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Abstract. Implementing genetics and reproduction for artificial life
involves a set of tasks that are only loosely dependent on the type of
agent or the method of reproduction. Créatúr is a software framework
for automating experiments with artificial life, and a library of modules
that can be used to implement agents. In this paper we describe how
Créatúr uses Haskell features such as monads, domain-specific embedded
languages, and datatype-generic programming to simplify the implemen-
tation of genetics and reproduction. We discuss the possibility that type
families could support duplicate instance declarations in appropriate cir-
cumstances.
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1 Introduction

Artificial life (ALife) is a field which attempts to create life-like behaviour using
software, hardware, biochemistry or other media; in this paper we focus on soft-
ware. Whereas biology is the study of “life-as-we-know-it”, ALife is the study
of “life-as-it-could-be”[1]. ALife is not only used as a simplified model of bio-
logical life and ecosystems; it is also increasingly applied to real-world problems
as diverse as data mining[2], music composition[3], and management of dam
operations in multi-reservoir river systems[4].

The recipe for evolution is simple; the ingredients are[5]:

1. variation: a continuing abundance of different elements,
2. heredity or replication: the capacity to create copies of elements, and
3. differential fitness: the number of copies created depends on the interaction

between the features of an element with features of the environment.

All of the complexity and variation of biological life arises from this mech-
anism, even though “the only thing that changes in evolution is the genes”[6].
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Although the process of evolution is normally associated with biological organ-
isms, it can occur with any substrate as long as those three conditions are met.
Hence, evolution is often used in ALife.

To explore how evolution of ALife might be implemented, consider the agent
below.

data Plant = Plant { plantName :: String,
plantFlowerColour :: FlowerColour, plantEnergy :: Int,
plantGenome :: [Bool] }

data FlowerColour = Red | Orange | Yellow | Violet | Blue

This is of course a very simple example. There is only one genetic trait,
plantFlowerColour; it is specified by the plantGenome, which is encoded as a
sequence of Bools. (The field plantEnergy is not genetic; it is set to the same
initial value for all Plants at “birth”.)

Our Plant type has only one strand of genetic material; this illustrates a
common approach[7, p. 10f] in evolutionary computation that we will refer to
as simplified sexual reproduction. During reproduction, the strands from two
parents are recombined to produce two new strands. Two offspring can be cre-
ated from the new strands. Alternatively, one strand may be chosen at random
to create a child, and the other strand discarded. In either case, each parent
contributes approximately half of its genetic information to the offspring.

Compare the definition of Plant with the following definition. This agent,
called Bug, uses an approach that more closely models sexual reproduction in
biology.

data Bug = Bug { bugName :: String, bugColour :: BugColour,
bugSpots :: [BugColour], bugSex :: Sex, bugEnergy :: Int,
bugGenome :: ([Word8],[Word8]) }

data BugColour = Green | Purple | Red | Brown | Orange | Pink
| Blue

data Sex = Male | Female

In this case, there are two strands of genetic information, represented by a
tuple containing two sequences of Word8s. During reproduction, the two strands
from one parent are recombined to produce two new strands. One of those strands
is chosen at random to become that parent’s contribution to the child’s genome.
This is analogous to the production of a gamete (ovum or sperm) in biology.
The process is repeated for the other parent. Thus the child has two strands
of genetic information, one contributed by each parent. As before, each parent
contributes approximately half of its genetic information to the offspring.

Although there are differences in the details, the task of implementing either
style of reproduction is very similar. The programmer must design a genome,
implement recombination of genetic information, support occasional mutation of
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genes, provide a means to encode a set of traits into a strand of genetic informa-
tion, provide a means to decode strands of genetic information to determine the
corresponding traits, and implement the construction of an agent (or solution)
from the genome.

The researcher may not care about the precise design of the genome, or its
implementation, only requiring that it behaves in a way that supports evolution.
Specifically, the genome and the recombination technique must be designed to
ensure that offspring are similar to their parents (except in the case of mutation).
A straightforward conversion of numeric values to binary is not a good approach;
an agent with, say, 18 legs (10010) and one with 20 legs (10100) could produce
a child with 31 legs (11111) – not very similar to either parent!

So designing, implementing, and testing a genome is not trivial. Are there
tools that can make this easier? As part of our research using ALife to extract
knowledge from large data sets with minimal preparation or ramp-up time[8], we
work with a variety of agents. We developed Créatúr1, which is both a software
framework for automating experiments with ALife and a library of modules that
can be used (with or without the framework) to implement agents. We chose
to implement Créatúr in Haskell based on our positive experience using it to
create a neural network[9]. In this paper we describe how Créatúr uses Haskell
features such as monads, domain-specific embedded languages, and datatype-
generic programming to address genetics and reproduction. The full source code
for Créatúr is available on GitHub[10]; a tutorial is also provided[11].

2 Datatype-Generic Programming

Generic programming is programming that references types to be specified later.
The actual implementation is automatically generated when the types are finally
specified. The Haskell 98 standard[12] includes some support for generic pro-
gramming, in the form of derived instances, but only for six typeclasses (Eq,
Ord, Enum, Bounded, Show and Read). The Glasgow Haskell Compiler (GHC)
provided some extensions (Data, Typeable, Functor, Foldable, and Traversable)
as part of the Scrap Your Boilerplate system[13–15].

GHC version 7.2 added support for datatype-generic programming as pro-
posed by Magalhães et al. [16]. This lightweight and portable approach allows
the programmer to specify how to derive arbitrary class instances. The key is
that the “generic” type is represented at runtime using a sum-of-products rep-
resentation, which involves the following types:

– U1 Unit, used for constructors without arguments
– K1 Constants, additional parameters and recursion of kind *
– M1 Meta-information (constructor names, etc.)
– :+: Sum, which encodes choices between constructors
– :*: Product, which encodes multiple arguments to constructors

1 Créatúr (pronounced kray-toor) is an Irish word meaning animal, creature, or unfor-
tunate person.
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As a result of this approach, the programmer usually only needs to write
implementations for a set of base types, plus an implementation for each of the
representation types above. Finally, the end user simply declares their type to
be an instance of the desired type (using the DeriveGeneric pragma). We will
show an example of this in Section 3.

3 Gene Encoding

The Créatúr library provides tools to develop an encoding scheme for a gene or
an entire organism. The Genetic class provides the functions for encoding and
decoding. Initially we defined the Genetic class using type families, as shown
below. The function put writes a gene to a sequence; get reads the next gene in a
sequence. The type Sequence represents an encoded gene sequence, for example,
[Bool] or [Word8].

class Genetic g where
type Sequence g :: *
put :: Sequence g -> g -> Sequence g
get :: Sequence g -> (g, Sequence g)

Suppose we want to support a gene sequence type of [Bool]. We would create
type instances of Genetic for each Haskell base type that we want to support,
such as Char.

instance Genetic Char where type Sequence Char = [Bool] ...

We would also create instances for U1, K1, M1, :+: and :*:, as discussed in
Section 2. A user will then be able to build new types using the supported base
types, and declare them to be instances of Genetic. For example,

data MyType = MyType Char ... deriving Generic
instance Genetic MyType

A problem arises when we want to support multiple types of gene sequences
for the base types. For example, we might wish to add the following:

instance Genetic Char where type Sequence Char = [Word8] ...

Note that the type signatures of put and get reference Sequence, so in theory
the compiler would always be able to determine which function instance (the
[Bool] or the [Word8] version) to call. However, the current implementation of
type families does not permit duplicate instance declarations. One way to achieve
a similar result is to create newtype “wrappers” for each instance declarations,
as shown below.
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newtype CharB = MkCharB Char
instance Genetic CharB where type Sequence CharB = [Bool] ...

newtype CharW8 = MkCharW8 Char
instance Genetic CharW8 where type Sequence CharW8 = [Word8] ...

The user can now create new types based on the “wrapped” versions of base
types, and automatically derive instances for them, as shown below.

data MyType = MyType CharB ... deriving Generic
instance Genetic MyType

However, suppose the user now wants to change from using [Bool] for
encoded gene sequences to [Word8]. Every reference to CharB will have to be
changed to CharW8. References to other base types will have to be modified
similarly. Worse still, suppose the user wants to use both [Bool] and [Word8]
sequences in the same program. They would have to define multiple versions of
their types. This situation is not user-friendly.

Another possibility is to use multi-parameter typeclasses, as shown below.
However, we felt that multi-parameter typeclasses were less likely to be familiar
to our users than type families2.

class Genetic s g where

put :: s -> g -> s

get :: s -> (g, s)

instance Genetic [Bool] Char where ...

instance Genetic [Word8] Char where ...

Ultimately we chose to follow the model of commonly-used modules such as
Data.ByteString and Data.Map, i.e., having multiple modules that provide the
same interface. By simply changing the import statement, the user can change
the sequence type. This makes it easy for the user to benchmark different types
to determine, for example, whether [Word8] or [Word16] will be more efficient
in a given application.

We also provided Reader and Writer monads for operating on an encoded
gene sequence. These will be discussed in more detail in Section 7. The final
implementation of Genetic is shown below.

2 Hage reported that in 2010, Type Families were enabled in 114 packages on Hack-
age, and one of the top 10 downloads at that time, while MultiParamTypeClasses
were enabled in 321 packages, and nine of the top 10[17]. However, Type Families
are a more recent development than MultiParamTypeClasses, and may be overtak-
ing MultiParamTypeClasses in popularity. On 27 June, 2014, we searched stack-
overflow (http://stackoverflow.com), a Q&A forum for programmers, for the tag
[haskell] and the term TypeFamilies. This search yielded 81 questions asked or
answered during the year to date (409 for all time). A search for [haskell] and
MultiParamTypeClasses yielded 55 questions during the year (349 for all time).

http://stackoverflow.com
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class Genetic g where
put :: g -> Writer ()
get :: Reader (Either [String] g)

Datatype-generic programming allows Créatúr to automatically generate
instances for put and get. The details of how to use datatype-generic program-
ming are described by Magalhães [16] and on the Haskell wiki[18]. Here we will
summarise the steps we took to allow implementations of the Genetic class to
be automatically generated.

– Implementing Genetic for a set of base types Bool, Char, Word8 and Word16,
along with types of the form [a], Maybe a, (a, b) and Either a b, where
a and b are themselves instances of Genetic.

– Creating a new class, GGenetic, which handles encoding and decoding of
the sum-of-products representation of a value.

– Implementing GGenetic for each of the types used in the sum-of-products
representation.

– Providing a default implementation of put and get in the Genetic class;
they simply invoke the corresponding methods in the GGenetic class.

As a result, the end user can automatically create an instance of Genetic for
any type without writing an implementation for put or get, as long as the type is
constructed using only the supported base types. For example, we can modify the
FlowerColour type to use the automatically-generated genetic encoding scheme
by using the language pragma DeriveGeneric, importing GHC.Generics, and
declaring FlowerColour to be an instance of Genetic. Now get and put can be
used with the FlowerColour type.

{-# LANGUAGE DeriveGeneric #-}
...
import ALife.Creatur.Genetics.BRGCBool
import GHC.Generics
...

data FlowerColour = Red | Orange | Yellow | Violet | Blue
deriving Generic

instance Genetic FlowerColour

There are three variants of Genetic. The one in ALife.Creatur.Genetics.
Code.BRGCBool encodes genes to produce a sequence of Bools. This is practical
when the genes of an agent have a small set of possible values. If an agent
has genes with a larger number of possible values, it may be better to store
their genetic information as a string of numbers. ALife.Creatur.Genetics.
Code.BRGCWord8 encodes genes to produce a string of Word8s. Similarly, ALife.
Creatur.Genetics.Code.BRGCWord16 uses Word16s.

All three implementations encode integral and character values using a
binary-reflected Gray code (BRGC). A Gray code maps values to codes in
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a way that guarantees that the codes for two consecutive values will differ by
only one bit[19]. This feature is useful for encoding genes because the result of
a crossover operation will be similar to the inputs. This helps to ensure that
offspring are similar to their parents, as any radical changes from one generation
to the next are the result of mutation alone.

4 Reproduction

Recall that in our Plant example, each agent has a single strand of genetic infor-
mation. During reproduction, the strands from two parents are recombined, cre-
ating genetic information for potential offspring. Thus, each parent contributes
approximately half of its genetic information to the offspring. The recombination
process will be discussed in Section 5.

Créatúr provides the Reproductive class in the ALife.Creatur.Genetics.
Reproduction.SimplifiedSexual module for this purpose. This class can be
used with either BRGCBool, BRGCWord8 or BRGCWord16, and contains three func-
tions. The function recombine recombines the genetic information from two
potential parent agents, as discussed above. The user must provide the imple-
mentation for recombine using a domain-specific embedded language (DSEL)
which will be described in Section 5. The function build constructs an agent
from a strand of genetic information, if it is possible to do so (i.e. if the genes
translate to a valid agent). The user must provide an implementation of this func-
tion as well; this is discussed in Section 7. Finally, the makeOffspring function
takes two agents and attempts to produce offspring. A default implementation
is provided, which calls recombine to create a genome for the child and calls
build to construct the child. The definition of Reproductive is shown below.

class Reproductive a where
type Strand a
recombine :: RandomGen r => a -> a -> Rand r (Strand a)
build :: AgentId -> Strand a -> Either [String] a
makeOffspring :: RandomGen r

=> a -> a -> AgentId -> Rand r (Either [String] a)

In our Bug example, each agent has two strands of genetic information. Dur-
ing reproduction, the two strands from one parent are recombined to produce
two new strands. (The recombination process will be discussed in Section 5.)
One of these strands is chosen at random to become that parent’s contribution
to the child’s genome. This is analogous to the production of a gamete (ovum
or sperm) in biology. The process is repeated for the other parent. Thus the
child has two strands of genetic information, one contributed by each parent. As
before, each parent contributes approximately half of its genetic information to
the offspring.

Créatúr provides a class for this, also called Reproductive, in the ALife.
Creatur.Genetics.Reproduction.Sexual module. As before, this class can be
used with either of the encoding methods described in Section 3, and contains
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three functions. The produceGamete function recombines the twin strands of
genetic information from two potential parents, using the technique described
above. The user must provide the implementation for recombine using the DSEL
described in Section 5. The function build constructs an agent from two strand
of genetic information, if possible. The user must provide an implementation of
this function; this will be discussed in Section 7.

Finally, the makeOffspring function takes two agents and attempts to pro-
duce offspring. A default implementation is provided, which calls produceGamete
to produce a single strand of genetic information from each parent, pairs the two
strands to create a genome for the child, and calls build to construct the child.

The definition of Reproductive is shown below.

class Reproductive a where
type Strand a
produceGamete :: RandomGen r => a -> Rand r (Strand a)
build :: AgentId -> (Strand a, Strand a) -> Either [String] a
makeOffspring :: RandomGen r

=> a -> a -> AgentId -> Rand r (Either [String] a)

5 Gene Recombination

Both of the scenarios described in Section 4 involve shuffling a pair of sequences
to produce two new pairs, and possibly discarding one of the sequences. Addition-
ally, occasional random mutations are allowed. The ALife.Creatur.Genetics.
Recombination module in the Créatúr library provides a DSEL for genetic
recombination. These operations can be applied with specified probabilities and
combined in various ways. Two common operations are crossover and cut-and-
splice. In crossover (Figure 1), a single crossover point is chosen. All data beyond
that point is swapped between strings. In cut-and-splice (Figure 2), two points
are chosen, one on each string. This generally results in two strings of unequal
length.

Before: After:

Fig. 1. Crossover

Here’s a sample program that might be used to shuffle two sequences of
genetic material.

withProbability 0.1 randomCrossover (xs, ys) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair
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Before: After

Fig. 2. Cut-and-splice

To illustrate how this program would work, suppose this program acted on
the following pair of sequences:

([A,A,A,A,A,A,A,A,A,A],[C,C,C,C,C,C,C,C,C,C])

The first line of the program has a 10% probability of performing a simple
crossover at a random location, perhaps resulting in:

([A,A,A,A,A,A,A,C,C,C],[C,C,C,C,C,C,C,A,A,A])

The second line of the program has a 1% probability of performing a cut-and-
splice, perhaps resulting in:

([A,A,A,A,C,A,A,A],[C,C,C,C,C,C,A,A,A,C,C,C])

The third line of the program has a 0.1% probability of mutating one or both
sequences, perhaps resulting in

([T,A,A,A,C,A,A,A],[C,C,C,C,C,C,A,A,C,C,C,C])

After the first three operations, we have two new sequences. In this example, we
only want one of the sequences, so the final line randomly chooses one.

To perform more than one crossover, the operation can simply be repeated.
Alternatively, we can choose the number of crossover operations at random. The
function repeatWithProbability performs an operation a random number of
times, such that the probability of repeating the operation n times is pn. Table 1
contains the full list of available operators.

6 Gene Expression

In biology, gene expression is the mechanism that determines the phenotype (the
observable traits of the organism) from the genotype (genetic makeup)[20]. Sim-
ilarly, an ALife species which uses sexual reproduction needs a way to determine
the characteristics of an agent from the two strands of genetic information. An
agent that arises through sexual reproduction will have two strands of genetic
information. When corresponding genes from the two sets are not identical, the
dominance rules are applied.

The Diploid class, in the module ALife.Creatur.Genetics.Diploid, rep-
resents paired genes or paired instructions for building an agent. Diploid con-
tains the function express. Given two possible forms of a gene or gene sequence,
express takes into account any dominance relationship, and returns a gene rep-
resenting the result. Créatúr uses datatype-generic programming (discussed in
Section 3) to provide a default implementation of Diploid, including express.
The definition of Diploid is shown below.
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Table 1. The Recombination DSEL

function and description

crossover :: Int -> ([a], [a]) -> ([a], [a])

Cuts the list xs at position n, cuts the list ys at position m, swaps
the ends, splices them, and returns the modified pair. The result will be
(xs[0..n-1]++ys[m..], ys[0..m-1]++xs[n..])

cutAndSplice :: Int -> Int -> ([a], [a]) -> ([a], [a])

Cuts both the lists xs and ys at position n, swaps the ends, splices them, and
returns the modified pair. This is equivalent to cutAndSplice n n (xs,ys).

mutateList :: (Random n, RandomGen g) => [n] -> Rand g [n]

Mutates a random element in the list xs, and returns the modified list.

mutatePairedLists

:: (Random n, RandomGen g) => ([n], [n]) -> Rand g ([n], [n])

Randomly chooses xs or ys, mutates a random element in that list, and returns the
modified list.

randomOneOfList :: RandomGen g => [a] -> Rand g a

Randomly returns one element from the list xs.

randomOneOfPair :: RandomGen g => (a, a) -> Rand g a

Randomly returns x or y.

randomCrossover :: RandomGen g => ([a], [a]) -> Rand g ([a], [a])

Same as crossover, except that n is chosen at random.

randomCutAndSplice :: RandomGen g => ([a], [a]) -> Rand g ([a], [a])

Same as cutAndSplice, except that n and m are chosen at random.

withProbability

:: RandomGen g => Double -> (b -> Rand g b) -> b -> Rand g b

Either applies op to x (with probability p) and returns the result, or returns the
unmodified x (with probability p-1).

repeatWithProbability

:: RandomGen g => Double -> (b -> Rand g b) -> b -> Rand g b

Applies op to x random number of times. The probability of applying op n times is
pn.

class Diploid g where
express :: g -> g -> g

Default implementations of Diploid are provided for the following types:
Bool, Char, Double, Int, Word, Word8, Word16, Word32, and Word64, along with
sequences, tuples, and sums or products of any types that themselves implement
Genetic. In practice, this means that the user can often create an instance of
Diploid without writing an implementation for express.

In the default implementation of express “small” is dominant over “large”.
If arrays are of different lengths, the result will be as long as the shorter array.
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express [1,2,3,4] [5,6,7,8,9] → [1,2,3,4]

Consider the following type:

data MyType = MyTypeA Bool | MyTypeB Int
| MyTypeC Bool Int [MyType] deriving (Show, Generic)

instance Diploid MyType

Here are some examples of how express operates.

express (MyTypeA True) (MyTypeA False) → MyTypeA True
express (MyTypeB 2048) (MyTypeB 36) → MyTypeB 36

When a type has multiple constructors, the constructors that appear earlier
in the definition are dominant over those that appear later. For example:

express (MyTypeA True) (MyTypeB 7) → MyTypeA True
express (MyTypeB 4) (MyTypeC True 66 []) → MyTypeB 4

Even with complex data structures, the implementation should just “do the
right thing”.

Given a numeric type, it would seem that the logical way to express two
values is to average them. So why do we instead use the smaller value? In our
research with ALife, numeric genes usually control the resources used by an
agent. Examples include a gene which specifies the number of neural connec-
tions in the agent’s brain, or a gene which controls the age at which offspring
become mature and are no longer dependent on a parent. Choosing the smaller
number helps to ensure that agents use resources efficiently. Of course, a different
dominance rule can be used by writing a custom implementation of express.

7 Constructing an Agent from Its Genome

Monads “provide a convenient framework for simulating effects found in other
languages, such as global state, exception handling, output, or non-determinism”
[21]. Since a monad defines a small set of operations that can be used within it,
it is essentially a DSEL. Hudak calls monads used in this way “modular monadic
interpreters” because they allow different language features to be isolated and
given context-specific interpretations, and combined like “building blocks”[22].
In this section we will demonstrate how we use monads to create tools for con-
structing agents.

As mentioned in Section 4, implementations of the class Reproductive must
implement the function build, which constructs an agent from a genome, if the
genome is valid. We are now ready to show how this is done.

Recall the definition of Plant from Section 1. To create a plant, we need to
determine the flower colour from the genome, and set the ID and energy. The
BRGCBool, BRGCWord8 and BRGCWord16 modules define a monad called Reader
(unrelated to Control.Monad.Reader), which provides functions for decoding a
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Table 2. The Reader DSEL

function and description

get :: Reader (Either [String] g)

Reads the next gene. If it can be decoded, returns the decoded value. Otherwise,
returns a list of error messages.

getWithDefault :: g -> Reader g

Reads the next gene. If it can be decoded, returns the decoded value. Otherwise,
returns the default value

copy :: Reader Sequence

Return the entire genome.

consumed :: Reader Sequence

Return the portion of the genome that has been read (by get or getWithDefault).

strand of genetic information. Thus, the Reader monad is a DSEL for reading
genomes; this language is defined in Table 2.

We can write a buildPlant method using this DSEL. The function will take
a String (a unique identifier of the plant to be created), and it will return a
program that runs in the Reader monad. That program will return a either a
list of Strings containing error messages, or a plant. Thus, the type signature
for the buildPlant function is:

buildPlant :: String -> Reader (Either [String] Plant)

Now to write the program. First, each plant needs a copy of its genome in
order to produce offspring; we can use the copy function to obtain this. Next, we
determine the colour of the plant. We could use the method get, which returns
a Maybe value containing the next gene in a sequence. But consider that our
sequence of Bools may not be a valid code for any colour. If an error occurs,
we could treat the mutation as non-viable and return Nothing. However, in this
example, we wish to create a plant no matter what errors are in the genome, so
we will use getWithDefault, with Red as the default value. All plants start life
with an energy of 10. Here is the program:

buildPlant name = do
g <- copy
colour <- getWithDefault Red
return . Right $ Plant name colour 10 g

Now, buildPlant is a function that returns a program that runs in the
Reader monad. How do we run that program? ALife.Creatur.Genetics.
BRGCBool, ALife.Creatur.Genetics.BRGCWord8 and ALife.Creatur.
Genetics.BRGCWord16 provide a function for this purpose, called runReader.
Now we have everything we need to declare Plant to be an instance of
Reproductive.
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Table 3. The DiploidReader DSEL

function and description

getAndExpress

:: (Genetic g, Diploid g) => DiploidReader (Either [String] g)

Reads the next pair of genes from twin strands of genetic information. If the genome
can be decoded, takes into account any dominance relationship and returns returns
the decoded value. Otherwise, returns a list of error messages.

getAndExpressWithDefault :: (Genetic g, Diploid g) => g -> DiploidReader g

Reads the next pair of genes from twin strands of genetic information. If the genome
can be decoded, takes into account any dominance relationship and returns returns
the decoded value. Otherwise, returns the default value

copy2 :: DiploidReader DiploidSequence

Returns the entire genome (both strands).

consumed2 :: DiploidReader DiploidSequence

Returns the portion of each strand that has been read (by get or getWithDefault).

instance Reproductive Plant where
type Base Plant = Sequence
recombine a b =

withProbability 0.1
randomCrossover (plantGenome a, plantGenome b) >>=

withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runReader (buildPlant name)

Recall the definition of Bug from Section 1. Now we have two strands of
genetic information which determine the bug’s traits. The BRGCBool, BRGCWord8
and BRGCWord16 modules define a monad called DiploidReader for this sit-
uation. The DiploidReader monad is also DSEL; this language is defined in
Table 3.Our buildBug method will take a String (a unique identifier), and it will
return a program that runs in the DiploidReader monad. The implementation
is similar to buildPlant, except that the single-strand operations have been
replaced with versions that work with both strands.

buildBug :: String -> DiploidReader (Either [String] Bug) buildBug
name = do

sex <- getAndExpress
colour <- getAndExpress
spots <- getAndExpress
g <- copy2
return

$ Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g
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The runDiploidReader function runs a program written in the
DiploidReader DSEL and returns the result. Now we can implement
Reproductive.

instance Reproductive Bug where
type Base Bug = Sequence
produceGamete a =

repeatWithProbability 0.1 randomCrossover (bugGenome a) >>=
withProbability 0.01 randomCutAndSplice >>=
withProbability 0.001 mutatePairedLists >>=
randomOneOfPair

build name = runDiploidReader (buildBug False name)

The BRGCBool, BRGCWord8 and BRGCWord16 modules also define a monad
called Writer, used for encoding genetic information. This is useful for generating
an initial population. The Writer DSEL consists of one function, put, which
writes a gene to a sequence.

One approach to creating an initial population is to feed random strings of
genetic information into the function that builds the agent, but instruct it to keep
only as much of the sequence as it needs to build a complete agent. The functions
consumed (from the Reader DSEL) and consumed2 (from the DiploidReader
DSEL) are useful here. For example, we can modify the buildBug method from
Section 7 to accept a boolean that tells it whether or not to discard the unread
portion of the sequences.

buildBug :: Bool -> String -> DiploidReader (Either [String] Bug)
buildBug truncateGenome name = do

sex <- getAndExpress
colour <- getAndExpress
spots <- getAndExpress
g <- if truncateGenome then consumed2 else copy2
return $

Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g

8 Conclusion

As library developers, we found it straightforward to use the datatype-generic
programming feature of GHC to specify how to derive instances of Genetic and
Diploid. The user has it even easier; they can simply declare their custom types
to be instances of these classes, taking advantage of the default implementation
we provide. Perhaps type families could support duplicate instance declarations
in appropriate circumstances, or alternatively, type families and multi-parameter
typeclasses were unified into one language feature with a common design.

Each of the DSELs we developed required only a small set of operations; it
was easy to embed them in Haskell. In this way we avoided having to design
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a language and write a parser for it. The user does not have to learn a “new”
language, and rather than being restricted to the semantics of the DSEL, the
user has access to all the features of Haskell, if needed. Finally, using monads
for the Reader, DiploidReader and Writer DSELs allowed us to isolate the
stateful computations required to read and write genes.

References

1. Langton, C.G.: Artificial life. In: Langton, C.G. (ed.) Artificial Life: The Proceed-
ings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living
Systems, Held in September, 1987, in Los Alamos, New Mexico, pp. 1–48. Addison-
Wesley, Redwood City (1989)

2. Cao, L.: Data Mining and Multi-agent Integration. Springer, Boston (2009). http://
dx.doi.org/10.1007/978-1-4419-0522-2

3. Miranda, E.R.: A-life for music: music and computer models of living systems.
A-R Editions, Middleton (2011). http://www.worldcat.org/search?qt=worldcat
org all&q=9780895796738

4. Dessalegne, T., Nicklow, J.: Artificial Life Algorithm for Management of Multi-
reservoir River Systems. Water Resources Management 26(5), 1125–1141 (2012).
http://dx.doi.org/10.1007/s11269-011-9950-7

5. Dennett, D.C.: Consciousness explained. Penguin (1993). http://www.worldcat.
org/isbn/9780140128673

6. Fuller, S., Wolpert, L.: Transcript of the debate between Professor Steve Fuller
and Professor Lewis Wolpert at Royal Holloway College (February 2007).
http://www.bcseweb.org.uk/index.php/Main/RoyalHollowayCollegeDebate (cited
July 03, 2010, 01:11:46)

7. Mitchell, M.: An introduction to genetic algorithms, 2nd edn. Prentice Hall of
India, New Delhi (2002)
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10. de Buitléir, A.: Créatúr GitHub. GitHub repository (2014).https://github.com/
mhwombat/creatur
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13. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Shao, Z., Lee, P. (eds.) In: Proceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation, TLDI 2003, pp. 26–37. ACM, New York (2003). http://doi.acm.org/10.
1145/604174.604179
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