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Abstract. Abstract dialectical frameworks (ADFs) are a knowledge
representation formalism introduced as a generalisation of Dung’s ab-
stract argumentation frameworks (AFs) by Gerhard Brewka and co-
authors. We look at a judgment aggregation problem in ADFs, namely
the problem of aggregating a profile of complete interpretations. We gen-
eralise the family of interval aggregation methods, studied in the AF case
in our previous work, to the ADF case. Along the way we define the
notions of down-admissible and up-complete interpretations, that were
already previously defined for the AF case by Caminada and Pigozzi.
These aggregation methods may open the way to define interesting new
semantics for ADFs, such as a generalisation to the ADF case of the ideal
semantics for AFs.
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1 Introduction

Abstract Dialectical Frameworks (ADFs) [5, 4] have recently been introduced by
Gerhard Brewka and colleagues as a knowledge representation formalism that
generalises the popular Abstract Argumentation Frameworks (AFs) introduced
by Dung [9]. Several different semantics for ADFs have been defined which each
provide a way to map any ADF to its set of models or interpretations. Usually
these different semantics are defined so as to generalise an existing semantics of
AFs, such as admissible and complete semantics. In this paper we likewise seek
to explore within the wider setting of ADFs a problem that has recently received
attention in the more confined setting of AFs. Namely we are interested in the
problem of aggregation opinions in ADFs.

Our aggregation problem can be described as follows. Suppose we have a
group of agents who share a given ADF D. Each agent has a particular opinion
about the truth-value of the statements in D, and we assume each agent is
rational in the sense that their interpretation is a model of D according to
some commonly agreed semantics (which, in this paper, will be the complete
semantics). The question is, can we aggregate these opinions into a single group
interpretation that represents the opinion of the group as a whole? In the AF
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setting, this question (which can be thought of as a special case of the problem
of judgment aggregation [11, 12]) has been investigated in [3]. There, a general
family of methods for aggregating complete AF labellings called interval methods
was defined and studied. In this paper we will show how this family can be
extended to cover the case of aggregation in ADFs.

Although simple to define and understand, the interval methods of [3] suf-
fered from the rather severe drawback that they were not guaranteed to output
a rational (i.e., complete) labelling for every possible AF. To remedy this, it
was suggested to add a post-processing repair step to the output. This step con-
sisted of two sub-procedures, the down-admissible followed by the up-complete
procedures, which were first introduced in [7]. We will see that these procedures,
that were so far only defined in the AF setting, can be generalised to the ADF
case, thus yielding a family of ADF aggregation operators - the DAUC interval
methods - that guarantee a rational outcome.

The plan of this paper is as follows. We start in the next section by giving
preliminary background on ADFs. Then in Section 3 we formally introduce the
ADF aggregation problem and give some postulates for aggregation methods. In
Section 4 we define interval aggregation methods and axiomatically characterise
them. Then in Section 5 we present the down-admissible and up-complete pro-
cedures for ADFs and define the DAUC interval methods. Lastly we conclude,
including a discussion about possible applications for defining new semantics for
ADFs, in particular a counterpart of ideal semantics from AFs.

2 Abstract Dialectical Frameworks

Abstract dialectical frameworks were first introduced by Brewka and Woltran
[5] and then further developed by Brewka et al [4] as a useful generalisation
of Dung’s abstract argumentation frameworks [9]. The idea is that we have a
collection S of atomic statements (essentially just propositional atoms), and each
s P S has a propositional formula ϕs associated to it that intuitively represents
the justification for accepting s. Roughly, if we have enough grounds for holding
ϕs to be true, then that gives us license to hold s to be true. The following setup
of ADFs is based on [4] (which was, in turn, inspired by the algebraic approach
to non-monotonic reasoning from [8] - see also [13] for a comprehensive study of
algebraic semantics for ADFs).

To begin, we assume a countable universal set U of possible statements from
which all ADFs are formed. Then an ADF may be defined as follows:

Definition 1. An abstract dialectical framework is a pair D “ pS,Cq where
– S Ď U is a finite set of statements.
– C is a collection tϕsusPS of propositional formulas built from S. Formula ϕs

is called the condition of s.
We will sometimes (if D is not clear from the context) denote the sets of state-
ments and conditions of an ADF D by SD and CD respectively.

For simplicity we assume for each s P S that ϕs doesn’t contain redundant
statements, that is, for each statement t appearing in ϕs, the set of (2-valued)
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interpretations satisfying ϕspt{tq differs from the set of (2-valued) interpretations
satisfying ϕspt{fq, where ϕspt{tq denotes the formula resulting from substituting
t everywhere by t, and similarly for ϕspt{fq, where t and f denote propositional
truth and falsity respectively. That is, the truth or falsity of t can make a dif-
ference to the truth value of ϕs.

An ADF comes with an implicit graph structure, with S as the nodes, re-
flecting the dependencies between statements. To each ADF D we associate the
set of links LD by setting pt, sq P LD iff s, t P SD and t appears in ϕs. We denote
the set of parents of s by ParDpsq, i.e., ParDpsq “ tt P SD | pt, sq P LDu. Dung
argumentation frameworks (AFs) form a subclass of the class of ADFs. Indeed
an ADF D is an AF iff each ϕs is equivalent to

Ź

tPParDpsq
 t.

Example 1. Following [4], we may represent an ADF by listing its statements,
with the condition of each statement written in square brackets immediately
after it. For example one possible ADF D0 with SD0

“ ta, b, cu may be written
as follows.

a rts, b rbs, c r a_ bs.

A D-interpretation is just a function v : S Ñ tt, f ,uu assigning one of the
truth-values t (true), f (false) or u (unknown) to each statement in S. For
notational convenience we define a negation operator on the set of truth-values by
setting  t “ f ,  f “ t and  u “ u. The ordering Ď between D-interpretations
is defined by v1 Ď v2 iff for all s P S, v1psq ď v2psq, where ď is the (reflexive)
information ordering between truth-values given by u ď t and u ď f (and no
other pair px,yq for x ‰ y is in ď). The set of truth-values forms a complete
meet-semi-lattice1 under ď, with meet operation [ behaving as a “consensus”
operator, i.e., t[t “ t, f[f “ f , and the meet of all other pairs returning u. The
set of all D-interpretations, equipped with ordering Ď, inherits this semi-lattice
structure with meet operation [ defined by pv1 [ v2qpsq “ v1psq [ v2psq.

We say a D-interpretation is 2-valued if it assigns only values in tt, fu. Given
a D-interpretation v, the set of 2-valued interpretations Ď-extending v is de-
noted by rvs2. Then we define a function ΓD taking D-interpretations to D-
interpretations as follows by setting, for all s P SD:

rΓDpvqspsq “
ę

twpϕsq | w P rvs2u.

That is, to determine rΓDpvqspsq we look at all possible ways the 3-valued in-
terpretation v may be completed to a 2-valued one. If there is consensus on
the value of the condition ϕs among all of these then rΓDpvqspsq is set to
that value. Otherwise rΓDpvqspsq “ u. An alternative formulation of ΓD can
be given as follows. For each D-interpretation v let v^ denote the conjunction

1 A complete meet-semi-lattice is such that (i) every non-empty finite subset has a
greatest lower bound, and (ii) every non-empty directed subset has a least upper
bound, where a subset X is directed if any two elements of X have an upper bound
in X.
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Ź

ts | vpsq “ tu ^
Ź

t s | vpsq “ fu. Then, for each s P SD

rΓDpvqspsq “

$

&

%

t if v^ |ù ϕs
f if v^ |ù  ϕs
u otherwise

where |ù denotes entailment in classical propositional logic. It is shown in [5]
that ΓD is monotonic in Ď, i.e., if v1 Ď v2 then ΓDpv1q Ď ΓDpv2q.

The notions of admissible and complete D-interpretations can then be defined
in terms of the ΓD-function as follows.

Definition 2. A D-interpretation is admissible iff v Ď ΓDpvq. It is complete iff
v “ ΓDpvq.

Intuitively, a D-interpretation is admissible if it doesn’t assign t or f to any
statement s without justification for doing so. An admissible D-interpretation is
complete if it assigns t or f to every statement for which justification is at hand.
As a fixed point of ΓD, a complete D-interpretation can be thought of a rational,
internally coherent belief state regarding the truth or falsity of the statements
in SD. For the special case in which D is an AF, these notions coincide with the
notions of admissible and complete argument labellings of [6] (see also [1]).

Example 2. Consider ADF D0 from Example 1. We can write D0-interpretations
as triples pp, q, rq of truth-values expressing the values of a, b, c in that order.
There are three possible complete D0-interpretations: v1 “ pt, t, tq, v2 “ pt,u,uq
and v3 “ pt, f , fq. An example of an interpretation which is admissible but
not complete is v4 “ pu, t, tq. The all-unknown interpretation - in this case
v5 “ pu,u,uq - is always admissible.

The notions of admissible or complete D-interpretations provide just two
possible semantics for ADFs. Others are possible (see [4, 13]) but for this paper
we will focus on only these.

3 Aggregating complete interpretations: postulates

The aggregation setting we have in mind is as follows. We assume a fixed set
Ag “ t1, . . . , nu of agents (for some fixed n ě 2). The idea is that, given some
arbitrary ADF D, each agent forms some opinion over the truth or falsity of
each statement, subject to the constraints encoded in D. Each agent i’s opinion
is expressed as a complete D-interpretation vi, and they are collected in a D-
profile v “ pv1, . . . , vnq. For any T Ď SD and D-interpretation v we denote by
vrT s the projection of v to just the statements in T , and we denote by vrT s the
n-tuple pv1rT s, . . . , vnrT sq. We would like to determine a single D-interpretation
that reflects the opinion of the group as a whole.

Definition 3. An ADF aggregation method (hereafter aggregation method for
short) is a function F that assigns, to each ADF D and each profile v of complete
D-interpretations, a D-interpretation FDpvq.
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How should we define a good aggregation method? Before describing some
concrete families of such methods in the next sections, we take a look at a
few desirable postulates for aggregation methods. These are inspired by and
appropriately modified from postulates studied in the AF case in [3] (which, in
turn, have been mostly inspired by postulates from the judgment aggregation
literature [11, 12]). Free variables in these postulates, e.g., D, v in the first three
postulates below, are implicitly universally quantified.

The first, basic, group of postulates is as follows:

Collective Completeness FDpvq is a complete D-interpretation.

Anonymity If v1 is a permutation of v then FDpv1q “ FDpvq.

Unanimity If vi = v for all i P Ag then FDpvq “ v.

Collective Completeness requires that the output of the aggregation should be
a rational interpretation. For Anonymity we say “v1 is a permutation of v” to
mean that v “ pv1, . . . , vnq and v1 “ pvσp1q, . . . , vσpnqq for some permutation σ
on Ag . Thus this postulate says the identity of the agents does not matter in
the aggregation process. Unanimity says that if all agents agree on the same
D-interpretation then this should be the output.

Although a basic requirement, Collective Completeness will turn out not to
be satisfied by the family of aggregation methods we present in the next section.
However, restricting it to a particularly simple kind of ADF - in fact a kind of
AF - brings it to within much easier reach. We say an AF D is a 2-loop AF iff
SD “ ts, tu and LD “ tps, tq, pt, squ for some distinct s, t P U .

Minimal Collective Completeness If D is a 2-loop AF, then FDpvq
is a complete D-interpretation.

The next two postulates try to ensure minimum levels of satisfaction for the
agents with the collective outcome. Given a tuple pxiqiPAg of truth-values the
t/f -winner (resp. t/f -loser) in pxiqiPAg is that value among tt, fu which appears
more (resp. less) often in pxiqiPAg. For example the t/f -loser in pt,u,u, f , tq is f .

t/f-Plurality If x is the t/f -loser in pvipsqqiPAg then rFDpvqspsq ‰ x.

Compatibility vipsq “  rFDpvqspsq implies vipsq “ u.

t/f -Plurality thus says the collective value assigned to s cannot be x P tt, fu if
strictly more agents voted for it to be  x. Compatibility is a stronger property
that says the collective value cannot be x P tt, fu if at least one agent voted
for it to be  x. The postulate is so-called because it says that the collective
interpretation FDpvqmust be compatible with the interpretation of every agent i.

Definition 4. Two D-interpretations u, v are compatible iff there is no state-
ment s such that upsq “  vpsq ‰ u.
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This notion of compatibility plays a leading role in the AF aggregation setting
of Caminada and Pigozzi [7]. The following lemma regarding the interplay be-
tween the notions of compatibility and completeness will be used in the proof of
Proposition 5 in Section 5.

Lemma 1. Let u be a complete D-interpretation. Then, for any D-interpretation
v, if v is compatible with u then so is ΓDpvq.

Proof. Suppose u is complete but ΓDpvq is not compatible with u. Then there
must be some s P SD such that rΓDpvqspsq “  upsq ‰ u. By completeness of u
this gives rΓDpvqspsq “  rΓDpuqspsq ‰ u, which implies v^ ^ u^ |ù K. But this
can only happen if vptq “  uptq ‰ u for some t P SD, i.e., if v is not compatible
with u. [\

For the next aggregation postulate, we say that a given truth-value y is
between truth-values x and z iff y “ x or y “ z or [y “ u and x “  z].
The next postulate implies that if a particular collective outcome x P tt, fu is
obtained for statement s, and if some of the agents then change the truth-value
they assign to s so that they move closer to this collective outcome, then the
collective outcome does not change.

Monotonicity Let v,v1 be D-profiles such that for all s P SD and all
i P Ag , if vipsq ‰ v1ipsq then (rFDpvqspsq P tt, fu and v1ipsq is between
vipsq and rFDpvqspsq). Then FDpv1q “ FDpvq.

All the postulates until now referred to only a single ADF D. The remaining
postulates deal with restricting the behaviour of F across different, but related,
ADFs. The first enforces a certain neutrality over the names of the statements
used in an ADF. Given two ADFs D “ pS,Cq and D1 “ pS1, C 1q a renaming
from D to D1 is a bijection τ : S Ñ S1 such that ϕτpsq “ τpϕsq for each
s P S, where τpϕsq is obtained from ϕs by replacing every occurrence of each
statement t with τptq. A renaming lifts to a function taking D-interpretations
v to D1-interpretations τpvq by taking rτpvqspsq “ vpτ´1psqq for each s P S1.
As the following result shows, both the admissible and complete semantics for
ADFs are invariant under renaming.2

Proposition 1. Let τ be a renaming from D to D1. If v is an admissible,
resp. complete, D-interpretation then τpvq is an admissible, resp. complete, D1-
interpretation.

Proof. (Outline) Follows mainly from that fact that, for each s P SD and any
D-interpretation v we have v^ |ù ϕs iff τpvq^ |ù ϕτpsq, and v^ |ù  ϕs iff
τpvq^ |ù  ϕτpsq. [\

A renaming τ further extends naturally to a mapping from D-profiles v to
D1-profiles τpvq “ pτpv1q, . . . , τpvnqq. The Renaming postulate for aggregation
methods can then be formalised as follows:
2 In the AF setting, this is known as the language independence property of AF se-

mantics [2].
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Renaming If τ is a renaming from D to D1 then τpFDpvqq “ FD1pτpvqq.

We remark that in the restricted case of AFs this postulate can be simplified so
that it talks about graph isomorphisms rather than renamings (see the Isomor-
phism postulate in [3]).

The next postulate is a strong version of the Independence postulate which
forms the basis of several important results (especially impossibility results) in
judgment aggregation. It says that the collective truth-value of s depends at most
on the tuple of individual truth-values assigned to s by the agents, regardless of
which other statements may or may not be present in D.

ADF-Independence If v is a D-profile and v1 is a D1-profile and s P
SD X SD1 , then vrss “ v1rss implies rFDpvqspsq “ rFD1pv1qspsq.

As expected, this postulate turns out to be too strong, and anyway could be
argued against on the basis that it asks us to disregard dependency information
between statements (in the form of the set LD) that is explicitly submitted as
part of the input to the problem. We thus formulate a weaker version, inspired by
the Directionality property for AF semantics [2]. Given an ADF D “ pS, tϕsusPSq
and T Ď S, we say T is primary in D if for no t P T, s P SzT do we have
ps, tq P LD, i.e., each statement in T depends only on statements within T . We
denote by D Ó T the ADF pT, tϕsusPT q, with the ϕs “inherited” from D. Then
the Directionality postulate for ADF aggregation can be formulated as follows:

Directionality If T Ď SD is primary inD then FDÓT pvrT sq “ FDpvqrT s.

(Note one can straightforwardly show that if v is admissible, resp. complete, in
D and T is primary in D, then vrT s is admissible, resp. complete, in DÓT .) This
property says that the outcome of aggregation for a primary set T of statements
is independent of statements outside the set.

4 Interval aggregation methods

We now describe a family of ADF aggregation methods, generalised from the
family of AF aggregation methods from [3] known as interval methods. Let Intn
denote the set of non-zero intervals over t0, 1, . . . , nu, i.e., Intn “ tpk, lq | k, l P
t0, 1, . . . , nu and k ă lu. Then to define a member of this family, we just choose
some distinguished set Y Ď Intn. We say Y is widening3 if pa, bq P Y whenever
pk, lq P Y and a ď k, l ď b, and is zero-based if k “ 0 whenever pk, lq P Y . Each
possible choice of Y yields an aggregation method FY by setting, for each ADF
D, D-profile v and s P SD:

rFY
D pvqspsq “

"

x if x P tt, fu and p|Nv
s: x|, |N

v
s:x|q P Y.

u otherwise

3 The widening interval methods are very closely related to quota systems studied in
voting theory by Young et al [14].
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Here, Nv
s:x denotes the set of agents who assign value x to s in v, i.e., Nv

s:x “ ti P
Ag | vipsq “ xu. Thus FY

D pvq sets the collective truth-value of s to be the t/f -
winner x in pvipsqqiPAg provided such a winner exists and p|Nv

s: x|, |N
v
s:x|q P Y .

Otherwise the collective value is set to u.

Definition 5. An aggregation method F will be called an interval method iff
F “ FY for some Y Ď Intn such that p0, nq P Y . If, furthermore, Y is widening,
resp. zero-based, then we say F is a widening, resp. zero-based, interval method.

The restriction p0, nq P Y is essentially made to ensure FY satisfies the Una-
nimity postulate.

The family of interval methods contains a number of interesting special cases.
We mention three here, the first two of which were first studied in the AF case
in [7]:
– Sceptical: Y Scep “ tp0, nqu. Take the collective value of a statement s to be

x if all agents voted for x, otherwise take u. We use FScep to denote FY Scep

.
Note that FSceppvq “

Ű

iPAg vi.

– Credulous: Y Cred “ tp0, lq | l ě 1u. Take the collective value to be x P tt, fu if
at least one agent voted for x and none voted for the opposite  x. Otherwise

take u. We use FCred to denote FY Cred

.
– Simple majority: Y SMaj “ Intn. Here we just take the t/f -winner whenever

it exists, and take u otherwise. We use FSMaj to denote FY SMaj

.
Notice that all three of Y Scep, Y Cred and Y SMaj are widening, and all except
Y SMaj are zero-based.

Example 3. Consider the following ADF D1 with SD1
“ ta, b, c, du.

a ras, b rbs, c rcs, d r a^ b^ cs.

Assume n “ 4 and that v “ pv1, v2, v3, v4q with v1 “ pt, t, t, fq, v2 “ pf , t,u, fq,
v3 “ pt, t,u, fq, v4 “ pu, f ,u,uq. Then FSceppvq “ pu,u,u,uq, FCredpvq “
pu,u, t, fq and FSMajpvq “ pt, t, t, fq.

We can characterise the family of interval methods in terms of postulates as
follows.

Theorem 1. Let F be an aggregation method. Then F is an interval method
iff it satisfies Anonymity, Unanimity, Minimal Collective Completeness, t/f -
Plurality, Renaming and ADF-Independence.

Proof. (Outline). Soundness is relatively straightforward. The completeness part
largely follows the same pattern as the proof of the corresponding theorem for
the restricted AF case in [3]. We first show how to construct, from any given
aggregation method F , a subset Y pFq Ď Intn : Let D0 be a 2-loop AF such
that SD0 “ ta0, b0u. There are three complete D0-interpretations, which we
denote by vt, vf and vu, where the subscript represents the value of a0 (with
the label of b0 of course being always  vpa0q). Then we define Y pFq by setting
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Y pFq “ tpk, lq P Intn | rFD0pvk,lqspa0q “ tu, where vk,l is any D0-profile such
that precisely k agents provide labelling vf and l agents provide vt. Note by
Anonymity that the precise distribution of labellings among vk,l doesn’t matter.
Y pFq is well-defined, i.e., it doesn’t matter which 2-loop AF we take to define
it (by Renaming) and p0, nq P Y pFq (by Unanimity). One can then show that
F and FY pFq agree on the 2-loop AF D0, i.e., that for every D0-profile v we

have FD0
pvq “ FY pFq

D0
pvq. This part depends on Anonymity, Renaming, Minimal

Collective Completeness and t/f -Plurality. Then finally we extend this to hold
for any ADF D using ADF-Independence and Renaming. [\

Regarding the other postulates mentioned in the previous section, Direc-
tionality is satisfied by every interval method, since it is a direct weakening of
ADF-Independence, but it can be shown that none of the remaining three, i.e.,
Collective Completeness, Compatibility and Monotonicity is satisfied in general.
The last two, however, can be obtained by adding restrictions on Y .

Proposition 2. Let FY be an interval method.
(i) FY satisfies Monotonicity iff Y is widening.
(ii) FY satisfies Compatibility iff Y is zero-based.

(The proof of this is straightforward. We remark that the “only if” directions of
these two results are essentially already covered by the analogous results proved
for the AF case in [3].) As a corollary we see that all three of our example interval
methods FScep, FCred and FSMaj satisfy Monotonicity, while all except FSMaj

satisfy Compatibility.
What about Collective Completeness? Readers familiar with the judgment

aggregation literature will not be surprised to learn that there is no interval
method satisfying Collective Completeness, even if we restrict to AFs, as shown
in [3].

Theorem 2 ([3]). There is no aggregation method (for any n ą 1) satisfying all
of Anonymity, Unanimity, Renaming, ADF-Independence and Collective Com-
pleteness.

One response to this result in the AF case which was followed in [3] (thereby
generalising the approach of [7] who focussed only on the special cases FScep

and FCred) was to give up ADF-Independence by applying the down-admissible
and up-complete procedures to the outcome of aggregation. We will follow this
route here.

5 Down-admissible and up-complete procedures

The purpose of the down-admissible procedure in [7] was to take any AF-labelling
and to revise it downwards (along the ordering Ď), just enough so that it becomes
an admissible labelling. It turns out that this procedure quite easily generalises
to the ADF setting. Suppose we start from any given D-interpretation v. We



10 Richard Booth

then iteratively construct a sequence v0, v1, . . . of D-interpretations by setting
v0 “ v and vi`1 “ vi [ ΓDpviq for i ě 0. Clearly vi`1 Ď vi for each i. Let
a “ minti | vi`1 “ viu. By the finiteness of SD a is guaranteed to exist.

Definition 6. Let D be an ADF and v a D-interpretation. The down-admissible
interpretation of v, denoted by çv is defined by çv “ va, where the sequence
v0, v1, . . . , va is defined as above.

Since va “ va [ ΓDpvaq we have va Ď ΓDpvaq and so çv is admissible. In fact it
is the largest admissible D-interpretation that is Ď-smaller than v, as the next
result confirms.

Proposition 3. Let v1 be an admissible D-interpretation such that v1 Ď v. Then
v1 Ďçv.

Proof. We show by induction on i that v1 Ď vi for all i “ 0, 1, . . . , a in the above
procedure. Since v0 “ v the base case i “ 0 holds by assumption. So now assume
v1 Ď vi. We will show also v1 Ď vi`1, i.e., v1 Ď pvi [ ΓDpviqq. To show this it
is enough to show both v1 Ď vi and v1 Ď ΓDpviq. The first of these holds by
inductive hypothesis. For the second, we know v1 Ď ΓDpv

1q from the assumption
that v1 is admissible. We also know ΓDpv

1q Ď ΓDpviq from v1 Ď vi and the
monotonicity of ΓD. From these two we conclude v1 Ď ΓDpviq as required. [\

Example 4. Let D2 be the following ADF, with SD2 “ ta, b, c, du.

a ras, b rbs, c r a_ bs, d rcs,

and consider the D2-interpretation v “ v0 “ pt, f , t, tq. We have ΓD2pv0q “
pt, f , f , tq, so v1 “ v0 [ ΓD2pv0q “ pt, f ,u, tq. Now ΓD2pv1q “ pt, f , f ,uq, so
v2 “ pt, f ,u,uq. Since v2 is admissible, the procedure stops here with çv “ v2 “
pt, f ,u,uq.

As the previous example shows, the down-admissible interpretation of v need
not be a complete D-interpretation. In [7] the purpose of the up-complete proce-
dure was to take any admissible AF-labelling and to revise it upwards (along Ď),
just enough so that it becomes a complete labelling. As with the down-admissible
procedure, it is relatively straightforward to generalise this procedure to the ADF
case. Starting with an admissible D-interpretation v we can construct a sequence
v “ v0, v1, v2, . . . of D-interpretations by setting vi`1 “ ΓDpviq for i ě 0. From
the assumption that v is admissible (so v0 Ď v1) and the monotonicity of ΓD we
have vi Ď vi`1 for i ě 0. Let c “ minti | vi`1 “ viu. Again, by finiteness c is
guaranteed to exist.

Definition 7. Let D be an ADF and v an admissible D-interpretation. The up-
complete interpretation of v, denoted by äv is defined by äv “ vc, where the
sequence v “ v0, v1, . . . , vc is defined as above.

Clearly vc is complete, and the next result confirms it to be the smallest complete
D-interpretation that is Ď-larger than v.
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Proposition 4. Let v1 be a complete D-interpretation such that v Ď v1. Then
äv Ď v1.

Proof. We show by induction on i that vi Ď v1. Since v0 “ v the base case
i “ 0 holds by assumption. So now assume vi Ď v1. Then, by monotonicity of
ΓD we know ΓDpviq Ď ΓDpv

1q, i.e., vi`1 Ď ΓDpv
1q. But since v1 “ ΓDpv

1q by the
assumption that v1 is complete, this gives us vi`1 Ď vi as required. [\

Example 5. Let us continue Example 4. Let v0 “çv “ pt, f ,u,uq. Then v1 “
ΓD2pv0q “ pt, f , f ,uq, v2 “ ΓD2pv1q “ pt, f , f , fq “ ΓD2pv2q. Thus ä pç vq “
pt, f , f , fq.

We denote the composite operation ä pç vq of taking the down-admissible
followed by the up-complete interpretations of v by êv. Taken in combination,
these procedures provide a way of transforming any aggregation method into
one that is guaranteed to satisfy Collective Completeness.

Definition 8. Let F be an aggregation method. The DAUC version of F , de-
noted by pF , is defined by setting, for any ADF D and D-profile v, pFDpvq “
êpFDpvqq.

What can we say about the properties of pF , other than Collective Complete-
ness? The next proposition gives us some other properties of pF , provided that
F satisfies them.

Proposition 5. Let F be an aggregation method. For each of the following pos-
tulates, if F satisfies that postulate then so does pF : Anonymity, Unanimity,
Renaming, Compatibility and Directionality.

Proof. (Outline) The proofs for Anonymity and Unanimity are straightforward.
Renaming is preserved mainly due to the fact that, for any D-interpretation v
and renaming τ (to some D1) we have v^ |ù ϕs iff τpvq^ |ù ϕτpsq, and v^ |ù
 ϕs iff τpvq^ |ù  ϕτpsq. For Compatibility suppose F satisfies that postulate.
Then for every D,v, FDpvq is compatible with every agent’s interpretation vi.
Since çFDpvq Ď FDpvq we know çFDpvq must also be compatible with every
vi. By Lemma 1 this compatibility is then preserved at each step of the up-
complete procedure for ä pçFDpvqq and so finally pFDpvq is also compatible.
Finally, Directionality is preserved due to that fact that if t is a statement not
appearing in ϕs, then v^ |ù ϕs iff v^´ |ù ϕs (and similarly for  ϕs), where v^´ is
the same as v^ but with any literal t or  t removed. [\

Combined with the results of the previous section, this gives us a list of sound
postulates for the DAUC versions of the interval methods.

Corollary 1. Let F be an interval method. Then pF satisfies Collective Com-
pleteness, Anonymity, Unanimity, Renaming and Directionality.
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Of course the DAUC interval methods do not satisfy ADF-Independence by
Theorem 2. Regarding t/f -plurality, we know from Propositions 2 and 5 that if

Y is zero-based then pFY satisfies Compatibility and hence also t/f -plurality. In

fact it turns out that being zero-based is a necessary condition for pFY to satisfy
t/f -plurality. This follows already from the analogous result proved for the AF
case in [3].

Proposition 6 ([3]). Let FY be an interval method. Then pFY satisfies t/f -
plurality iff Y is zero-based.

Regarding Monotonicity, in view of Proposition 2 one might expect that a
necessary and sufficient condition for pFY to satisfy that postulate is that Y is
widening. However we have thus far been unable to prove or disprove this, and
so it remains an open question for now.

6 Conclusion

We looked at the problem of defining methods for aggregation that take any
profile of complete D-interpretations, over any given ADF D, and return a group
D-interpretation. We showed that much of the same machinery used in the more
specialised case of aggregating complete labellings of AFs can be applied to this
problem. In particular we were able to define and axiomatically characterise
a generalised version of the interval methods of [3], and to apply the down-
admissible and up-complete procedures to transform the output of any interval
method into a complete D-interpretation.

As noted in [7] for the AF case, one imaginative use for aggregation meth-
ods is as a route to define a (single-status) semantics for AFs. The role of an
AF semantics is to prescribe, for every possible AF and for each argument a
in the AF, which label represents the “common sense” label that a should be
assigned in the context of that AF. One way to obtain this common sense la-
belling is to aggregate all possible rational labellings. In [7] this manoeuvre was

carried out using both pFScep and pFCred, and both were shown to correspond to
some already existing semantics. Specifically, the result of aggregating all possi-
ble complete labellings4 using pFScep coincides with the grounded labelling [6, 9],

while aggregating all possible complete labellings using pFCred results in the ideal
labelling [7, 10]. This latter result is interesting, since until now there has been no
generalised version of ideal semantics proposed for ADFs. The above discussion
suggests that we can obtain such an ADF semantics by taking the output of the
result of aggregating all complete D-interpretations using pFCred. A related ques-
tion is: what happens when we aggregate all complete D-interpretations using
other members of the family of DAUC interval methods, such as pFSMaj. Does
this give rise to other meaningful ADF semantics? These questions will be left
for further study.

4 [7] also considered the results of aggregating other sets of labellings, such as all
possible preferred labellings.
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Another open question regards the axiomatic characterisation of the DAUC
versions of the interval methods. In this paper we have managed to give a list
of sound postulates for this family (Corollary 1). It remains to be proved that
this list is complete. Finally, in this paper we have restricted ourselves to the
problem of aggregating complete interpretations. It would be interesting to look
at aggregation using other ADF semantics, such as those described in [4].
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