Skip to main content

Multi-modal Validation Framework of Mitral Valve Geometry and Functional Computational Models

  • Conference paper
  • First Online:
Book cover Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges (STACOM 2014)

Abstract

Computational models of the mitral valve (MV) exhibit significant potential for patient-specific surgical planning. Recently, these models have been advanced by incorporating MV tissue structure, non-linear material properties, and more realistic chordae tendineae architecture. Despite advances, only limited ground-truth data exists to validate their ability to accurately simulate MV closure and function. The validation of the underlying models will enhance modeling accuracy and confidence in the simulated results. A necessity towards this aim is to develop an integrated pipeline based on a comprehensive in-vitro flow loop setup including echocardiography techniques (Echo) and micro-computed tomography. Building on [1] we improved the acquisition protocol of the proposed experimental setup for in-vitro Echo imaging, which enables the extraction of more reproducible and accurate geometrical models, using state-of-the art image processing and geometric modeling techniques. Based on the geometrical parameters from the Echo MV models captured during diastole, a bio-mechanical model is derived to estimate MV closure geometry. We illustrate the framework on two data sets and show the improvements obtained from the novel Echo acquisition protocol and improved bio-mechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neumann, D., et al.: Multi-modal pipeline for comprehensive validation of mitral valve geometry and functional computational models. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2013. LNCS, vol. 8330, pp. 188–195. Springer, Heidelberg (2014)

    Google Scholar 

  2. Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., Carnethon, M.R., Dai, S., de Simone, G., Ford, E.S., et al.: Heart disease and stroke statistics 2011 update a report from the american heart association. Circulation 123(4), e18–e209 (2011)

    Article  Google Scholar 

  3. Stewart, S., MacIntyre, K., Capewell, S., McMurray, J.: Heart failure and the aging population: an increasing burden in the 21st century? Heart 89(1), 49–53 (2003)

    Article  Google Scholar 

  4. Vassileva, C.M., Mishkel, G., McNeely, C., Boley, T., Markwell, S., Scaife, S., Hazelrigg, S.: Long-term survival of patients undergoing mitral valve repair and replacement a longitudinal analysis of medicare fee-for-service beneficiaries. Circulation 127(18), 1870–1876 (2013)

    Article  Google Scholar 

  5. Kilic, A., Shah, A., Conte, J., Baumgartner, W., Yuh, D.: Operative outcomes in mitral valve surgery: Combined effect of surgeon and hospital volume in a population-based analysis. J. Thorac. Cardiovasc. Surg. (2012)

    Google Scholar 

  6. Borger, M.A., Alam, A., Murphy, P.M., Doenst, T., David, T.E.: Chronic ischemic mitral regurgitation: repair, replace or rethink? The Annals of Thoracic Surgery 81(3), 1153–1161 (2006)

    Article  Google Scholar 

  7. Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)

    Article  Google Scholar 

  8. Stevanella, M., Maffessanti, F., Conti, C., Votta, E., Arnoldi, A., Lombardi, M., Parodi, O., Caiani, E., Redaelli, A.: Mitral valve patient-specific finite element modeling from cardiac mri: Application to an annuloplasty procedure. Cardiovascular Engineering and Technology 2(2), 66–76 (2011)

    Article  Google Scholar 

  9. Ionasec, R., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F., Nassir, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and tee. TMI 29(9), 1636–1651 (2010)

    Google Scholar 

  10. Mansi, T., Voigt, I., Georgescu, B., Zheng, X., Assoumou Mengue, E., Hackl, M., Ionasec, R.T., Seeburger, J., Comaniciu, D.: An integrated framework for fnite-element modeling of mitral valve biomechanics from medical images: Application to mitralclip intervention planning. Med. Image Anal. 16(7), 1330–1346 (2012)

    Google Scholar 

  11. Siefert, A.W., Rabbah, J.P.M., Koomalsingh, K.J., Touchton Jr., S.A., Saikrishnan, N., McGarvey, J.R., Gorman, R.C., Gorman III, J.H., Yoganathan, A.P.: In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann. Thorac. Surg. 95, 825–830 (2013)

    Article  Google Scholar 

  12. Rabbah, J.P., Saikrishnan, N., Yoganathan, A.P.: A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 31, 305–315 (2012)

    Google Scholar 

  13. Jimenez, J.H., Soerensen, D.D., He, Z., Ritchie, J., Yoganathan, A.P.: Effects of papillary muscle position on chordal force distribution: an in-vitro study. The Journal of Heart Valve Disease 14(3), 295–302 (2005)

    Google Scholar 

  14. Grbic, S., Ionasec, R., Vitanovski, D., Voigt, I., Wang, Y., Georgescu, B., Comaniciu, D.: Complete valvular heart apparatus model from 4d cardiac ct. Medical Image Analysis 16(5), 1003–1014 (2012)

    Article  Google Scholar 

  15. Krishnamurthy, G., Itoh, A., Bothe, W., Swanson, J., Kuhl, E., Karlsson, M.: Craig Miller, D., Ingels, N.: Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42(12), 1909–1916 (2009)

    Article  Google Scholar 

  16. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasa Grbic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grbic, S. et al. (2015). Multi-modal Validation Framework of Mitral Valve Geometry and Functional Computational Models. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14678-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14677-5

  • Online ISBN: 978-3-319-14678-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics