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Abstract

Structured-output learning is a challenging problem; particularly so because of
the difficulty in obtaining large datasets of fully labelled instances for training. In
this paper we try to overcome this difficulty by presenting a multi-utility learning
framework for structured prediction that can learn from training instances with dif-
ferent forms of supervision. We propose a unified technique for inferring the loss
functions most suitable for quantifying the consistency of solutions with the given
weak annotation. We demonstrate the effectiveness of our framework on the chal-
lenging semantic image segmentation problem for which a wide variety of annota-
tions can be used. For instance, the popular training datasets for semantic segmen-
tation are composed of images with hard-to-generate full pixel labellings, as well
as images with easy-to-obtain weak annotations, such as bounding boxes around
objects, or image-level labels that specify which object categories are present in
an image. Experimental evaluation shows that the use of annotation-specific loss
functions dramatically improves segmentation accuracy compared to the baseline
system where only one type of weak annotation is used.

1 Introduction

Training structured-output classifiers is a challenging problem; not only because of the associated
computational burden, but also due to difficulties in obtaining the ground-truth labelling for training
data: in problems like semantic image segmentation the structured label may comprise thousands

(a) Original image (b) Full (strong) labelling (c) Bnd.-box annotation (d) Object-seed annotation

Figure 1: Types of annotation for an image from the MSRC dataset [15]



of scalars, so annotation of large datasets requires a lot of human effort. In contrast, it is much
easier to obtain a weak annotation of an image, i.e. some statistic of the image labelling. This may
take various forms: an image-level label that indicates presence or counts the number of pixels of
a particular object category like ‘sky’ or ‘water’, a set of objects’ bounding boxes—rectangles that
tightly bound object instances’ segmentations, or a set of seeds—the pixels that have to take the
specified labels (Fig. 1). More broadly, weakly-supervised learning may be useful in many training
problems where the input is obtained by crowdsourcing. For example, some part of a training set
for object detection may be of low quality, meaning that the bounding boxes are not tight. In the
document tagging problem, low-quality ground truth may miss some tags of the documents. It is
preferable to model those biases in the annotation explicitly.

As for semantic segmentation, different types of annotations help not only to overcome logistic
difficulties, but also to characterize certain categories better. For example, many object categories
(i.e. ‘things’ in terms of Heitz and Koller [6]) are better described by bounding-box annotations,
while the background categories (i.e. ‘stuff’ [6])—which tend to fill significant parts of an image—
by image-level labels.

A number of researchers have recognized the importance of weak annotations for learning semantic
segmentation. However, most of these methods only use image-level labels. For example, Vezhn-
evets et al. [22, 23] use a multi-image probabilistic graphical model to propagate image-level anno-
tations across different training images. In this paper, we present a framework for learning structured
classification from the mixture of fully and weakly annotated instances. Our framework can employ
different types of weak annotations, even for a single instance.

Our work extends recent research on using latent-variable structural support vector machines
(LV-SSVM) for weakly-supervised learning [3, 8, 11] by incorporating annotation-specific loss
functions, which measure the inconsistency of some labelling predicted by the algorithm with the
ground-truth weak annotation. We define those loss functions such that each of them returns an es-
timate of the expected Hamming loss w.r.t. all possible labellings consistent with the corresponding
weak annotation. Due to this definition, the loss functions specific to different annotation types have
the same scale. Our framework thus requires only one coefficient, which balances the relative im-
pact of the loss functions for fully labelled and weakly annotated data, since the latter are typically
less informative. We empirically show that balancing between these two kinds of loss functions can
improve labelling performance.

A number of key technical challenges arise while learning an LV-SSVM model with multiple
annotation-specific loss functions. These include solution of the loss-augmented and annotation-
consistent inference problems. The former involves finding the labelling that satisfies the current
model and deviates from the annotation the most, while the latter involves finding the best labelling
that is consistent with the weak annotation. We show how to solve these optimization problems for
various loss functions using efficient optimization algorithms.

Relation to previous work. Our work is most closely related to the work of Kumar et al. [8], who
use a sequential method to learn semantic segmentation from different types of annotations. Their
method starts by training LV-SSVM with a loss function defined on partial labellings; it performs
loss-augmented inference using carefully initialized iterated conditional modes (ICM). Once this
model is trained, they infer the partial labellings for weakly-annotated images that are consistent
with their bounding-box or image-level annotations. The model is then re-trained by considering
those solutions as the true partial labellings for the training instances. Unlike Kumar et al. [8], at
the training stage we minimize our annotation-specific loss functions simultaneously. In this regard,
our framework does not require neither fully nor partially labelled images, which are essential for
the first stage of their algorithm. Furthermore, our loss functions allow us to use powerful graph
cut based algorithms for solving the loss-augmented and annotation-consistent inference problems,
instead of using an ICM-based inference. Finally, we use different types of weak annotations.

For some of the loss functions we use, the loss-augmented inference problems cannot be decom-
posed to the individual variables. This relates us to the recent work on supervised learning with
non-decomposable loss functions [13, 16]. Pletscher and Kohli [13] use a higher-order loss function
that penalizes the difference in the area of the target category between binary segmentations. They
show how to use graph cuts for efficient exact loss-augmented inference. Tarlow and Zemel [16]



use message-passing inference in SSVM training with three different higher-order loss functions:
PASCAL VOC loss, bounding box fullness loss, and local border convexity loss.

Our contributions:

e we propose an LV-SSVM based multi-utility learning framework, which simultaneously
minimizes different annotation-specific loss functions, and a unified technique for estab-
lishing loss functions for weak annotation of different types;

e we apply our framework to define the loss functions for training semantic segmentation
that are specific to the following weak annotation types and their combinations: image-
level labels, bounding boxes, and objects’ seeds;

e we propose efficient inference algorithms required for LV-SSVM training with these loss
functions.

2 Latent-variable SSVM

2.1 Structured-output learning

Structured-output learning attempts to learn a mapping H from the space of features A’ to the space
of all possible labellings ). In what follows, we consider only the mappings that can be expressed
as maximization of a discriminant function F' that depends linearly on its parameters w:

H(x) = argmax F(x,y; w) = argmax wT¥(x,y), (1)
yey yey

where vector function ¥(x,y) denotes so-called generalized features of instance x € X" and la-
belling y. ¥(x,y) is defined in a problem-specific way, while the weights w are learned from the
training data. We address a wide class of so-called labelling problems, where the structured label is a
vector of discrete variables: Y = KV, where K = {1,..., K}. Its length V' may vary for individual
1nstances.

The goal of supervised structured-output learning is to obtain the most appropriate weights w given
the set of features and ground-truth labels of training instances: {(X,,, ¥n)}_1, ¥ € V. Here Y,
is a set of possible labellings compatible with the n-th instance. In this paper we follow the max-
margin formulation of structured-output learning (also called structural support vector machine,
SSVM) [17, 20, 7]:
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where A(¥,y.,) is the loss of some labelling y = {g;}); with respect to the ground truth la-

belling y,, = {ygl}}/z"l. Let ¢ be some cost associated with the ¢-th variable in the labelling of the
n-th instance. The commonly used loss function is the weighted Hamming distance:

A, yn) =D o # o', &)
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This loss function is decomposable w.r.t. the individual variables. It often implies that loss-
augmented inference, i.e. maximization in (3), is no more difficult than the maximization of dis-
criminant function F'(x,y; w). In some cases it is possible to use higher-order loss functions that
cannot be decomposed w.r.t. the individual variables [13, 16, 4].

Problem (2)—(3) is convex and can be solved by the cutting-plane method [20, 7]. This method
replaces the constraint (3) with a bunch of linear constraints and then iteratively approximates the
feasible polytope by adding the most violated constraint. Such constraint is determined in each
iteration by running the loss-augmented inference in (3).

"We use the Iverson bracket notation: [e] = 1 if the logical expression e is true, and [e] = 0 otherwise



2.2 Learning with weak annotations

Consider the case when in addition to N fully-labelled objects, train set contains M weakly-
annotated ones: { (X, Z, )} A 41~ Hereinafter we assume that the weak annotation z,, defines a
subset of full labellings £(z,,) C ) that are consistent with it, and thus z,, is less informative than
an individual full labelling y,,. Examples of such weak annotations for the image segmentation
problem are (1) bounding boxes of the segments of a given label; (2) a value of some global statistic
(area, average intensity, number of connected components etc.) for the segments of a given label;
(3) subsets of superpixels that belong to a given label (seeds).

We now generalize the standard SSVM formulation to make it handle both fully and weakly anno-
tated data simultaneously. Our multi-utility SSVM is formally defined as follows:

min_ Swiw 4 o (i fray nm> 5)
w,§20m20 2 N + M n=1 m=1 7

s.t. F(Xm Yns W) > S{Ié%)f (F(Xna y; W) + A(yv Yn)) —&n, Vn, (6)

Jdnax | F(xXpm,y;w) > Inax (F'(Xm, ¥: W) + K(¥,2m)) — 1hm, V. (7)

Note that for M = 0 the above formulation degenerates to the standard SSVM formulation, while
for N = 0 it reduces to the latent-variable SSVM [24]. Note also that the full labelling y,, can
be seen as a degenerate weak annotation, where £(z,,) = {yn}. Therefore, Problem (5)-(7) is
almost equivalent to LV-SSVM, but it contains the slack balancing coefficient «. Ignoring this
coefficient may hurt the performance of multi-utility learning, as we show in Section 4.2. In order to
perform the optimization, in addition to the loss-augmented inference in (6), we should also be able
to perform the weak-loss augmented inference in (7), as well as the annotation-consistent inference
in the left-hand side of (7).

Optimization problem (5)—(7) is not convex and thus hard. We follow Yu and Joachims [24] and use
the concave-convex procedure (CCCP) [25] to solve it approximately.

3 Weak annotation for semantic image segmentation

Semantic image segmentation aims to assign category labels to image pixels. We assume that an
image is represented as a set of superpixels, i.e. groups of co-located pixels similar by appearance.
Consider a graph G = (V, ). Its nodes V correspond to superpixels of the image. The set of
edges &£ represents a neighborhood system on V that includes the pairs of nodes that correspond
to all adjacent superpixels. Let x; € R? be a vector of superpixel features associated with some
node i € V, x;; € R® be a vector of superpixel interaction features for the edge connecting nodes 4
and j, and x = @y, Xi © D; j)ee Xi; be their concatenation. The value of each variable y;
corresponds to the label of the i-th superpixel. We use the following discriminant function F":

K
Flx,y;w) = wil(x,y) = > Y [y = KIWi) + D lys = ys] (x;wP), ®)

i€V k=1 (i.5)€E

where w = EBkK:1 w}l @ wP is a vector of the model parameters, and w}! € RY, wP € R® . The
summands in the first and the second terms are called unary and pairwise potentials, respectively. We
restrict pairwise weights wP and pairwise features X;; to be nonnegative and thus obtain an associa-
tive discriminative function (with only attractive pairwise potentials) [17]. Maximizing F'(x,y; w)
w.r.t. y is known to be NP-hard, but efficient approximate algorithms exist, e.g. a-expansion [2].

We use the weighted Hamming loss (4) for fully-labelled images, where ¢; is the number of pixels
in the corresponding superpixel, so the loss function estimates the number of mislabelled image
pixels.> To use some type of weak annotations for training, we need to define the annotation-
specific loss function that allows loss-augmented inference and annotation-consistent inference. The

*In practice, ground-truth labelling of a superpixel may contain several labels; in this case the number of
incorrectly inferred pixels is added to the loss. We ignore this case to ease the notation, but all the algorithms
still work in that case.



former should be efficient, since it is performed in the inner loop of training and thus is typically a
bottleneck. We show how to define and combine them for the annotations of the following types:
image-level labels, bounding boxes around objects, and objects’ seeds.

3.1 Image-level labels

We start by defining loss functions K(y, z) for some arbitrary labelling y and ground-truth weak
annotation z. In this subsection we assume that z is a set of labels used in the ground-truth image
labelling (for the image in Fig. 1, z = {‘sky’, ‘tree’, ‘plain’, ‘grass’}). We cannot compute the
Hamming loss (4) if the full labelling is unknown for one of its arguments. Let’s instead define a
proxy loss function, that is symmetric and does not compare labels of any superpixels directly:

My, y) =D alBieViy =6V HeV:g =yl ©)
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It penalizes all the superpixels that have been given any label that lacks in the annotation ¥y, as
well as superpixels which have ground truth labels that lack in y. Unfortunately, the ground-truth
labelling y is unknown. If we knew the areas S}, of each label k& € z, we could derive the following
upper bound on (9):

Kiu(y, 2 {Sktrea) = D D cilyi = kI + > Sk [ [ [v: # K. (10)
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This upper bound is tight up to a factor of 2. The first term penalizes the pixels labelled with wrong
labels, while the second term penalizes ignoring the labels from z.

Since we do not know the areas Sy, the best we can do is to assume K(y, z) to be the expectation
of (10) taken over all full labellings consistent with z. If there are enough fully-labelled images,
the areas .Sy can be estimated. Otherwise we assume the uniform distribution over the feasible full
labellings y € z and get

Ku(y,2z) =Y > cilys +EZ’€V Tl # - (11)
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Having defined the loss function Kj;, we need to provide algorithms for inference problems in (7).
For annotation-consistent inference maxye,,, F(X,,y; W) we use a-expansion over the labels
from z,, only. Note that this may result in an inconsistent labelling: some labels from z,, may
miss in y. We have tried an heuristic algorithm for making it strictly consistent with z by changing
one node per missing label, but observed no significant difference in practice.

The loss-augmented inference is now not decomposable to unary and pairwise factors. To work this
around, we derive:

max (F(xm,¥; w) + Ki(¥,2zm)) =

YEVm
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The last maximization is the standard MRF inference problem with label costs. We use the efficient
modification of a-expansion for accounting label costs [4].

3.2 Bounding boxes

It is convenient to annotate instances in an image with tight bounding boxes (Fig. 1¢). On the other
hand, they do not give much information for background categories. Therefore, we consider the
annotation that consists of both bounding boxes and image-level labels. For example, annotation
of an image may contain the bounding-box locations of cars and pedestrians, and additionally state
that there are buildings, road, and sky in the image. We assume that within a certain image each
category can be defined either with image-level labels, or with bounding boxes, though the type of
annotation for a category may vary from image to image (see Section 4.3 for an example where it
can be useful).



We model weak annotation z of an image as a pair (z',2z®) of image-level and bounding box
annotations. The latter is a set of bounding boxes with associated category labels: z*® = {z;1,
with the following functions defined: label(z;), which defines the associated category label, and
box(z;) = [left(z;), right(z;)] X [top(z;), bottom(z;)] that defines the extent of the bounding box.
The set of labels K is partitioned into three subsets w.r.t. the weak annotation z: the labels that are
defined with bounding boxes (Ky = |J, ,m label(z)), those that are present somewhere else in the

image (K, = z'), and those that are absent (K, = K \ (ICb U ICp)). Nodes V are also partitioned:
Vi, = Uz 2™ label(2)—k box(z) is the union of pixel indices in the boundmg boxes corresponding to

the label k € Ky, and Vo =V \ Uy, V- We now define the combined loss function as:

Kin(y,2) = Y > cilyi=k+ D> o [l # 4+
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The first two terms are almost the same as in (11), but the estimate of the category area in the second
term does not include the pixels within the bounding boxes: o1, = (3_;cy, ¢i) /|2"|. The third term
penalizes ‘empty’ rows and columns in the bounding boxes, i.e. those rows and columns that do not
contain pixels of a target category at all. The violation function V is defined as:

1, if map(y)p # k,

14
0, otherwise. (4

V(psy, k) = {
Here map(y) is the classification map induced by the superpixel labelling y. Coefficients v, and wg
allow us to assign the penalty for the corresponding row or column being empty, depending on its
position in the bounding box. One can learn the category-specific profiles of v* and w® when the
full labelling is abundant enough, but we use uniform profiles assuming that half of a bounding box
is occupied by the object on average: v = (right(z) — lefi(z)) /2, w; = (bottom(z) — top(z)) /2.
Note that this makes the loss an estimate on the number of mislabelled pixels (similar to the image-
level label loss (11)), so the value coefficient 8 = 1 should work well (we show in Section 4.3 that it
really does). We have also tried linearly decreasing loss used by Kumar et al. [8], but it did not affect
the performance significantly. The last term penalizes the bounding-box labels outside of bounding
boxes.

We have shown in the previous section how to account for the two initial terms in the loss-augmented
inference. The last term is decomposable w.r.t. superpixels. The third term is a sum over the higher-
order cliques of the following form. For each bounding box z, each row and each column generates
a clique of nodes corresponding to the superpixels that intersect that row/column. We treat them
the same way as the image-level loss: we modify a-expansion with label costs [4] to penalize
each clique of superpixels, which contains at least one superpixel labelled with label(z). There
is a technical difficulty with the superpixels that cross the bounding box border: it is unclear if
their labelling with /abel(z) should be penalized. We adopted the following strategy: shrink the
bounding box to allow some margin, and treat all superpixels that intersect the shrunk bounding box
(and only them) as insiders. We set the margin width equal to 6% of the corresponding bounding
box dimension.

During the annotation-consistent inference, we need to infer a labelling that has objects only in
bounding boxes of the corresponding category labels, and they should fill those bounding boxes
tightly, i.e. touch upon all four sides of the bounding box shrunk to allow a 6% margin (Lempitsky
et al. [9] showed that this definition is natural). The first condition is easy to satisfy: we can suppress
certain labels outside of bounding boxes by using infinite unary potentials. To provide tightness, we
use a variation of the pinpointing algorithm [9], adapted for the multi-class segmentation. First, seg-
mentation is performed without the tightness constraints. Then, until those constraints are satisfied,
one of the superpixels changes its unary potential, and expansion move is performed. In our imple-
mentation, we select the superpixel with the highest relative potential for label(z) that has not been
assigned this label yet, and assign it the infinite potential for label(z) to guarantee that it will change



its label. This procedure is finite because at each iteration at least one superpixel within box(z)
switches to label(z). In contrast to Lempitsky et al. [9], we do not perform further dilation, since it
is unclear, which label we should use for expansion move(s); neither of the heuristics we tried im-
proved the result significantly. We also found that initialization of the latent variables in LV-SSVM
matters: we obtained the best results when initially all superpixels within box(z) were initialized
with label(z). Note that Kumar et al. [8] used a different criterion during the annotation-consistent
inference: they penalize the empty rows and columns within bounding boxes (the opposite to what
we do in loss-augmented inference). Note that their heuristic does not guarantee the tightness of the
resulting segmentation.

3.3 Objects’ seeds

Another form of a weak annotation natural for the object categories is the seed annotation (Fig. 1d).
In general, for a segment of some category, a seed is a subset of its pixels. We consider a partic-
ular case, where only one pixel, persumably close to the segment center, is labelled. During the
annotation-consistent inference, we require the superpixel where this point is located to have the
fixed seed label.

We now model the weak annotation z as a pair (z'!,z%), where z° is a set of 2D points with the
corresponding labels: (p, k). The seed centrality assumption allows us to set the Gaussian penalty
for inferring any non-seed label in the neighbourhood of each seed, which brings us to the following
loss function:

Kios(y:2) = Y > cilyi=kl+ > on [[ i # K+
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Here the first two terms are the same as in the image-level label loss. The inner sum in the third
term is taken over all image pixels I. The form of the Gaussian is defined in such a way that the
penalty for misclassification of the central pixel p’ is 1, and whenever no superpixels of the label &’
are found, the penalty is equal to the estimated area of the label &’ w.r.t. all labellings consistent with
the weak annotation; specifically,
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Here #Lab(z®*) is the number of different labels in z°, and #0bj(z, k') is the number of seeds of
the label & in z°. Loss (15) is decomposable to factors, so the loss-augmented inference is trivial.

4 Experiments

4.1 Datasets and metrics

We test the proposed framework on two datasets: MSRCv2? [15, 22] and SIFT-flow* [10, 18, 23].
MSRC contains 276 training and 256 test images that are fully labelled using 23 category labels;
significant part of pixels remains unlabelled. SIFT-flow is a more challenging dataset: it is a subset
of the LabelMe database [19], which contains 2488 training and 200 test images; they are labelled
to 33 categories using crowd-sourcing.

For MSRC, we obtain superpixels using the original implementation of the gPb edge detector [1].
The unary features are the following: a histogram of SIFT [12] visual words built using a dictionary
of size 512 by hard assignment of the descriptors to the bins; a histogram of the RGB colors on a
dictionary of size 128; a histogram of locations over a uniform 6 x 6 grid. We Lo-normalize the joint
feature vector and map it into a higher-dimensional space where the inner product approximates the
x2-kernel in the original space (the dimensionality of the space triples after the transformation) [21].

*http://research.microsoft.com/en-us/projects/objectclassrecognition/
*http://people.csail.mit.edu/celiu/LabelTransfer/code.html
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Figure 2: (a)—(c) Accuracy (solid lines) and per-class recall (dashed lines) subject to different parameters on
the MSRC dataset. (a) Varying the number of fully-labelled images. Blue line show test set segmentation
quality when only fully-labelled images are available; green line—when the complementary part of the train
set has image-level labels. (b) Varying the coefficient of the weak-loss coefficient c. Black line show test set
segmentation quality when 40 images are fully labelled, red line—when 80 images; the complementary part of
the train set has image-level labels. (c) Varying the coefficient of the bounding box (magenta line) or object
seed (cyan line) loss 8. All 276 training images have image-level labels, all objects have tight bounding box or
seed annotations, respectively

We use pairwise factors over the pairs of the superpixels that share a common border and use the
following 4 pairwise features: exp(—c;;/10), exp(—c;;/40), exp(—c;;/100), 1. Here c¢;; is the
strength of the boundary between segments ¢ and j returned by the gPb.

For SIFT-flow, we follow Vezhnevets et al. [23] and obtain superpixels and features using the code
by Tighe and Lazebnik [18]. It runs graph-based segmentation of Felzenszwalb and Huttenlocher
[5] followed by feature extraction. The unary features include shape, location, texture, color and ap-
pearance feature vectors, some of which are also computed over dilated superpixel masks to capture
the context: 3115 unary features in total. We also transform this vector with a x2-kernel approxima-
tion, which triples its size. We use pairwise factors over the pairs of superpixels that share a common
border and the pairwise features computed as distances between groups of superpixels’ features (>
distance in case of histograms, Euclidean otherwise), 26 features in total.

Quality measures. We use two standard measures of segmentation quality: accuracy and per-class
recall. The accuracy is defined as the rate of correctly labelled pixels of the test set. The per-class
recall is the number of correctly labelled pixels of each category divided by the true total area of that
category, averaged over categories. Following the previous work [22, 14], we exclude the pixels of
rare categories (‘horse’ and ‘mountain’) from recall computation for MSRC, but include the ‘other’
label, see Section 4.2. Similarly, we exclude rare categories (‘cow’, ‘desert’, ‘moon’, and ‘sun’)
from SIFT-flow recall computation.

4.2 Image-level labels

Generating weak annotation. We obtain image-level labels automatically from full labellings by
enumerating the unique labels for each image. Each MSRC image typically features one or several
objects of some target category (e.g. ‘sign’, ‘cow’, ‘car’) on top of some background. Not every
background category falls into the used labels, so it may remain unlabelled. Thus, some images
contain only one category label. In this case the image-level label unambiguously defines the full
labelling. To avoid this knowledge (unrealistic in the real-world setting), we could model the ‘other’
label, which contains anything but the labelled 23 categories. However, the labellings typically have
uncertain borders between segments of different labels, i.e. the borders are unlabelled too (Fig. 1b).
If we modelled those boundaries as a separate category, it would hurt the segmentation performance.
Instead, we want to model this ‘other’ label only for unlabelled regions, not for the boundaries. We
use the following heuristic criterion for obtaining image-level labels: if an image contains only one
label, or at least 30% of its pixels are unlabelled, we include them to the image-level label as the
‘other’ label.

Varying the full-labelling rate. In our basic setting we have a (possibly empty) part of the training
set fully labelled, while the rest of the images have only image-level labels. We generate those



Table 1: Accuracy and average per-class recall Table 2: Accuracy (first number in each cell) and average
on the SIFT-flow dataset. The first two lines per-class recall (second number) on the MSRC dataset when
describe training on the subset of 256 fully la- during training i) only full labelling is available, ii) image-
belled images of the models with and without level (il) labels are also available for the rest of the data set,
pairwise potentials, respectively. The third line iii) object seeds (os) are additionally available, iv) bounding
experiment used the whole dataset with image- boxes (bb) for objects are available, v) both seeds and bound-
level labels, but for only 256 of them full la- ing boxes are available. Note that the numbers in the last col-
belling is known. The bottom line shows the umn are all equal since the weak annotation does not add any
result when the whole dataset is fully labelled  information when all training set is fully labelled

il  bb os | 0/276 strong | 5/276 strong | 276 strong

n/a 0.300/0.170 | 0.648/0.599
0.385/0.178 | 0.478/0.273 | 0.648/0.599
0.559/0.346 | 0.574/0.370 | 0.648/0.599
0.597/0.543 | 0.606/0.546 | 0.648/0.599
0.531/0.567 | 0.542/0.564 | 0.648/0.599

experiment acc rec

256/256 strong, local 0.574 | 0.167
256/256 strong, init loc. | 0.620 | 0.176
256/2488 strong, init T | 0.674 | 0.208
2488/2488 strong 0.696 | 0.246

+
+

A+
+ 0+

subsets using the Metropolis—Hastings sampling, trying to make the distribution of their label counts
approximate that of the whole training set. Fig. 2a shows the accuracy and per-class recall of the test
set segmentation for various full labelling rates in comparison to the fully-supervised setting.’ In
the most common scenario—when less than 20% of the training set is fully labelled—the weakly-
annotated subset provides a stable 10-15% improvement both in terms of the accuracy and mean
per-class recall.

Balancing the loss functions. When the training set consists of both weak annotations and full
labellings, the coefficient o from (5) needs to be set. We discovered that its optimal value was lower
than 1 (Fig. 2b shows the dependency of performance on o). We speculate that this is because we
are more certain about the strong loss, so it should contribute to the objective more. Thus, for all the
other experiments we set a = 0.1.

SIFT-flow results. On the SIFT-flow dataset, we compare fully-supervised learning with weakly-
supervised at one point, i.e. when only 256 training images are fully labelled, and the rest 2232 im-
ages have only image-level labels (Table 1). This weakly-learned model loses to the fully-supervised
one only 2% in the accuracy and 4% in the per-class recall. Note that our model is on par with
Vezhnevets et al. [23], who also reached 21% on that dataset with the same superpixels and features.
The difference is they used only image-level annotation, while we used about 10% fully labelled
images. However, their model is substantially more complicated: they use extremely-randomized
hashing forest for non-linear feature transform, learn objectness and image-level priors, and connect
superpixels of different images within the multi-image model. Since the LV-SSVM optimization
problem is not convex, the algorithm may get stuck at local minima. We initialize the parameters of
LV-SSVM by the parameters of the SSVM trained on the fully-labelled part of the dataset, if there
is one.

4.3 Adding bounding boxes and seeds

Generating weak annotation. We generate two more annotations for the MSRC training data to
test additional annotation-specific loss functions. Similar to image-level labels, we generate them
from the full labelling. Tight bounding boxes and object seeds are good for description of the
object (‘thing’) categories, while do not add much information beyond image-level labels for the
background (‘stuff’) categories. We divide the list of categories into two parts: background, which
includes ‘grass’, ‘sky’, ‘mountain’, ‘water’, ‘road’, and ‘other’; and objects, which includes all other
categories. There are two ambivalent categories— ‘building’ and ‘tree’—which can instantiate either
a target object of a photograph, or background. We used the following heuristic for each image:
consider tree and building as background iff there are other objects in the image. We enhanced
the image-level labelling with either tight bounding boxes or object seeds for segments of object
categories only. For the other categories, only image-level labels were available. To generate seeds,

‘http://shapovalov.ro/data/MSRC-weak-train-masks.zip
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Figure 3: Qualitative results of the proposed algorithm and two variations of the algorithm by Kumar et al. [8]
applied to three images from the MSRC test set

for each segment we took its pole of inaccessibility—the point that maximizes its distance transform
map.

Results. Table 2 summarizes the results. When the full labelling is unavailable, both object seed
and bounding box annotations give significant improvement over just image-level labels. Bound-
ing boxes notably increase per-class recall: they help to better learn ‘thing’ categories, which are
numerous and typically have smaller area. Overall, learning with bounding boxes only 5% inferior
to learning on fully labelled data both in terms of the accuracy and per-class recall. Object seed
annotation gave more modest increase in performance, though is easier to obtain. We used the value
8 = 1 to balance the impact of image-level vs. bounding box (or seed) loss functions: they seem to
provide equal contribution to the objective function; Fig. 2c supports that hypothesis.

Comparison to Kumar et al. [8]. Unfortunately, we cannot directly compare to Kumar et al.
[8] since the type of input data for their framework is unorthodox. They use two different datasets
to obtain segmentation maps (partial labellings) for the foreground and background categories,
respectively. Our framework does not support this kind of annotation: we believe that it is easier
to obtain segmentation for background and foreground categories using the same set of images.
This eliminates the need to use the latent-variable SSVM for training the basic model; instead the
global minimum of SSVM objective can be found efficiently. Also, when both image-level labels
and bounding boxes (or seeds) are known for each weakly-annotated image, both background
and foreground partial labellings can be inferred, and using latent-variable SSVM after adding
weakly-annotated data is not necessary again. Thus, when given the data we use, the method of
Kumar et al. [8] could look like this:

o train SSVM using the fully-labelled part of the training set,

e use the trained model to infer the labelling of all images consistent with the weak annota-
tion,

e train SSVM using the hallucinated labelling obtained in the previous step.

This method is similar to running one outer iteration of our training algorithm, but it has one im-
portant difference: the loss function in the second SSVM. While our method uses the weak loss
function, the modified method of Kumar et al. [8] uses the strong loss function w.r.t. the hallucinated
labelling. To compare the methods, we use the MSRC training set with 5 fully-labelled images
and the rest annotated with bounding boxes and image-level labels (row 4, column 2 in Table 2,
excluding headers) to train both described modifications: with the weak bounding-box loss func-
tion (13), and with the strong loss function (4) (still different from the loss function of Kumar et al.
[8]). The segmentation maps and numerical results in Fig. 3 show that the proposed simultaneous
minimization of loss functions is superior both in terms of accuracy and per-class recall.

10



5 Conclusion

We presented the framework for learning structural classification from different types of annotations
by minimizing annotation-specific loss functions. We applied it to semantic image segmentation
by introducing weak loss functions for for image-level, bounding box, and object seed annotations.
Usage of weakly-annotated training data consistently improves the labelling. The results on the
semantic segmentation datasets show that the joint annotation where background is given by image-
level labels, and objects are given by bounding boxes, is the best trade-off between segmentation
quality and annotation effort.
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