Skip to main content

An Empirical Methodology to Analyze the Behavior of Bagging

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8933))

Abstract

In this paper we propose and apply a methodology to study the relationship between the performance of bagging and the characteristics of the bootstrap samples. The methodology consists of 1) an extensive set of experiments to estimate the empirical distribution of performance of the population of all possible ensembles that can be created with those bootstraps and 2) a metalearning approach to analyze that distribution based on characteristics of the bootstrap samples and their relationship with the complete training set. Given the large size of the population of all ensembles, we empirically show that it is possible to apply the methodology to a sample. We applied the methodology to 53 classification datasets for ensembles of 20 and 100 models. Our results show that diversity is crucial for an important bootstrap and we show evidence of a metric that can measure diversity without any learning process involved. We also found evidence that the best bootstraps have a predictive power very similar to the one presented by the training set using naive models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139–157 (2000)

    Article  Google Scholar 

  3. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to data mining. Springer (2008)

    Google Scholar 

  4. Brazdil, P.B., Soares, C., Da Costa, J.P.: Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results. Machine Learning 50(3), 251–277 (2003)

    Article  MATH  Google Scholar 

  5. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and i can tell you who you are: Landmarking various learning algorithms. In: Proceedings of the 17th ICML, pp. 743–750 (2000)

    Google Scholar 

  6. Blake, C., Merz, C.J.: {UCI} repository of machine learning databases (1998)

    Google Scholar 

  7. Breiman, L., et al.: Heuristics of instability and stabilization in model selection. The Annals of Statistics 24(6), 2350–2383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedman, J.H.: On bias, variance, 0/1loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1(1), 55–77 (1997)

    Article  Google Scholar 

  9. Domingos, P.: Why does bagging work? a bayesian account and its implications. In: KDD, pp. 155–158. Citeseer (1997)

    Google Scholar 

  10. Friedman, J.H., Hall, P.: On bagging and nonlinear estimation. Journal of Statistical Planning and Inference 137(3), 669–683 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Büchlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics, 927–961 (2002)

    Google Scholar 

  12. Grandvalet, Y.: Bagging equalizes influence. Machine Learning 55(3), 251–270 (2004)

    Article  MATH  Google Scholar 

  13. Kalousis, A., Gama, J., Hilario, M.: On data and algorithms: Understanding inductive performance. Machine Learning 54(3), 275–312 (2004)

    Article  MATH  Google Scholar 

  14. Wang, X., Smith-Miles, K., Hyndman, R.: Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing 72(10), 2581–2594 (2009)

    Article  Google Scholar 

  15. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics, 79–86 (1951)

    Google Scholar 

  16. Peng, Y.H., Flach, P.A., Soares, C., Brazdil, P.B.: Improved dataset characterisation for meta-learning. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 141–152. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory 37(1), 145–151 (1991)

    Article  MATH  Google Scholar 

  18. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  19. Peterson, A.H., Martinez, T.: Estimating the potential for combining learning models. In: Proceedings of the ICML Workshop on Meta-learning, pp. 68–75 (2005)

    Google Scholar 

  20. Lee, J.W., Giraud-Carrier, C.: A metric for unsupervised metalearning. Intelligent Data Analysis 15(6), 827–841 (2011)

    Google Scholar 

  21. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)

    Article  Google Scholar 

  22. Fisher, W.D.: On grouping for maximum homogeneity. Journal of the American Statistical Association 53(284), 789–798 (1958)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pinto, F., Soares, C., Mendes-Moreira, J. (2014). An Empirical Methodology to Analyze the Behavior of Bagging. In: Luo, X., Yu, J.X., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2014. Lecture Notes in Computer Science(), vol 8933. Springer, Cham. https://doi.org/10.1007/978-3-319-14717-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14717-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14716-1

  • Online ISBN: 978-3-319-14717-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics