
On the Liveness of Transactional Memory

Victor Bushkov
EPFL, IC, LPD

victor.bushkov@epfl.ch

Rachid Guerraoui
EPFL, IC, LPD

rachid.guerraoui@epfl.ch

Michał Kapałka
EPFL, IC, LPD

michal.kapalka@epfl.ch

ABSTRACT
Despite the large amount of work on Transactional Mem-
ory (TM), little is known about how much liveness it could
provide. This paper presents the first formal treatment of
the question. We prove that no TM implementation can
ensure local progress, the analogous of wait-freedom in the
TM context, and we highlight different ways to circumvent
the impossibility.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.1 [Software Engineering]: Requirements / Spec-
ifications

General Terms
Theory

Keywords
Concurrent programming, Liveness, Transactional memory

1. INTRODUCTION
Transactional memory (TM) [10, 13, 20] is a concurrency

control paradigm that aims at simplifying concurrent pro-
gramming. Each sequential process (or thread1) of an appli-
cation performs operations on shared data within a trans-
action and then either commits or aborts the transaction.
If the transaction is committed, then the effects of its op-
erations become visible to subsequent transactions; if it is
aborted, then the effects are discarded. Transactions are
viewed as a simple way to write concurrent programs and
hence leverage multicore architectures. Not surprisingly, a
large body of work has been dedicated to implementing the
paradigm and reducing its overheads.

1The technical difference between threads and processes is
not important for the theoretical results of the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

To a large extent, however, setting the theoretical founda-
tions of the TM concept has been neglected. Indeed, correct-
ness conditions for TMs have been proposed in [9, 15, 4] and
programming language level semantics of specific classes of
TM implementations have been determined, e.g., in [1, 16,
17, 18]. All those efforts, however, focused solely on safety,
i.e., on what TMs should not do. Clearly, a TM that en-
sures only a safety property can trivially be implemented
by aborting all operations. To be meaningful, a TM has to
ensure a liveness property [2], i.e., a guarantee about what
should be done.

1.1 Liveness of a TM
In classical shared-memory systems, a liveness property

describes when a process that invokes an operation on a
shared object is guaranteed to return from this operation [14].
A widely studied such property is wait-freedom [11]. It en-
sures, intuitively, that every process invoking an operation
eventually returns from this operation, even if other pro-
cesses crash. It is the ultimate liveness property in con-
current computing as it ensures that every process makes
progress.

In a transactional context, requiring such a property alone
would however not be enough to ensure any meaningful
progress: processes of which all transactions are aborted
might be satisfying wait-freedom but would not be mak-
ing real progress. To be meaningful, a TM liveness property
should ensure transaction commitment, beyond operation
termination.

One would expect from a TM that every process that
keeps executing a transaction (say keeps retrying it in case it
aborts) eventually commits it—a property that we call local
progress and that is similar in spirit to wait-freedom. Not
satisfying this property means that some transaction, even
when retried forever, might never commit.

In fact, a TM implementation that protects transactions
using a single fair global lock could ensure local progress:
such a TM would execute all transactions sequentially, thus
avoiding transaction conflicts. Yet, such a TM would force
processes to wait for each other, preventing them from pro-
gressing independently. A process that acquires a global
lock and gets suspended for a long time, or that enters
an infinite loop and keeps running forever without releas-
ing the lock, would prevent all other processes from making
any progress. This would go against the very essence of
wait-freedom. Hence, to be really meaningful a TM live-
ness property should enforce some ”independent” progress.

p1 T1

x.read→ 0

p2 T2

x.read→ 0

x.write(1)
commit

x.write(1)
abort

Figure 1: An illustration of the difficulty of ensuring local progress. The scenario can repeat infinitely many
times preventing transaction T1 from ever committing.

1.2 Transaction Failures
The classical way of modeling shared-memory systems

in which processes can make progress independently, i.e.,
without waiting for each other, is to consider asynchronous
systems in which processes can be arbitrarily slow, includ-
ing failing by crashing. A TM implementation that is re-
silient to crashes enables the progress of a process even if
other processes are suspended for a long time. In the same
vein, one should also ensure progress in the face of parasitic
processes—those that keep executing transactional opera-
tions without ever attempting to commit. These model long-
running processes whose duration cannot be anticipated by
the system, e.g., because of an infinite loop.

To illustrate the underlying challenges, consider the fol-
lowing example, depicted in Figure 1. Two processes, p1
and p2, execute transactions T1 and T2, respectively. Pro-
cess p1 reads value 0 from a shared variable x and then
gets suspended for a long time. Then, process p2 also reads
value 0 from x, writes value 1 to x, and attempts to commit.
Because of asynchrony, the processes can be arbitrarily de-
layed. Hence, the TM does not know whether p1 has crashed
or is just very slow, and so, in order to ensure the progress
of process p2, the TM might eventually allow process p2 to
commit T2. But then, if process p1 writes value 1 to x and
attempts to commit T1, the TM cannot allow process p1 to
commit, as this would violate safety. A similar situation can
occur in the case of parasitic processes, say if p1 keeps re-
peatedly reading from variable x. If the maximum length of
a transaction is not known, the TM cannot say whether p1
is parasitic or not, and thus may eventually allow process p2
to commit T2, forcing process p1 to abort T1 later.

1.3 Contributions
This paper first introduces the notion of a TM-liveness

property which specifies, for each infinite execution, which
processes should make progress, i.e. which processes com-
mit transactions infinitely often. We formalize this notion
by modeling TM implementations as I/O automata and fo-
cusing on infinite histories of such automata.

Since safety properties state that some events should not
occur and liveness properties state that some events should
eventually occur, safety and liveness requirements depend
on each other. A safety requirement may make it impossi-
ble to guarantee a liveness requirement and vice versa. The
question is, under what conditions which safety and live-
ness properties are impossible to guarantee? We address
this question in the TM context by proving an impossibility
result which states that no TM implementation can ensure
both local progress and opacity in a fault-prone system, i.e.
in a system in which any number of processes can crash
or be parasitic. Opacity is the safety property ensured by
most TM implementations. It states that every transaction

observes a consistent state of the system. Local progress
is a TM-liveness property, highlighted above, which states
that every correct process, i.e. a process which is not para-
sitic and does not crash, makes progress. In fact, we prove
a more general result stating that no TM implementation
can ensure any safety property that is at least as strong as
strict serializability together with the progress of at least two
correct processes and any correct process that runs alone.

2. PRELIMINARIES

2.1 Processes and Shared Memory
We assume a classical (see, e.g., [11]) asynchronous, shared

memory system of n processes p1, . . . , pn that communicate
by executing operations on shared objects (which represent
the shared memory, e.g., provided in hardware). A shared
object is a higher-level abstraction provided to processes,
and implemented typically in software using a set of base
objects.

For instance, if base objects are memory locations with ba-
sic operations such as read, write, and compare-and-swap,
then shared objects could be shared data structures such as
linked lists or hash tables. If a process pi invokes an opera-
tion op on a shared object O, then pi follows the implemen-
tation of O, possibly accessing any number of base objects
and executing local computations, until pi is returned a re-
sult of op. We assume that processes are sequential; that
is, whenever a process pi invokes an operation op on any
shared object, pi does not invoke another operation on any
shared object until pi returns from op. Invocations and re-
sponses of shared objects operations are called (invocation
and response) events.

2.2 Transactional Memory
Let K be the set of process identifiers, P = {pk|k ∈ K}

be a set of processes, and X be a set of shared objects called
t-variables (“t-variable” stands for “transactional variable”).
The theoretical results of the paper hold for any shared ob-
jects which can implement read and write operations. Thus,
for presentation simplicity, we focus on t-variables that sup-
port read and write operations. Each t-variable can have
values from set V . Let Invk = {x.writek(v)|x ∈ X and v ∈
V } ∪ {x.readk|x ∈ X} ∪ {tryCk} be the set of invocation
events of process pk and Resk = {vk|v ∈ V }∪{okk, Ak, Ck}
be the set of response events of process pk, where tryCk is
a commit request, Ck is a commit event, and Ak is an abort
event. Also, let Inv = ∪k∈KInvk and Res = ∪k∈KResk.

Since a TM is a discrete event system that receives in-
puts from processes and returns corresponding responses
we model behavior of TM implementations using I/O au-

tomata [8]. Formally, an I/O automaton F is a quintuple
(St, I, Int,O, St0, R), where St is a (possibly infinite) set of
states, I is a set of input events, Int is a set of internal
events, O is a set of output events, St0 ⊆ St is the set of ini-
tial states, R ⊆ St×(I∪O)×St is a transition relation. The
sets I, Int, and O are disjoint. An execution of automaton
F is a (finite or infinite) sequence s0 · e1 · s1 · e2 · s2 · . . . of al-
ternating states and events such that (I) the sequence starts
from an initial state s0 ∈ St0, (II) for any i ∈ {1, 2, . . .}
we have (si−1, ei, si) ∈ R, (III) the sequence ends with a
state in case the sequence is finite. The longest subsequence
of an execution of automaton F such that the subsequence
consists of the events from (I ∪ O) is called a history H of
automaton F .

Let F be an I/O automaton such that I = Inv and O =
Res. Denote by Σk a set such that Σk = {x.writek(v) ·
okk|x.writek(v) ∈ Invk} ∪ {x.readk() · vk|x.readk() ∈ Invk
and vk ∈ Resk}∪{tryCk ·Ck}∪{e ·Ak|e ∈ Invk}. Also, let

Σ∞k = Σ∗k∪Σω
k , where Σ∗k is the set of all finite sequences over

Σk and Σω
k is the set of all infinite sequences over Σk. Let H

be a history over Inv ∪Res, we define a projection H|pk of
H on process pk as the longest subsequence of H consisting
of events from Invk ∪ Resk. A history H is well-formed iff
for every pk ∈ P either H|pk ∈ Σ∞k or H|pk ∈ Σ∗k · Invk
holds, i.e. H|pk is a sequence of alternating invocation and
response events.

We model a TM implementation as an I/O automaton
F = (St, I, Int,O, St0, R) such that:

• I = Inv and O = Res.

• Every history H of F is well-formed.

• For every k ∈ K, every e ∈ Invk, and every history H
of F such that H|pk ∈ Σ∗k, history H ·e is a history of F .
In other words, every process which is not waiting for
a response must be allowed by F to send an invocation
event.

Given projection H|pk of history H of some TM imple-
mentation, a transaction of pk in H is a subsequence T =
e1 · . . . · en of H|pk such that e1 is the first event in H|pk
or the previous event e0 in H|pk is either Ak or Ck, and en
is either Ak or Ck or the last event in H|pk, and no event
in T , except en, is Ak or Ck. Transaction T is committed
(aborted) if the last event in T is a commit (abort) event.
Given transactions T1 and T2 in history H, we say that T1

precedes T2 in H, denoted by T1 <H T2, if T1 is committing
or aborting and the last event of T1 occurs in H before the
first event of T2. Transactions T1 and T2 are concurrent if
T1 does not precede T2 and T2 does not precede T1. History
H is sequential if no two transactions in H are concurrent
to each other.

Processes communicate with each other only through a
TM implementation by invoking concurrently requests (read,
write, and commit requests) and receiving corresponding
responses from the implementation. Processes send com-
mit requests to the TM implementation that decides which
transactions should be committed or aborted. To reduce
contention between transactions, a TM implementation may
use a logically separate module called a contention manager.
A contention manager can force the TM implementation to
abort or delay some transactions. In this work we consider
a contention manager as an integral part of a TM imple-

crashed

parasitic

starving

not-
pending

pending

not-
crashed

faulty

correct

Figure 2: Classes of processes. An arrow from class
c1 to class c2 means that every process which belongs
to c1 also belongs to c2.

mentation. That is, all the results of the paper apply to the
entire TM, including the contention manager.

The order in which processes invoke events is determined
by a scheduler. Processes and TM implementations have no
control over a scheduler. The scheduler decides which pro-
cess is allowed to send an invocation to the TM implementa-
tion at given point in time. These decisions form a schedule
which is a finite or an infinite sequence of process identifiers.

2.3 Process Failures
We say that process pk is pending in infinite history H if

H has only a finite number of commit events Ck. Process
pk crashes in infinite history H if H|pk ∈ Σ∗k. That is, from
some point in time pk stops sending invocation events.

Intuitively, a parasitic process is a process that keeps ex-
ecuting operations but, from some point in time, never at-
tempts to commit (by invoking operation tryC) when given
a chance to do so. Note that if starting from some moment in
time every transaction of a process is prematurely aborted,
i.e. aborted before the process invokes a commit request,
we cannot tell whether the process will invoke a commit re-
quests, if it given a chance to do so. Therefore, we consider
such processes as correct. Consider any infinite history H,
and process pk in H. If process pk from some point in time
executes infinitely many operations without being aborted
and without attempting to commit, then pk is parasitic. On
the contrary, if pk invokes operation tryCk or is aborted in-
finitely many times, then pk is not parasitic. Formally, we
say that process pk is parasitic in infinite history H if H|pk
is infinite and in history H|pk there are only a finite number
of invocations tryCk and abort events Ak. If a process does
not crash, is not parasitic, and is pending in infinite history
H, then it is starving in H.

We say that process pk is correct in infinite history H if pk
is not parasitic in H and does not crash in H. If a process
is not correct in H, then it is faulty in H. Figure 2 depicts
the relations between different classes of processes.

We define a crash-prone system (parasitic-prone system)
Sys to be a system in which at least one process can crash
(be parasitic). A fault-prone system Sys is a system which
is crash-prone or parasitic-prone.

2.4 Safety properties of TM
A safety property S states that some events should never

happen. Intuitively a safety property of TM implementa-
tions should capture the fact that all events within a trans-
action appear to other transactions as if they occur instanta-

p1
r→ 0

p2
w(1)

C

r→ 1
A

Figure 3: A history which is not opaque but strictly
serializable. Hereafter, for simplicity, process and t-
variable identifiers in operations are omitted, r → v
means that a process invokes a read operation and
receives value v, w(v) means that a process invokes
a write operation to write value v and receives ok,
C means that a process invokes a commit request
and receives a commit event, A means that a pro-
cess invokes a commit request and receives an abort
event.

neously. If a transaction is committed, then all the changes
made by write operations within the transaction are made
visible to other transactions; otherwise all the changes are
rolled back. We consider two safety properties of TM im-
plementations: strict serializability Ss and opacity So. Intu-
itively, strict serializability requires every committed trans-
action to observe a consistent state of the system [19], while
opacity requires every transaction (even aborted or unfin-
ished) to observe a consistent state of the system [9].

We say that history H is equivalent to history H ′ if for
every process pk ∈ P we have H|pk = H ′|pk. We obtain the
completion comp(H) of finite history H by aborting every
transaction which is neither committed nor aborted, i.e. by
adding to the end of the history corresponding abort events.
If comp(H) = H, then H is a complete history. We say that
finite history H ′ preserves the real time order of finite history
H if for any two transactions T1 and T2 in H if T1 <H T2,
then T1 <H′ T2. Let Hs be a complete sequential history
and Tj be a transaction in H. Denote by visible(Tj) the
longest subsequence of Hs such that for every transaction
Ti in the subsequence, either j = i or Ti <Hs Tj . Transac-
tion Tj is legal in Hs if for every t-variable x ∈ X history
visible(Tj) respects the sequential specification of x, i.e. for
every transaction Ti in visible(Tj) and every response event
vk in Ti, v is the value of the previous write to x invocation
event in visible(Tj) or v is the initial value of x if there are
no write to x invocation events in visible(Tj) before vk.

A finite history H is opaque if there exists a sequential
history Hs equivalent to comp(H), such that Hs preserves
the real-time order of comp(H), and every transaction in
Hs is legal. A finite history H is strictly serializable if there
exists a sequential history Hs equivalent to H ′, where H ′ is
obtained from H by removing every aborted or unfinished
transaction, such that Hs preserves the real-time order of
H, and every transaction in Hs is legal. Let M be a TM
implementation represented by I/O automaton F . We say
that M ensures opacity (strict serializability) iff every finite
history H of F is opaque (strictly serializable).

For example, the history in Figure 1 is opaque, while the
history in Figure 3 is not opaque but strictly serializable.

3. LIVENESS OF A TM
We introduce in this section the concept of a TM-liveness

property and we give examples of such properties.

3.1 TM-liveness Properties
Basically, a TM-liveness property states whether some

process pk should make progress in some infinite history H.
Clearly, progress cannot be required for crashed or parasitic
processes: these processes have executions with a finite num-
ber of tryC operation invocations. We define a TM-liveness
property as a weakening of the strongest TM-liveness prop-
erty. The strongest TM-liveness property guarantees that in
every infinite history of a TM implementation every correct
process makes progress.

Formally, a correct process pk in infinite history H makes
progress in H iff pk is not pending H. Let HTM be the set
of all infinite well-formed histories.

We define local progress, which is analogous to wait-freedom
in shared memory, as a set Llocal of histories from HTM such
that infinite history H ∈ HTM belongs to Llocal iff every cor-
rect process in H makes progress in H, or H does not have
any correct process. A TM-liveness property L is a set of
infinite histories such that Llocal ⊆ L ⊆ HTM . Given two
TM-liveness properties L1 and L2, we say that L1 is weaker
(stronger) than L2 iff L2 ⊆ L1 (L1 ⊆ L2). An infinite his-
tory H ensures TM-liveness property L iff H ∈ L.

Intuitively a TM implementation ensures a TM-liveness
property iff every infinite history of the implementation en-
sures the property. However, we have to exclude the case
when the implementation cannot produce an infinite his-
tory, i.e. when the implementation does not send response
events to any invocation event of any process. We say that
I/O automaton F that models some TM implementation is
live iff every finite history H of F can be extended to some
infinite history H ·H ′ of F .

Let M be a TM implementation modeled by I/O automa-
ton F . TM implementation M ensures TM-liveness property
L iff F is live and every infinite history H of F ensures L.

3.2 Examples of TM-liveness Properties

3.2.1 Local Progress
A TM implementation M ensures local progress if M guar-

antees that every correct process makes progress.
For example, Figure 4 shows an infinite history which en-

sures local progress in a system with two processes and one
t-variable. Both processes make progress (are not pending)
in the history.

As we prove in this paper, implementing a TM that en-
sures opacity and local progress in any fault-prone system is
impossible. That is, local progress inherently requires some
form of indefinite blocking of transactions. Ensuring local
progress in a system that is both crash-free and parasitic-free
is possible. It suffices to use a simple TM that synchronizes
all transactions using a single global starvation-free lock, and
thus never aborts any transaction.

3.2.2 Global Progress
A TM implementation M ensures global progress if M

guarantees that some correct process makes progress. We
define global progress, as a TM-liveness property Lglobal

such that infinite history H ∈ HTM belongs to Lglobal iff
at least one correct process in H makes progress in H, or H
does not have correct processes.

Figure 5 depicts an infinite history which ensures global
progress in a system two processes and one t-variable. Both

p1
r→ 0

w(1)
C

p2
r→ 0

w(1)
A

r→ 1

w(0)
C

r→ 1

w(0)
A

r→ 0

w(1)
C

r→ 0

w(1)
A

r→ 1

w(0)
C

r→ 1

w(0)
A

Figure 4: An infinite history with two processes and one t-variable. Each process executes an infinite number
of transactions which read value 0 (read value 1) and write value 1 (write value 0).

p1
r→ 0

w(1)
C

p2
r→ 0

w(1)
A

r→ 1

w(0)
C

r→ 1

w(0)
A

r→ 0

w(1)
C

r→ 0

w(1)
A

Figure 5: An infinite history with two processes and one t-variable. Processes execute an infinite number of
transactions which read value 0 (read value 1) and write value 1 (write value 0).

p1
r→ 0

p2
w(1)

C
r→ 1 r→ 0 r→ 1

p3
r→ 1

w(0)
C

r→ 0

w(1)
C

r→ 1

w(0)
C

Figure 6: An infinite history with three processes and one t-variable. Process p1 starts a transaction by
invoking a read operations, but then it crashes. Process p2 executes two transactions, but it becomes parasitic
in the second transaction. Process p3 executes an infinite number of transactions which read value 0 (read
value 1) and write value 1 (write value 0).

of the processes are correct in the history. However, only
process p1 makes progress in the history.

3.2.3 Solo Progress
A TM implementation M ensures solo progress if M guar-

antees that every correct process which eventually runs alone
makes progress. A correct process runs alone if starting from
some point in time it is concurrent only to processes which
are faulty. Note that in the TM context the definition of a
process running alone is different from the definition in clas-
sical shared-memory systems: in the TM context a process
pk runs alone even when other process concurrently invoke
operations, but pk is the only one which invokes infinitely
many commit requests.

Formally, a process pk runs alone in infinite history H iff
pk is correct in H and no other process is correct in H. We
define solo progress, as a TM-liveness property Lsolo such
that infinite history H ∈ HTM belongs to Lsolo iff a process
that runs alone in H makes progress in H, or H does not
have a process that runs alone in H.

Figure 6 depicts an infinite history Hsolo which ensures
solo progress in a system with three processes and one t-
variable. Process p1 crashes, p2 is parasitic, and p3 runs
alone and makes progress (is not pending).

Obstruction-free TM implementations [9, 12] ensure solo
progress in parasitic-free systems. Lock-based TM imple-
mentations, such as TinySTM [6] and SwissTM [5], ensure
solo progress in systems that are both parasitic-free and
crash-free. lock-based TMs that use lazy acquire, however,
such as TL2 [3], ensure solo progress in crash-free systems.

4. IMPOSSIBILITY OF LOCAL PROGRESS
Like in any distributed problem, each history of a TM im-

plementation can be thought of as a game between the en-
vironment and the implementation. The environment con-
sisting of processes and a scheduler decides on inputs (op-
eration invocations) given to the implementation and the
implementation decides on outputs (responses) returned to
the environment. To prove that there is no TM implementa-
tion that ensures both opacity and local progress in a fault
prone system we use the environment as an adversary that
acts against the implementation. The environment wins if
the resulting infinite history violates local progress. To prove
the impossibility result, we show a wining strategy for the
environment.

Theorem 1. For every fault-prone system, there does not
exist a TM implementation that ensures both local progress
and opacity in that system.

Proof. Assume otherwise, i.e. that there exists a fault-
prone system Sys for which there exists a TM implemen-
tation M modeled by I/O automaton F that ensures local
progress and opacity in Sys. To find a contradiction, we ex-
hibit a winning strategy (Strategies 1 and 2 below) for the
environment resulting in an infinite history of F which does
not ensure local progress.

For simplicity we prove the result for TM implementa-
tions that support obstruction-free read and write opera-
tions. However, the result holds when the individual op-
erations are not obstruction-free: obstruction freedom en-
sures that the implementation can produce an infinite his-
tory which corresponds to an execution of Strategy 1. If it
cannot produce an infinite history, then the implementation

is not live and thus does not ensure local progress. Moreover,
the result holds for more powerful shared objects that can
implement objects supporting read and write operations.

By definition, fault-prone system Sys is a system in which
at least one process can crash or be parasitic. We thus con-
sider two different cases:
Sys is crash-prone.

Consider two processes p1 and p2 and the environment
that interacts with M using the following strategy:
Strategy 1.

1. Step 1. Process p1 invokes a read operation on t-
variable x and receives as a response v′1 or A1. The
strategy goes to Step 2.

2. Step 2. Process p2 invokes a read operation on t-
variable x and receives as a response v′′2 or A2. If
the response is A2, then the strategy repeats Step 2.
Otherwise p2 invokes an operation on x, which writes
to x (I) value v′+ 1, if p1 received v′1 in Step1, or (II)
value v′′+1, if p1 received A1 in Step1, and receives as
a response ok2 or A2. If the response is A2, then the
strategy repeats Step 2. Otherwise p2 invokes tryC2

operation and receives a response C2 or A2. If the
response is A2, the strategy repeats Step 2. Otherwise
the strategy goes to Step 3.

3. Step 3. If p1 received A1 in Step 1, then the strategy
goes to Step 1. Otherwise process p1 invokes a write
operation on t-variable x which writes value v′′ + 1
to x, and then receives a response. If the response
is A1, then the strategy goes to Step 1. Otherwise p1
invokes tryC1 operation and receives a response. If the
response is A1, the strategy goes to Step 1. Otherwise
the strategy stops.

We first show that there exists an infinite history of F
corresponding to an execution of Strategy 1. To do so, we
prove that Strategy 1 never terminates. Since individual
operations of the implementation are obstruction-free, then
the strategy terminates iff at Step 3 process p1 is returned
C1 by F .

Assume some finite history Hf of F corresponding to an
execution of Strategy 1 such that the last event in Hf is
C1. Since M ensures opacity, there exists a sequential finite
history Hs which is equivalent to comp(Hf), preserves the
real-time order of comp(Hf), and every transaction in Hs is
legal. Since history Hf has no transactions which are neither
committed nor aborted, then comp(Hf) = Hf . Hence Hs

is equivalent to Hf and preserves the real-time order of Hf .
Since Hs is a sequential history and preserves the real-time
order of Hf , then Hs could only have one of the following
forms, where H ′s is a prefix of Hs:

1. Hs = H ′s ·x.read1() ·v′1 ·x.write1(v′′+ 1) ·ok1 · tryC1 ·
C1 · x.read2() · v′′2 · x.write2(v′ + 1) · ok2 · tryC2 · C2

2. Hs = H ′s ·x.read2() ·v′′2 ·x.write2(v′+ 1) ·ok2 · tryC2 ·
C2 · x.read1() · v′1 · x.write1(v′′ + 1) · ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2
is not legal in Hs, because p2 reads value v′′ from t-variable
x the value of which is v′′+1 and this violates the semantics
of x. In the second case, the last transaction executed by
process p1 is not legal in Hs, because p1 reads value v′ from t-
variable x the value of which is v′+ 1, this leads to violation

of the specification of x. Thus, Hf is not opaque. Since
every history Hf of F that ends with commit event C1 is
not opaque and M ensures opacity, then Hf is not a history
of F corresponding to the execution of the strategy. In other
words, every history of F corresponding to the execution of
Strategy 1 is infinite.

Consider some infinite history H of F corresponding to
the execution of the above strategy. Since process p1 never
receives commit event C1 from M , then p1 is pending in
H. Since Sys is crash-prone, then process p1 can crash in
history H. Therefore, we focus on the following two cases:

• Process p1 crashes in history H. According to
the strategy, process p1 crashes in infinite history H
iff process p2 is pending and invokes infinitely many
operations. Process p2 invokes infinitely many oper-
ations iff the strategy executes infinitely many itera-
tions of Step 2. At each iteration of Step 2 process
p2 either receives abort event A2 or invokes operation
tryC2, thus p2 is correct in H. Since M ensures local
progress and p2 is correct in H, then process p2 is not
pending: a contradiction. Thus, H does not ensure
local progress.

• Process p1 does not crash in history H. Since H
is infinite and p1 does not crash in H, then according
to the strategy p1 invokes infinitely many operations
and receives infinitely many abort events. Thus, p1 is
a correct process in H. Since M ensures local progress,
then p1 makes progress in H, which means that even-
tually p1 is returned commit event C1and history H is
not infinite: a contradiction. Thus, H does not ensure
local progress.

Sys is parasitic-prone. Consider two processes p1 and
p2 and the environment that interacts with M using the
following strategy:
Strategy 2.

1. Step 1. Process p1 invokes a read operation on t-
variable x and receives as a response v′1 or A1. Oth-
erwise process p2 invokes a read operation on x and
receives as a response v′′2 or A2. If the response is A2,
then the strategy repeats Step 1. Otherwise p2 invokes
a write operation which writes to x (I) value v′ + 1, if
p1 received v′1, or (II) value v′′ + 1, if p1 received A1,
and then p2 receives a response. If the response is
A2, then the strategy repeats Step 1. Otherwise p2
invokes tryC2 operation and receives a response. If
the response is A2, then the strategy repeats Step 1.
Otherwise the strategy goes to Step 2.

2. Step 2. If p1 received A1 in Step 1, then the strategy
goes to Step 1. Process p1 invokes a write operation on
x which writes value v′′ + 1 to x, and then p1 receives
a response. If the response is A1, then the strategy
goes to Step 1. Otherwise p1 invokes tryC1 operation
and receives a response. If the response is A1, then the
strategy goes to Step 1. Otherwise the strategy stops.

First, we prove that Strategy 2 never terminates, i.e. that
at Step 2 process p1 is never returned C1 by M in any history
of M corresponding to an execution of the strategy. Assume
some finite history Hf of F corresponding to an execution
of Strategy 2 such that the last event in Hf is C1. Since M

ensures opacity, there exists a sequential finite history Hs

which is equivalent to comp(Hf), preserves the real-time or-
der of comp(Hf), and every transaction in Hs is legal. Since
history Hf has no transaction which are neither committed
nor aborted, then comp(Hf) = Hf . Hence Hs is equivalent
to Hf and preserves the real-time order of Hf . Since Hs is
a sequential history and preserves the real-time order of Hf ,
then Hs could only have one of the following forms, where
H ′s is a prefix of Hs:

1. Hs = H ′s ·x.read1() ·v′1 ·x.write1(v′′+ 1) ·ok1 · tryC1 ·
C1 · x.read2() · v′′2 · x.write2(v′ + 1) · ok2 · tryC2 · C2

2. Hs = H ′s ·x.read2() ·v′′2 ·x.write2(v′+ 1) ·ok2 · tryC2 ·
C2 · x.read1() · v′1 · x.write1(v′′ + 1) · ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2
is not legal in Hs, because p2 reads value v′′ from t-variable
x the value of which is v′′+1 and this violates the semantics
of x. In the second case, the last transaction executed by
process p1 is not legal in Hs, because p1 reads value v′ from t-
variable x the value of which is v′+ 1, this leads to violation
of the specification of x. Thus, Hf is not opaque. Since
every history Hf of F that ends with commit event C1 is
not opaque and M ensures opacity, then Hf is not a history
of F corresponding to the execution of the strategy. In other
words, every history of F corresponding to the execution of
Strategy 2 is infinite.

Consider now some infinite history H of F corresponding
to the execution of the above strategy. Since process p1
never receives commit event C1 from M , then p1 is pending
in H. Since S is parasitic-prone, then process p1 can be
parasitic in history H. Therefore, we focus on the following
two cases:

• Process p1 is parasitic in history H. According to
the strategy, process p1 is parasitic in infinite history
H iff process p2 is pending and invokes infinitely many
operations at Step 1 without receiving a commit event
C2. Process p2 invokes infinitely many operations iff
the strategy executes infinitely many iterations of Step
1. At each iteration of Step 1 process p2 either receives
abort event A2 or invokes operation tryC2, thus p2 is
correct in H. Since M ensures local progress, then p2
makes progress in H, i.e. process p2 is not pending: a
contradiction. Thus, H does not ensure local progress.

• Process p1 is not parasitic in history H. Accord-
ing to Strategy 2 H is infinite iff process p1 invokes
infinitely many operations. Since p1 invokes infinitely
many operations and p1 is pending in H, then p1 re-
ceives infinitely many abort events in H. Thus, p1 is
correct in H. Since M ensures local progress, then p1
makes progress in H, which means that eventually p1
is returned commit event Ck and H is finite: a contra-
diction. Thus, H does not ensure local progress.

5. GENERALIZING THE IMPOSSIBILITY
We generalize here the result of the previous section; namely,

we determine a larger class of TM-liveness properties that
are impossible to implement together with strict serializabil-
ity, which is weaker than opacity, in a fault-prone system.

p1
r→ 0

p2
w(1)

C
r→ 1 r→ 0 r→ 1

p3
r→ 1

w(0)
A

r→ 0

w(1)
A

r→ 1

w(0)
A

Figure 7: An infinite history with three processes and one t-variable. Process p1 starts a transaction by
invoking a read operations, but then it crashes. Process p2 executes two transactions, but it becomes parasitic
in the second transaction. Process p3 executes an infinite number of aborting transactions which read value
0 (read value 1) and write value 1 (write value 0).

5.1 Classes of TM-liveness properties

Nonblocking TM-liveness properties.
Intuitively, we say that a TM-liveness property is non-

blocking if it guarantees progress for every correct process
that eventually runs alone. More precisely, a TM-liveness
property L is nonblocking iff for every H ∈ L if some pro-
cess runs alone in H, then the process makes progress in
H.

For example, Figure 4, Figure 5, and Figure 6 show infi-
nite histories which ensure nonblocking TM-liveness proper-
ties while Figure 7 shows an infinite history which does not
ensure any nonblocking TM-liveness property. TM-liveness
properties that are not nonblocking are called blocking. Lo-
cal progress, global progress, and solo progress are nonblock-
ing. Note that solo progress is the weakest among nonblock-
ing properties while local progress is the strongest among
nonblocking properties.

Biprogressing TM-liveness properties.
Intuitively, we say that a TM-liveness property L is a

biprogressing property if for every infinite history it guar-
antees that at least two correct processes make progress.
More precisely, a TM-liveness property L = {L1, . . . , Ln} is
biprogressing iff for every H ∈ L if at least two processes are
correct in H, then at least two processes make progress in
H.

For example, Figure 4 and Figure 6 show infinite histories
which ensure a biprogressing property while Figure 5 shows
an infinite history which does not ensure any biprogressing
property. Local progress is a biprogressing property while
global progress and solo progress are not biprogressing.

5.2 Generalized Result
We show that TM-liveness properties that are nonblock-

ing and biprogressing are impossible to implement together
with strict serializability in any fault-prone system. We start
by stating the following lemma, which says, intuitively, that
there exists a history in which a process executing infinitely
many transactions can block the progress of all other pro-
cesses if the TM ensures any nonblocking TM-liveness prop-
erty. The proof of the lemma follows the same line of rea-
soning as in Theorem 1.

Lemma 1. For every TM implementation that ensures

strict serializability and a nonblocking TM-liveness property
in any fault-prone system, there exists an infinite history H
of the implementation such that at least two processes are
correct in H and at most one process makes progress in H.

Proof. Let M be a TM implementation ensuring strict
serializability and a nonblocking TM-liveness property in a
fault-prone system Sys and F be its I/O automaton repre-
sentation. To exhibit a history in which at least two pro-
cesses are correct and at most one process makes progress
we consider a game between the environment and the imple-
mentation. The environment acts against the implementa-
tion and wins the game if the resulting history satisfies the
requirements of the lemma.

By definition, fault-prone system Sys is a system in which
at least one process can crash or be parasitic. We thus con-
sider two different cases:

Sys is crash-prone. Consider two processes p1 and p2 that
interact with M . The environment uses Strategy 1 to win
the game. We can show that Strategy 1 never terminates
using the same line of reasoning as in Theorem 1.

Consider some infinite history H corresponding to an ex-
ecution of the strategy. Since Sys is crash-prone, process p1
either crashes in history H or does not crash in H.

Assume that process p1 crashes in history H. According to
the strategy, process p1 can crash in infinite history H only if
process p2 is pending and invokes infinitely many operations,
i.e. only if p2 is returned an infinite number of abort events
at Step 2. Since p2 is returned an infinite number of abort
events, p2 is correct in H . Because after some time only
process p2 executes operations in H (i.e. p2 runs alone in H)
and M ensures a TM-liveness property which is nonblocking,
then p2 makes progress in H, i.e. process p2 is not pending:
a contradiction. Thus, p1 cannot crash in H.

According to the strategy, p2 cannot crash in H since Step
2 is repeated infinitely often. Since Step 2 and Step 1 are
repeated infinitely often (because p1 does not crash in H),
then p2 receives infinitely many commit events C2, i.e. p2 is
correct. Since process p1 is returned infinitely many abort
events A1 at Step 1 or Step 3, process p1 is correct. Thus,
in history H both of the processes are correct and at most
one process makes progress (since p1 is never returned C1).

Sys is parasitic-prone. Consider two processes p1 and p2
that interact with M . The environment uses Strategy 2 to

win the game. We can show that Strategy 2 never terminates
using the same line of reasoning as in Theorem 1.

Consider some infinite history H corresponding to an ex-
ecution of the strategy. Since Sys is parasitic-prone, process
p1 is either parasitic or not in H.

Assume that p1 is parasitic in H. According to the strat-
egy, p1 can be parasitic only if p2 is pending in H and re-
turned A2 infinitely often (i.e. correct). Since a correct
process p2 runs alone in H and M ensures a nonblocking
TM-liveness property, then p2 makes progress in H: a con-
tradiction. Thus, p1 cannot be parasitic in H.

According to the strategy, processes p1 and p2 do not crash
because both of the processes invoke infinitely many read re-
quests. Process p2 cannot be parasitic in H since p2 either
invokes tryC2 or is returned A2 infinitely often at Step 1.
Thus, in history H both of the processes are correct and at
most one process makes progress (since p1 is never returned
C1).

Sys is not crash-free or parasitic free. Since in Sys any
number of processes can crash or be parasitic there are no
restrictions on a strategy used by the environment. Thus,
we can use Strategy 1 (or Strategy 2) to exhibit an infinite
history that does not ensure local progress.

By definition, a biprogressing TM-liveness property should
ensure progress for at least two correct processes in every in-
finite history. While, by the above lemma, if the property
is also nonblocking, then we can find an infinite history of
any TM implementation in a fault prone system in which
at least two processes are correct and at most one process
makes progress: a contradiction. Thus, we have the follow-
ing theorem.

Theorem 2. For every fault-prone system and every TM-
liveness property L which is nonblocking and biprogressing
there is no TM implementation that ensures strict serializ-
ability and L in that system.

6. CONCLUDING REMARKS
We propose a framework to formally reason about liveness

properties of TMs and introduce the very notion of a TM-
liveness property. We prove in particular that in a system
with faulty processes (crashes or parasitic), local progress
cannot be ensured together with opacity, the safety property
typically ensured by most TMs. We presented this impossi-
bility result in its direct and then general form.

Local progress of transactional memory implementations
is analogous to wait-freedom in concurrent computing which
is the ultimate classical liveness property (for non-transac-
tional objects) in concurrent computing. Just like wait-
freedom makes sure processes do not wait for each other,
local progress ensures that transactions of different processes
do not wait for each other. The fact that wait-freedom was
shown to be possible to implement led researchers to focus
on how to achieve it efficiently. The fact that local progress
is impossible to implement means that researchers have to
find alternatives.

There are several ways to circumvent our impossibility re-
sult. One way is to weaken safety or TM-liveness property
requirements, for example, to require only global progress.
There are implementations that ensure opacity and global
progress, e.g., OSTM [7]. A second way is to assume that all

transactions are static and predefined. That is a TM knows
exactly which operations, on which shared variables, will be
invoked in a transaction. In that case transactions can be
viewed as simple operations and one can apply classical uni-
versal construction to ensure local progress [11]. However,
assuming static transactions may be too limiting for certain
applications. A third way is to assume a different system
model instead of the multi-threaded programming model.
For example, [21] shows a TM implementation that ensures
local progress in an asynchronous multicore system model
which assumes that a transaction can be executed by differ-
ent processes and that some process crashes are detectable
by the runtime system.

As we pointed out, this paper is a first step towards under-
standing the liveness of TMs and many problems are open.
It would be interesting to determine precisely the strongest
liveness property that can be ensured by a TM as well as
study the impact on the impossibility of reducing the num-
ber of possible faults that a TM can face. Another pos-
sible direction for future work would be to generalize the
impossibility result even further by considering classes of
TM-liveness properties that guarantee progress for processes
with higher priority.

7. REFERENCES
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard.

Semantics of transactional memory and automatic
mutual exclusion. ACM Trans. Program. Lang. Syst.,
33(1):2:1–2:50, jan 2011.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf.
Process. Lett., 21(4):181–185, 1985.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional
locking ii. In Proceedings of DISC’06, pages 194–208.
Springer-Verlag, 2006.

[4] S. Doherty, L. Groves, V. Luchangco, and M. Moir.
Towards formally specifying and verifying
transactional memory. Electron. Notes Theor.
Comput. Sci., 259:245–261, dec 2009.

[5] A. Dragojević, R. Guerraoui, and M. Kapalka.
Stretching transactional memory. In Proceedings of
ACM PLDI’09, pages 155–165. ACM, 2009.

[6] P. Felber, C. Fetzer, and T. Riegel. Dynamic
performance tuning of word-based software
transactional memory. In Proceedings of ACM
PPoPP’08, pages 237–246. ACM, 2008.

[7] K. Fraser. Practical Lock-Freedom. PhD thesis,
University of Cambridge, 2003.

[8] R. Gawlick, R. Segala, J. F. Søgaard-Andersen, and
N. A. Lynch. Liveness in timed and untimed systems.
Information and Computation, 141(2):119–171, mar
1998.

[9] R. Guerraoui and M. Kapalka. Principles of
Transactional Memory. Morgan and Claypool, 2010.

[10] T. Harris, J. R. Larus, and R. Rajwar. Transactional
Memory, 2nd edition. Morgan and Claypool, 2010.

[11] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124–149, jan 1991.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proceedings of ACM
PODC’03, pages 92–101. ACM, 2003.

[13] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures.
SIGARCH Comput. Archit. News, 21(2):289–300, may
1993.

[14] M. Herlihy and N. Shavit. On the nature of progress.
In Proceedings of the 15th international conference on
Principles of Distributed Systems, pages 313–328.
Springer-Verlag, 2011.

[15] D. Imbs, J. R. de Mendivil, and M. Raynal. Brief
announcement: virtual world consistency: a new
condition for STM systems. In Proceedings of ACM
PODC’09, pages 280–281. ACM, 2009.

[16] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A
transactional object calculus. Sci. Comput. Program.,
57(2):164–186, aug 2005.

[17] V. Menon, S. Balensiefer, T. Shpeisman, A.-R.
Adl-Tabatabai, R. L. Hudson, B. Saha, and A. Welc.
Practical weak-atomicity semantics for java stm. In
Proceedings of ACM SPAA’08, pages 314–325. ACM,
2008.

[18] K. F. Moore and D. Grossman. High-level small-step
operational semantics for transactions. In Proceedings
of ACM POPL’08, pages 51–62. ACM, 2008.

[19] C. H. Papadimitriou. The serializability of concurrent
database updates. J. ACM, 26(4):631–653, oct 1979.

[20] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of ACM PODC’95, pages
204–213, New York, NY, USA, 1995. ACM.

[21] J.-T. Wamhoff and C. Fetzer. The universal
transactional memory construction. In Proceedings of
TRANSACT’11, 2011.

