases, irrespective of how other clients and
nodes behave.

Definition 3 (Wait-freedom [20]). A protocol is calledvait-freeif every operation invoked by a correct
client eventually completes.

Cryptography. We make use of cryptographic hash functions. One can imalgat¢he cryptographic
schemes are implemented by a distributed oracle accessialecomponents |7]. A hash functiol
maps a bit string: of arbitrary length to a short, unique representation offiemgth. We use eollision-
free hash function; this property means that no process, not @Byrantine component, can find two
distinct valuese andz’ such thatd (z) = H (/).

3 Protocol AWE

This section introduces ttasynchronous wait-free erasure-coded Byzantine digetbstorage protocol
(AWE)

3.1 Abstractions

Erasure code. An (n, k)-erasure code (EG)ith domain) is given by an encoding algorithm, denoted
Encode and a reconstruction algorithm, call&kconstruct Given a (large) value € V, algorithm
Encodg ,,(v) produces a vectdtfi, ..., f,] of n fragments which are from a domaitF. A fragment

is typically much smaller than the input, and ahyfragments contain all information af, that is,
V| = k|F|.



For ann-vectorF' € (]—" U {L})”, whose entries are either fragments or the symhbahlgorithm
Reconstrugt,,(F') outputs a valuer € V or L. An output value ofL. means that the reconstruction
failed. Thecompletenesgroperty of an erasure code requires that an encoded vatumegaconstructed
from anyk fragments. In other words, for evetye V, when one computeg' < Encodg ,,(v) and
then erases up 0 — k entries inF" by setting them ta., algorithmReconstrugt,,(F") outputsv. More
details are available in the literatufe [25] 26].

Metadata service. The metadata service is implemented by a standéwchic snapshot objed8],
calleddir, that serves asdirectory. A snapshot object extends the simple storage function efiater
to a service that maintains one value for each client anavalfor better coordination. Like an array
of multi-reader single-writer (MRSW) registers, it allowsery client toupdateits value individually;
for reading it supports acanoperation that returns the vector of the stored values, aneviery client.
More precisely, the operations dir are:

e An Updateoperation tdlir is triggered by an invocationdir-Update| ¢, v ) by clientc that takes
a valuev € V as parameter and terminates by generating a respongépdateAck) with no
parameter.

e A Scanoperation ordir is triggered by an invocatiofi dir-Scan) with no parameter; the snap-
shot object returns a vectdr of m = |C| values toc as the parameter in the response-
ScanRespV ), with V[c¢] € V for ¢ € C.

The sequential specification of the snapshot object folldinectly from the specification of an array of
m MRSW registers (hence, the snapshot initially stores teeiapsymboll ¢ V in every entry). When
accessed concurrently from multiple clients, its operetiappear to take place atomically, i.e., they are
linearizable. Snapshot objects are weak — they can be ingritad from read/write registefs [3], which,
in turn, can be implemented from a set of a distributed preE®subject to Byzantine faults. Wait-free
amnesic implementations of registers with the optimal neimdfn > 3¢ processes are possible using
existing constructions [18,17].

3.2 Protocol overview

The high-level architecture of AWE uses the metadata dirgctir to maintain pointers to the fragments
stored at the data nodes. As in standard implementationsutbfFwriter distributed storage [7], every
value is associated to a timestamp, which consists of a sequeumbersn and the identifierc of

the writing client, i.e.,ts = (snc¢) € Timestamps= Ny x (C U {L}); timestamps are initialized
to 7o = (0,1). The metadata contains the timestamp of the most recenttfemwalue for every
client, and readers determine the value to read by retgesdirtimestamps, determining their maximum,
and accessing the fragments associated to the highestaimgsComparisons among timestamps use
the standard ordering, whetg > ts, for ts; = (sn,c;) andts, = (sm,cq) if and only if sny >
SV (S =S Acy > ca).

The directory stores an entry for every writer; it contaims timestamp of its most recently written
value, the identities of those nodes that have acknowletlystbre a fragment of it, a vector with the
hashes of the fragments for ensuring data integrity, andiaddl metadata to support concurrent reads
and writes. The linearizable semantics of protocol AWE &taioed from the atomicity of the metadata
directory.

At a high level, the writer first invokedir-Scanon the metadata to read the highest stored timestamp,
increments it, and uses this as the timestamp of the value taorttten. Then it encodes the value to
n fragments and sends one fragment to each data node. Theaths store it and acknowledge the
write. After the writer has received acknowledgments friom k& data nodes, it writes their identities



(together with the timestamp and the hashes of the fragintentise metadata througtir-Update The
reader proceeds accordingly: it first invokdis-Scanto obtain the entries of all writers; it determines
the highest timestamp among them and extracts the fragrashehl and the identities of the data nodes;
finally, it contacts the data nodes and reconstructs thee\aftier obtainingt fragments that match the
hashes in the metadata.

Although this simplified algorithm achieves atomic semzsjtit does not address timely garbage-
collection of obsolete fragments, the main problem to bgezbfor amnesic erasure-code distributed
storage. It is easy to see that overwriting the fragmentsduhe next write operation may cause a
reader to stall.

Protocol AWE uses two mechanisms to address this: first, thengetainsthose values that may be
accessed concurrently and exempts them from garbage tamlleso that their fragments remain intact
for concurrent readers, which gives the reader enough timettieve its fragments. Secondly, some of
the retained values may also fsezenin response to concurrent reads; this forces a concurradttoe
retrieve a value that is guaranteed to exist at the data matlesy than simply the newest value, thereby
effectively limiting the amount of stored values. A similzeezing method has been used for wait-
free atomic storage with replicated d&tal[13, 17], but it inéschanged for erasure-coded storage with
separated metadata. The retention technigue togethethgiteparation of metadata appears novel.

For the two mechanisms, every reader maintaireader indexboth in its local variableeadindex
and in its metadata. The reader index serves for coordmaitween the reader and the writers. The
reader increments its index whenever it starts a nédeadand immediately writes it talir, thereby
announcing its intent to read. Writers access the read@esdfter updating the metadata for a write
and before (potentially) erasing obsolete fragments. YEweiter w maintains a tablérozenindexwith
its most recent recollection of all reader indices. Whenribely obtained index of a readerhas
changed, them detects that has started a new operation at some time after the last write o

When w detects a new operation ef it does not know whethet has retrieved the timestamp
from dir before or after thalir-Updateof the current write. The reader may access either value; the
writer thereforeretains both the current and the preceding value ddsy storing a pointer to them in
frozenptrlistand inreservedptrlist Clearly, both values have to be excluded from garbage atule
by w in order to guarantee that the reader completes.

However, the operation of the readenay accesdir after thedir-Updateof one or more subsequent
write operation byw, which means that the nodes would have to retain every valsesjuently written
by w as well. To prevent this from happening and to limit the numdfestored valuesyw freezeshe
currently written timestamp (as well as the value) and ferc® read this timestamp when it accesses
dir within the same operation. In particular, the writer stdies current timestamp iffozenptrlistat
index c and updates the reader indexcah frozenindexthen, the writer pushes both tablé®zenindex
andfrozenptrlist to the metadata service during its nexitVrite. The values designated lfypzenptrlist
(they are calledrozen andreservedptrlist(they are calledeserved are retained and excluded from
garbage collection untilv detects the next read of i.e., the reader index af increases. Thus, the
current read may span many concurrent writes)@nd the fragments remain available umtfinishes
reading.

On the other hand, a reader must consider frozen values. Whlew read operation spans multiple
concurrent writes, the readerlearns that it should retrieve the frozen value through risyein the
frozenindextable of the writer. More precisely, whenretrieves the metadata frodir and finds that
writer w’s frozenindek] entry equals itseadindexvariable, thenov has frozen the value designated by
frozenptrlisfc| for c.

The protocol is amnesic because each writer retains at mostdlues per reader, a frozen value
and a reserved value. Every data node therefore stores atwadsagments for every reader-writer pair
plus the fragment from the currently written value. The corabion of freezing and retentions ensures
that readers never wait.



3.3 Detalils

Data structures. We use abstract data structures for compactness. In garfigiven a timestamp
ts = (sn ¢), its two fields can be accessedtasnandts.c. A data typePointersdenotes a set of tuples
of the form (ts, set hash with ts € Timestampsset C [1,n], andhasH:] € ¥* for i € [1,n]. Their
initialization value isNullptr = ((0, L), 0,[L,...,L]).

A Pointersstructure contains the relevant information about oneedtmalue. For example, the
writer locally maintainswriteptr € Pointersdesignating to the most recently written value. More specif
ically, writeptr.ts contains the timestamp of the written valuajteptr.setcontains the identities of the
nodes that have confirmed to have stored the written valubwateptr.hashcontains the cross check-
sum, the list of hash values of the data fragments, of theemritalue.

The metadata directomyir contains a vectoM with a tuple for every clienp € C of the form

M{[p] = (writeptr, frozenptrlist frozenindexreadindey,

where the fieldvriteptr € Pointersrepresents theritten value the fieldfrozenptrlistis an array indexed
by ¢ € C such thaffrozenptrlisfc] € Pointersdenotes a valu&ozen byp for readerc, and the integer
readindexdenotes the reader-index jf

For preventing that concurrently accessed fragments abage-collected, the writer maintains two
tables,frozenptrlist andreservedptrlist each containing onBointersentry for every reader id. The
second onegeservedptrlistis stored only locally, together with tH®zenindexable, which denotes the
writer's most recently obtained copy of the reader indicEer the operations of the reader, only the
local readindexcounter is needed.

Every client maintains the following variables betweenragiens: writeptr, frozenptrlist frozenin-
dex andreservedptrlisimplement freezing, reservations, and retentions forargias mentioned, and
readindexcounts the reader operations.

When clients acceddir, they may not be interested to retrieve all fields or to updiltéelds. For
clarity we replace the fields to be ignored bin thosedir-Scananddir-Updateoperations.

Operations. At the start of a write operation, the writersaves the current value wfiteptr in prevptr,
to be used later during its operationuifshould reserve and retain that value. Thedetermines the
timestamp of the current operation, which is store@viiteptr.ts. After computing the fragments af,
sending them to the data nodes, and obtainisg: acknowledgements, the writer updates its metadata
entry. It writeswriteptr, pointing tov, together withfrozenptrlistandfrozenindexas they resulted after
the previous write talir. Thenw invokesdir-Scanand acquires the current metaddtg which it
uses to determine values to freeze and to retain. It complaeescquired reader indices with the ones
obtained during its last write (as storedfinzenindex Whenw detects a read operation byecause
M]c].readindex> frozenindejc], it freezes the current value (by settifigzenptrlisfp| to writeptr) and
reserves the previously written value (by settisgervedptrlisfp| to prevptr). Finally, the writer deletes
all fragments at the data nodes except for those of the diynertten and the retained values.

To determine the timestamps for retrieving fragments, dagler uses the following two functions:

function readfroniM, c, p,indeX) is function highestreat\l, c,inde) is
if index> M [p].frozeninde] then max<— Nullptr
return M [p]|.writeptr forall p € C do
else //index= M p].frozenindel] ptr < readfronfM, c, p,index)
return M [p].frozenptrlis{c| if ptr.ts > maxtsthen
max<—ptr
return max



Upon retrieving the array/ from dir, the reader set®adptr < highestreat\/, c, readindey, which
implements the logic of accessing frozen timestamps. Thduwctions above ensure that

readfrom{M, c,p,index) =
(ptr € Pointers :
(ptr = M [p].writeptr A index> M [p].frozenindek])
V (ptr = M [p].frozenptrlisfc] A index= M [p].frozenindei]))

highestreatlV/, c,index) =
arg maxpyrereadse{ Ptr-ts}, whereReadset= {readfron{}M, c,p,index) | p € C}

The details of protocol AWE appear in Algorithind 1-3.

Remarks. Note that AWE does not need a majority of correct data noddsaither refers to quorum
systems for correctness; these aspects are all encajplsinalbe directory service. For liveness, though,
the protocol needs to obtain responses frios k& data nodes during write operations, which is only
possible ifn > 2t + k.

In the current formulation of AWE, every writer retains ettgéwo values for each reader, regardless
of whether the reader has completed its operation. In faclue continues to be retained for a reader
until ¢ invokes a subsequentRead(and concurrently or later, the writer invokes anothéf/rite). In
order to avoid retaining unnecessary values, one coulddotre an additional field in the metadata for
each reader, through which the reader can signal when it lev@spa read operation. The writer would
periodically check this and remove the values no longer eeed

The data nodes can be implemented from a key-value store YldkS€raction that has become a
prominent interface for cloud-storage systems. A KVS calinfigemented from read/write registers,
as shown by Cachin et al./[8], though their implementatioesdaot preserve the space complexity.

4 Complexity comparison

This section compares the communication and storage caitipbeof AWE to existing erasure-coded
distributed storage solutions, in a setting witllata nodes anth clients. We denote the size of each
stored valuey € V by ¢ = [log, |V|]. In line with the intended deployment scenarios, we assinai t
is much larger (by several orders of magnitude) thamandm? , i.e.,¢ > n? and/ > m?.

We examine the worst-case communication and storage casiséd by a client in the protocol and
distinguish metadata operations (@in) from operations on the data nodes with data (i.e., erasuded
fragments of data values).

For protocol AWE, the metadata of one value writtendto consists of a pointer, containing the
cross checksum witlhh hash values, the + k identities of the data nodes that store a data fragment,
and a timestamp. Moreover, the metadata entry of one writetans also the list ofn. pointers to
frozen values, then indices relating to the frozen values, and the writer’'s eedaddex. Assuming a
collision-resistant hash function with output sixebits and timestamps no larger tharbits, the total
size of the metadata 8(m?n)). (Note that &*-bit counter suffices for all protocol executions where
the hash function is secure, as collisions in hash functiamsbe found with abou?*/2 operations.)

In the remainder of this section, the size of the metadatarisidered to be negligible and is ignored,
though it would incur in practice.

According to the above assumption, the complexity of AWEdmihated by the data itself. When
writing a valuev € V, the writer sends a fragment of siZgk and a timestamp of siz& to each of
then data nodes. Assuming further that> A, the total storage space occupied:bgt the data nodes
amounts taw//k bits. Similarly, a read operation incurs a communicatiost ©b (¢ + &)k /¢ bits.



Algorithm 1. Protocol AWE, atomic register instancdor client ¢ (part 1).

Uses
Atomic snapshot objecinstancedir
Data nodesnstancesd, ..., d,

State
/I State maintained across write and read operations
writeptr € Pointers initially Nullptr /l Metadata of the currently written value
frozenptrlisp] € Pointers initially Nullptr, forp € C /I Value frozen and retained for reager
reservedptrligip] € Pointers initially Nullptr, forp € C /I Value reserved and retained for reager
frozenindejp] € Ny, initially O, forp € C Il Last known reader index of
readindexc Ny, initially O /I Reader index of
/I Temporary state during operations
prevptr € Pointers initially Nullptr /I Metadata of the value written byprior to current write
readptr € Pointers initially Nullptr /l Metadata of the value to be read by
readlisfi] € ¥*, initially L, fori € [1,n] Il List of nodes that have responded during read

upon { r-Write | v ) do
prevptr<— writeptr
invoke ( dir-Scan); wait for ( dir-ScanResp M )

(wsn ) < max{M [p].writeptr.ts| p € C} I Highest timestamp fielts in awriteptr in M/
writeptr.ts < (wsn+ 1, ¢) /I Construct metadata of the currently written value
writeptr.set<« ()

[v1,...,v,] < Encodg ,(v)

forall i € [1,n] do
writeptr.hasHi] < H (v;)
invoke ( d;-Write | writeptr.ts, v; )

upon { d;-WriteAck | ats) such thatats = writeptr.ts A |writeptr.set < t 4+ k do
writeptr.set<— writeptr.setU {i}
if |writeptr.set = ¢ + k then
/l Update metadata dir with currently written value and with frozen values fromyioais write
invoke ( dir-Update| ¢, (writeptr, frozenptrlist frozenindexx) ); wait for ( dir-UpdateAck)
/I Obtain current reader indices
invoke ( dir-Scan); wait for ( dir-ScanResp M )
freets<— {prevptrts}
forall p € C\ {c} do
(, %, *,index) < M|p]
if index> frozenindelp| then /I Clientp may be concurrently readimm@evptror writeptr
freets« freetsu {frozenptrlisfp].ts, reservedptrlisip].ts}
frozenptrlistp] « writeptr; frozenindejp] < index
reservedptrligip] < prevptr
freets« freets\ (J .. {frozenptrlisfp].ts, reservedptrlisjp).ts}
forall j € [1,n] do /I Clean up all fragments except for current, frozen, andme=l values
invoke ( d;-Free| freets)
invoke ( r-WriteAck )
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Algorithm 2. Protocol AWE, atomic register instancdor client ¢ (part 2).
upon ( r-Read) do
forall i € [1,n] doreadlisti] < L
readindex— readindex+ 1
invoke ( dir-Update| ¢, (x, *, x, readindex ); wait for ( dir-UpdateAcKk)
/I Parse the content alir and extract the highest timestamp, potentially frozen:for
invoke ( dir-Scan); wait for ( dir-ScanResp M )
readptr« highestrea@\/, c, readindex
if readptrts = (0, L) then
invoke ( r-ReadResp L )
else// Contact the data nodes to obtain the data fragments
forall i € readptrsetdo
invoke ( d;-Read| readptrts)

upon ( d;-ReadRespvts v ) such thatvts = readptrts A readlisfi] = L do
if v £ L A H(v) = readptrhasHi] then
readlis{:] < v
if |{;j|readlis{j] # L}| = k then
readptr < Nullptr
retval <—Reconstrugt ,, (readlist)
invoke ( r-ReadRespretval)

Algorithm 3. Protocol AWE, implementation of data nodg
State
datalts] € X*, initially L, for ts € Timestamps // Stored data values indexed by timestamp

upon { d;-Write | ts,v ) do
datdts) + v
invoke ( d;-WriteAck | ts)

upon ( d;-Read| ts) do
invoke ( d;-ReadRespts, datdts] )

upon { d;-Free| freets) do
forall ts € freetsdo
datalts] <+ L
invoke ( d;-FreeAck| ts)
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Protocol Communication cost Storage cost
Write Read

ORCAS-A [14] (14+m)nt 2nl nt

ORCAS-B[14] (14+m)nl/k 2nl [k mnl/k

CASGC [10] nl/k* 00 mnl/k

CT [9] (n+m)nl/(k+t) 0 nl/(k+1t)*

HGR [19] nl/k* 00 mnl/k

M-PoWerStorel[12] nl/k* nl/k 00

DepSky [4] nl/k* nl/k 00

AWE (Sec[3B) nl/k* (t+k)/k | 2m*nl/k

Table 2: Comparison of the communication and space contigexif erasure-coded distributed storage
solutions. There are: clients,n data nodes, the erasure code parametgrisn — 2t, and the data
values are of sizé bits. An asterisk() denotes optimal properties.

With respect to storage complexity, protocol AWE freezed eeserves two timestamps and their
fragments for each writer-reader pair, and additionaltyest the fragments of the last written value
for each writer. This means that the storage cost is at mast//k bits in total. The improvement
described in a remark of Sectibn3.3 reduces thiz:t@//k in the best case.

Table[2 shows the communication and storage costs of plo&Ww& and the related protocols.
We use the wait-free semantics achieved by AWE and otherBeabase case; in CASGC [10] and
HGR [19], a read operation concurrent with an unbounded rurabwrites may not terminate, hence
we state their cost aso. In contrast to AWE, DepSky _[4] is neither wait-free nor arsiceand M-
PoWerStorel[12] is not amnesic. It is easy to see that AWEopeis better than most storage solutions
in terms communication complexity.

5 Analysis

In this section we prove that protocol AWE, given by Algonts[1E3, emulates an atomic read/write
register and is wait-free.

Whenever the metadata directadyr contains an entrys = M/|c].frozenptrlis{p].ts we say that
timestampts is frozen byc for p. If tsis frozen by some: for any p, thents is simply frozen Fur-
thermore, considering the state of writgra timestamps is said to beretained byc for p when either
frozenptrlisfp].ts = ts(this includes thatsis frozen bye for p) or whenreservedptrlisfp].ts = ts(which
means thats is reserved by: for p). A timestamp igetainedby ¢ when it is retained by for somep.
We call the timestamp/ [c].writeptr.ts the written timestamp of-.

Lemma 1 (Frozen timestamps)At any time the timestamps that a client has frozen are nefaigan
its written timestamp. More precisely, for allp € C,

M c].writeptr.ts > M|c|.frozenptrlis{p].ts.

Moreover, during any ditypdateoperation ofc, the timestampl/|[c].writeptr.ts and all timestamps
M |c].frozenptrlis{p].ts may only increase.

Proof. From Algorithm(1 it follows that for any client, the timestamps stored i [c].writeptr.tsin suc-
cessive -Write operations of: increase. From the same algorithm, itis clear that].frozenptrlis{p].ts
is only updated through & Write operation ofc, and is set to the written timestamp of the preceding
r-Write operation ofc, which is strictly smaller than the written timestamp stbie M [c].writptr.ts.
The second inequality follows analogously. Thus, the \&ktered inM [c].frozenptrlis{p].ts only in-
crease. O
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We define theimestamp of a register operatiom as follows: (i) for anr-Write operation, the
timestamp ob is the value assigned to variablgiteptr.ts during o; (ii) when o is anr-Readoperation,
then its timestamp is the value assigned to variagaelptr.ts by highestreadNote that the timestamp of
anr-Readoperation ig0, L) if and only if o returns_L. Furthermore, we say that a valués associated
to a timestams whenever the timestamp of the register operation that swriis ts.

According to highestreadthe timestamp in the returned pointer may be frozen (takem fthe
frozenptrlistfield of A1) or written (taken from thevriteptr field of M), but not both.

Lemma 2 (Read frozen timestamp)lf the timestamp ts of a Readoperationo, by clientc has been
frozen forc by a clientw, thenw executes two W/rite operations concurrently te,., where the dir-
Scanoperation of the former Write operationo,, ; and the dirUpdateoperation of the latter Write
operationo,, » occur between ditdpdateand dir-Scanoperations ob,. Moreover, the timestamp of the
r-Readoperationo, is ts, the one associated with the value writteropy .

Proof. From Algorithm[2 it follows that fothighestreadvithin o,. to return a frozen timestamp, then, if
M is the metadata snapshot returned bydineScanoperation during,., it holds M [w].frozeninde¥] =
readindex This means thatv invoked dir-Updatewith the most recent value aéadindexbefore the
dir-Scanduringo,.. To do that,w must have detected the change of xdindexentry in M [c] caused
by o, through thedir-Scanoperation invoked during,, ;. From Algorithm[1, this can only be the
operation through whiclky wrote the value associatedt® O

Lemma 3 (Partial order). Leto ando’ be two distinct operations on register r with timestampsrtd a
ts, respectively, such thatprecedes’. Then ts< ts'. Furthermore, ifo’ is of type rWrite, then ts< ts.

Proof. We distinguish between two cases, depending on the type of

Case 1: If o is of typer-Write, the claim follows directly from Lemmia 1 and from the algbnit of the
writer. In particular, ifo’ is of typer-Read then, if there is no concurrentWrite operation of
the same clientv aso, tsis returned as written timestamp by treadfromfunction when called
for w and reader of’. In addition, ifo’ runs concurrently with a-Write of w, then one of the
two hold: (i) ts (or a higher timestamp if manyWrite operations have intervened) is frozen for
o' and is returned by theeadfromoperation invoked byighestreadn o’ for w, (ii) ts(or a higher
timestamp if many-Write operations have intervened) has not yet been frozew,kin which
case a written timestamp greater or equas{by Lemmd) is returned by theadfromoperation
invoked byhighestreadn o’ for w.

Case 2:If ois of typer-Read then letts* be the maximum value of the timestamp fi&ddn awriteptr
at the time when thdir-Scanoperation invoked by returns. Note thabighestreacbtainsts as
this maximum or as a frozen timestamp. Lenitha 1 implies nowsha ts*.

We now show thats < ts' by distinguishing two cases. First,df is of typer-Write, the writer
callsdir-Scanaftero completes and determines the maximum value ofgfield in anywriteptr.
Then it increments that timestamp to obt&sh This ensures thds' > ts* > ts, as claimed.

Second, ifo’ is of typer-Read thents' may either have been a written timestamp or a frozen
timestamp (at the time when the client obtained the respohsts dir-Scar). If ts' has been
written, thents' is the maximum value of thes field in anywriteptr, which is at least as large as
ts* by Lemmd and by the atomicity difr.

Alternatively, ifts' has been frozen by writes, then Lemm&l2 applies and shows that there exist
two r-Write operations byw that are concurrent td, of which the first writes the value associated
tots. As such, ifts,, is the timestamp returned by theadfromfunction invoked by any-Read
operationo that precedes’ and for writerw, thents,, < ts. Since this can be extended to all
writers, it holds thats < ts'.
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Lemma 4 (Unique writes).If o and o’ are two distinct operations of typeW/ite with timestamps ts
and tg, respectively, then tg ts.

Proof. If 0 ando’ are executed by different clients, then the two timestanififer én their second com-
ponent. Ifo ando’ are executed by the same client, then the client executed seguentially. By
Lemmd3, it holdgs # t<. O

Lemma 5 (Integrity). Let o, be an operation of type Readwith timestamp tsthat returns a value
v # L. Then there is a unique operatier, of type rWrite that writesv with timestamp ts = ts,.

Proof. Operatiorv, by clientc returnsv and is, thus, complete. This means that the client has medes
k events of typel;-ReadResgrom distinct nodes in a s€?,; according to the protocol, the client has
verified that the response from evefy € D, contains a timestampts, and a fragment; such that
vts = ts. and H (v;) = readptr.hasih].

According to the code, the valueadptris computed from avriteptr or afrozenptic| entry stored
in the metadata directorglir. This pointer must have been computed during the write dip@ravith
timestamps,, and was later stored idir by the same client. Note that by Lemira 4, no other write has
timestampts,,. From the algorithm of the writer, it follows that the engim readhashwere generated
as hash values of the fragments, ireadhashi] = H(v;), wherew; for i = 1,...,n represent the
erasure-coded fragments of some vaiue

Based on the check by the reader and the security propertyedfidsh function, this means that
v; = v; for all © € Dy. The completeness of the erasure code now implies that tbasguction yields
v = v, the value associated tg, and written byo,,. O

Lemma 6 (Read concurrent with multiple writes). Consider an operatiom,. of type rReadinvoked

by a readere, with timestamp ts At the time whem determines ts(by highestreay there are at least
k distinct correct data nodes that store a data fragmentédsfit from_1) under timestamp tsand they
do not free this fragment beforecompletes,..

Proof. Suppose thats, = (snw) and the writer is clientv. Consider a sequencg, i, ..., 0um

of r-Write operations executed hy with respective timestamgs,, 1,. .., S, ,, of which some are
concurrent too,. Now consider the linearization afir and leto,, ; be the last one among these
Write operations whoselir-Update(denoted bydir-Update,, ;) precedes thelir-Updateoperation of
the reader during, (denoted bydir-Update.). Let readindexdenote the reader’s index at the time
whenc invokesdir-Update..

W.I.0.g. suppose thatir-Update. follows at least onelir-Updateoperation that is triggered by an
r-Write operation ofw; furthermore, suppose that executes at least one maré/Vrite operationdir-
Update, ,,, afterdir-Update, ;.

We claim thatts, = ts,,; VV ts, = tS,, ;1. To show this, we distinguish four cases, considering the
linearization of operations adlir. Letdir-Scan, ; denote the second invocationdif-Scanduringo,, ;,
the one from which the writer takesadindex

Case 1: Suppose thalir-Update. precedeslir-Scan, ;; this means thab detects the concurrent read
duringo, ;, in the sense thab updates its variabl&ozeninde| to readindex

(Case 1.a) If thelir-Scanoperation of the readerduring o,., denoted bydir-Scan., precedeslir-
Updatg, ; ., thenc obtainsts, = ts,, ; as the highest timestamp storedlifiby the algorithm.

(Case 1.b) Otherwiselir-Scan follows dir-Updatg, ; , ,; then the reader obtains) such that
M [w].frozenindek] is equal toreadindexandts, = M [w].frozenptrlis{c].ts = ts,, ;, according
to readfromin the protocol and because [w].frozeninde| is equal toreadindex
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Case 2: Suppose thatlir-Update. follows dir-Scan, ;. This means thatlir-Update. takes place be-
tweendir-Scan, ; anddir-Update, , ., andw detects the concurrent reagd only duringo, ;+1,
after executinglir-Scan, ;1. The same two sub-cases may occur now.

(Case 2.a) Itiir-Scan precedeslir-Updats, ; . ;, thents, = ts,, ;, analogous to Case 1.a.

(Case 2.b) Otherwisalir-Scan follows dir-UpdateW-Jr1 and the reader obtairts, = ts, ;;1.

To see this, suppose that (Case 2.8iiyScan precedes thelir-Update, ;. , in the subsequent
r-Write operation ofw or there is no such-Write; then, the valueeadindexof ¢ remains greater
than M [w].frozenindex| and thusc setsts, = ts, ;+1. Alternatively (Case 2.b.ii), suppose that
dir-Scan follows dir-Update, ;. »; then, according to the protocol, the writer has already set
M w].frozenindef] = readindexduring dir-Update, ; ., andc setsts,. = ts, ;11 analogous to
Case 1.b.

Suppose the reader determines tleadptrts = ts.; then the correct nodes ieadptr.setstore a
fragment of the associated value because at least: nodes inreadptrset have sent al;-WriteAck
for ts, to the writer. Accounting for the up tofaulty nodes, at least correct nodes have once stored
a fragment indatdlts,]. It remains to argue why these nodes do not free this fragimefiore c com-
pleteso,..

In Case 1.a, the writer detects the concurrent read dukjngand therefore excludes the data frag-
ments associated t3, from garbage collection for, by settingfrozenptrlisfr|.ts to ts. in its state.
According to the logic of the protocadis. remains frozen and the corresponding fragments are retaine
at least untik invokes a subsequent read operation.

In Case 2.a, almost the same happens during ;, when the writer detects the concurrent read. The
writer setsreservedptrlistr].tsto ts, in its state. Again according to the protocts, remains reserved
and the writer retains the corresponding fragments at lg##tc invokes a subsequent read.

Intuitively, Cases 1.a and 2.a demonstrate whyetains two values during a write (the one being
written and the one written before): does not know which one of the two the reader is about to access

In Case 2.b.i, if the writer detects the concurrent readndusj, ; o, then it reserves and retaits
and the claim follows analogously to Case 2.a.

In Cases 1.b and 2.h.ii, the reader accesses a frozen valyain,/according to the protocadls,
remains frozen and is retained at least untilvokes a subsequent read operation. The lemma follows.

]

Theorem 7 (Atomicity). Given a atomic snapshot object dir, protocol AWE emulateatamic MRMW
register r.

Proof. We show that every executienof the protocol is linearizable with respect to an MRMW régris
By Lemma®, the timestamp ofraReadeither has been written by somé//rite operation or-Read
returns_L.

We first construct an execution from o by completing all operations of type Write for those
valuesv that have been returned by som&eadoperation. Then we obtain a sequential permutation
from 7 as follows: (1) order all operations according to their titaenps; (2) among the operations
with the same timestamp, place thd&keadoperations immediately after the uniqué/Vrite with this
timestamp; and (3) arrange all non-concurrent operatiotise same order as in Note that concurrent
r-Readoperations with the same timestamp may appear in arbitraigr.o

For proving thatr is a view of 7 at a clientc w.r.t. a register, we must show that everRead
operation returns the value written by the latest precedilgite that appears before inor L if there
iS no such operation.

Let o, be an operation of type-Readwith timestampts, that returns a value. If v = 1, then by
constructiono, is ordered before any write operationsn Otherwise, it holds) # | and according
to Lemmdb, there exists anWrite operationo,, that writesv with the same timestamp. In this case,
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0, 1S placed int beforeo, by construction. No other-Write operation appears betweep ando,
because all other write operations have a different tinmggtand therefore appear ineither beforey,,
or aftero,..

It remains to show that preserves the real-time order @f Consider two operations ando’ in
7 with timestampgs, andts), respectively, such thatprecedes’. From LemmaB, we havis’ > ts.
If ts' > tstheno’ appears aftes in by construction. Otherwists’ = tsando’ must be an operation
of typer-Read If o is of typer-Write, theno’ appears afteo since we placed eaahReadafter the
r-Write with the same timestamp. Otherwigeis ar-Readand the twar-Readoperations appear im
in the same order as inby construction. O

Theorem 8 (Wait-freedom).Given an atomic snapshot object dir and assuming that 2t + k,
protocol AWE is wait-free.

Proof. As the atomic snapshalir operates correctly, all its operations eventually congplatiepen-
dently of other processes. It remains to show that-tdrite and nor-Readoperation blocks.

For ar-Write operation, the client needs to receive- k d;-WriteAck events from distinct data
nodes before completing. As there ar@odes and up to may be faulty, the assumption > 2t + k
implies this.

During ar-Readoperation, the reader needs to obthimalid fragments, i.e., fragments that pass
the verification of their hash value. According to Lemiia &réhare at least correct data nodes
designated byeadptr.setthat store a fragment under timestatspuntil the operation completes. As
the reader contacts these nodes and waité feagments, these fragments eventually arrive and can be
reconstructed to the value written by the writer by the catgriess of the erasure code. O

6 Conclusion

This paper has presented AWE, the fiesasure-codedlistributed implementation of a multi-writer
multi-reader read/write storage object that is, at the same: (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (i.e., with data nodes storing a bodimdenber of values) and (5) Byzantine fault-
tolerant (BFT) using the optimal number of nodes. AWE is @ffit since it does not use public-key
cryptography and requires data nodes that support onlysraad writes, further reducing the cost of
deployment and ownership of a distributed storage solutidotably, AWE stores metadata separately
from k-out-of-n erasure-coded fragments. This enables AWE to be the first@6&fbcol that uses as
few as2t + k data nodes to tolerateByzantine nodes, for any > 1.

Future work should address how to optimize protocol AWE angktluce the storage consumption
for practical systems; this could be done at the cost of a®ing its conceptual complexity and losing
some of its ideal properties. For instance, when the medagavice is moved from a storage abstraction
to a service with processing, it is conceivable that fewdueshave to be retained at the nodes.
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