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Abstract. Deontic logic is shown to be applicable for modelling human reasoning. For this
the Wason selection task and the suppression task are discussed in detail. Different versions
of modelling norms with deontic logic are introduced and in the case of the Wason selection
task it is demonstrated how differences in the performance of humans in the abstract and in
the social contract case can be explained. Furthermore it is shown that an automated theorem
prover can be used as a reasoning tool for deontic logic.

1 Introduction

Human reasoning and in particular conditional reasoning has been researched in various disciplines.
In cognitive psychology a lot of experimental data is collected and there are numerous different
modelling approaches. In philosophy, rationality and normative reasoning is a topic with increasing
interest. In artificial intelligence research the aim is to model human rational reasoning within
artificial systems.

Recently there are some papers from automated reasoning which try to model experiments
from cognitive psychology; in particular the experiments involving the Wason selection and the
suppression tasks are discussed in the literature ([12,11]).

In this paper we want to contribute to this discussion by advocating deontic logic to this end.
We are well aware that this is not the first paper proposing deontic logic for conditional reasoning.
However, our aim is not only to use this logic to model the settings and the result of these experi-
ments, moreover, we want to use an automated reasoning system to solve the tasks. There are only
few automated theorem provers specially dedicated for deontic logic and used by deontic logicians
(see [1,2]). Nonetheless, several approaches to translate modal logic into (decidable fragments of)
first-order predicate logics are stated in the literature. A nice overview including many relevant
references is given in [18]. We will use the first order predicate logic prover Hyper for deontic logic,
which is possible because we translate the latter into the description logic ALC. This again can be
translated into DL-clauses, for which Hyper is a decision procedure.

The Wason selection task (WST) was first presented by the psychologist Peter C Wason in [22]
and is one of the most carefully researched experiments in the area of human rational reasoning.
The abstract case of the task is shown in part (a) of Fig. 1. In the task, four different cards are
presented to a test person. The test person is told, that each card contains a letter on one side
and a number on the opposite side. Further a statement like “If there is a vowel on one side of
the card the opposite side contains an even number” is given. Now the test person is asked to
verify/falsify this statement by turning a minimum number of cards. In this abstract task, less then
25 % of the test persons were able to find the solution. It is most obvious (at least for a logician) to
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(a) If there is a vowel on one side, the
opposite side contains an even number.

(b) If a person is less than 21 years old,
she is not allowed to drink beer.

Fig. 1: The Wason Selection Task

understand the conditional which formulates the task as a material implication. That means that
the implication P → Q can be replaced by the formula ¬P ∨ Q. Assume that property P holds,
then, for ¬P ∨ Q to be true, Q has to be true. Very many experiments have shown that humans
have problems to perform this inference properly. If context is added to the problem people solve
the problem with a much higher correctness rate. By adding additional context, the problem can
be a social contract problem or a precaution problem. One example for a social contract context
as addressed in part (b) of Figure 1, is a setting, in which one side of the cards shows a beverage,
namely beer or lemonade and the other side the age of the person who drinks this beverage. The
rule is “If a person is less than 21 years old she is not allowed to drink beer”. In this case 75 % of
the subjects gave the correct solution.

A different class of contexts can be formulated by a so-called “precaution rule”, e.g. rules of the
form “If you agree in a hazardous activity then you must take the precaution”. In this case, like in
the social contract context, people perform dramatically better, compared to the abstract case.

In the following section we discuss several logical approaches to model the WST. In Section 3 we
introduce our approach using deontic logic. Section 4 models the suppression task and in Section 5
we show how our approach can be used to check the consistency of normative systems automatically.
For a conclusion we briefly comment on attempts to formulate a kind of ’robot ethics’.

2 Logical Models for the WST

Since the WST is dealing with conditional reasoning it seems to be natural to use predicate logic
for modeling the task and to use existing logical inference mechanisms to model human reasoning.
A very careful discussion of various logics to this end can be found in [19]; in particular all these
investigation into logics are nicely combined with findings about the psychology of human reasoning.
One of these logics, multi-valued logic, seems to be very likely in the case of the WST, where the
invisible side of a card can easily be modeled by the truth value “unknown”. Several authors apply
multi-valued logic to model human reasoning, e.g., [12] use a Lukaswiewicz logic together with logic
programs. In [11] this approach is combined with the concept of abduction, which is proposed in
[14] and it is also used for modeling human reasoning in [15].

All these approaches use logic programming for modeling human reasoning. However, one should
have in mind, that logic programming languages and its semantics have been designed for program-
ming. There are at least three main issues of logic programs as used in the cited approaches:
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– The language is restricted to definite clauses, i.e. clauses of the form A← B1 ∧ · · · ∧Bn, where
the left-hand side, the head, contains only one atom, and the right-hand side, the body, contains
a conjunction of literals. This special form does not allow the representation of a disjunction,
say A ∨B. This is not a problem for programming purposes, because one can easily show that
every Turing computable function can be represented by definite clause programs. However, for
the modeling of human reasoning it should be possible to express disjunctions.1

– The right hand side of a clause can contain literals, i.e. the negation of atoms. This negation,
however, is not a logical negation, it is a non-monotonic negation, which usually is based on a
closed-world assumption.

– The semantics of logic programs with non-monotonic negation involves either so-called comple-
tion mechanisms or interesting fixed-point operations to construct models. For all of these model
construction mechanisms it turns out that they involve much more complex reasoning, com-
pared to the monoton case. Furthermore we doubt that those constructions are easily accessible
to humans and their inference mechanisms.

The extension of logic programs with abduction turns the clauses, the logical rules, into licences for
conditionals using abnormality predicates: A ← B1 ∧ · · · ∧ Bn ∧ ¬ab, with the reading “If nothing
abnormal is known and all the Bi hold, then A holds”. Note that the negation symbol in front of the
ab atom is the non-monotonic negation as mentioned before. We propose to model this distinction
of normal from abnormal behaviour by introducing an explicit operator instead of coding it into
the clauses; just use deontic logic.

3 Deontic Logic and the WST

The difference in behavior between the abstract case of the WST, the social contract and the
precaution problem leads immediately to a distinction between descriptive and deontic conditionals.
A deontic interpretation of the rules from the WST leads to a description of a norm; hence the rule
makes a statement about how the world ought to be.

There is an ongoing discussion about the use of deontic logic. In [19] the authors explicitly
discuss deontic logic as a modal propositional logic for the WST. They construct models for a
specification of the selection task, but they do not discuss the representation of the task itself in
deontic logic. Another detailed investigation of deontic logic can be found in [9], where the authors
give an overview from a psychological and neurobiological point of view. They further discuss the
deontic nature of the selection task in various contexts. There is the purely declarative version, which
corresponds in our example to the vowel–consonant version and a social contract version, e.g., the
beer–age version. Cosmides et al further argue that there is also the class of the precaution rules as
introduced above. The different nature of these contexts causes the authors in [9] to conclude that
there cannot be a general deontic logic for capturing human reasoning about conditionals. Indeed,
there is strong evidence that humans have different reasoning mechanisms available depending on
the nature of the reasoning task. There is the case of a patient, R.M., reported in [20], who had
a severe accident and suffered from severe retrograde amnesia. The damage of his brain was in
different areas of the cortex, such that both sides of the amylgada were disconnected. The authors
made extensive reasoning experiments with R.M. using 65 reasoning tasks based on the WST.
It turned out that R.M.’s performance on the abstract reasoning problems (16,7 %) and on the

1 In Artificial Intelligence we very well remember the relapse in the development of artificial neural net-
works, when the observation that perceptrons cannot compute a disjunctive or was spread.
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precaution rules was comparable to controls (70 %), whereas the score on social contract problems
was 31 percent points lower. This clearly indicates that there are different reasoning mechanisms
for those contexts. In [9] the conclusion from these findings is that there is no general deontic logic
applicable for the modeling of this behavior. We support this hypothesis and at the end of Section
3.4 we discuss a multi modal logic which very well is able to model these diverse kinds of reasoning.

Another observation discussed in [9] is, that the WST in general can be seen as a cheat detection
task. In different social contexts humans may apply different inference systems for cheat detection.

In the following deontic logic as a modal logic is introduced and used to formalize the WST.

3.1 Deontic Logic as Modal KD

Deontic logic is a well studied modal logic very suitable to model human reasoning. It corresponds
to the modal logic K together with a seriality axiom D:

D: �Φ→ ♦Φ

In contrast to K, the �-operator is interpreted as ‘it is obligatory that’ and the ♦ as ‘it is permitted
that’.

In modal logic, semantics are given by so called Kripke structures consisting of a set of possible
worlds connected by a reachability function. Each world is labeled by the set of formulae, which
are true in the respective world. A formula of the form �F is read as “in every reachable world, F
is true”. Hence if w is a world we have

w |= �Φ iff ∀v : R(w, v)→ v |= Φ

A formula F is called satisfiable, if there is a Kripke structure and a world in which F is true.
This Kripke structure is called a model for F . The above mentioned seriality axiom states that, if
a formula holds in all reachable worlds, then there exists such a world. With the deontic reading of
� and ♦ this means whenever the formula Φ ought to be, then there exists a world where it holds.
I.e. there is always a world in which the norms formulated by ‘the ought to be’-operator hold.

To formalize the WST in deontic logic, we transform the statement about the cards into:

If there is a vowel on one side , it ought to be that the opposite side shows an even number.

Using abbreviations P and Q this reads: P → �Q
Now if we observe P , i.e. a card with a vowel on the upper side, we know that there is a world
in which the deontic conditional holds, hence Q holds. In other words there is a world where the
opposite side of the card contains an even number.

Note, that it would also be possible to formalize the statement as: �(P → Q). In [21] there is a
careful discussion which of these two possibilities should be used for conditional norms. The latter
one has severe disadvantages, which is why we prefer the first method. In Section 5 we demonstrate
that the alternative very easily results in an inconsistent normative system.

Assume for simplicity that the letters on the cards can only be A,K, the numbers only 4, 7 and
that we consider only one card. We represent the card by atoms of the form c(l, A), c(l,K), c(n, 4)
and c(n, 7). Where an l in the first position denotes the letter side and an n denotes the number
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side of a card. We further have formulae describing the way the card is constructed:

> → c(l, A) ∨ c(l,K). (1)

c(l, A) ∧ c(l,K)→ ⊥. (2)

> → c(n, 4) ∨ c(n, 7). (3)

c(n, 4) ∧ c(n, 7)→ ⊥. (4)

Formula (1) states that the letter side of the card contains an A or a K, formula (2) states, that
there is only one letter on the letter side of the card. Formulae (3) and (4) describe the number
side of the card respectively.

The rule expressing the normative conditional reads in this simplified example as

c(l, A)→ �c(n, 4) (5)

Note that all the above formulae are propositional, although atoms like c(l, A) seem to have a
structure; logically, they are propositional variables being either true or false.

3.2 The WST Task

Until now, we formalized the knowledge and the observation; we did not address a logical represen-
tation of the task itself. Then we want to use an automated reasoning system in order to solve the
task and hence it is mandatory to query the system in a logical way. To the best of our knowledge,
we are not aware of such a formalization in the literature. Let’s focus first on the abstract case
without social or precaution context.

Usually, in logic based automated reasoning, a knowledge base KB together with a query Q is
given and we want to know, if Q is a logical consequence of KB , i.e. KB |= Q. In the WST the
question is different, since it corresponds to a cheat detection task:

Given the knowledge KB , including the knowledge about norms, how can we detect cheating,
or, which cards do we have to turn to detect a violation against the norm?

In the sequel we use a standard tableau method for generating models. We assume the reader to
be familiar with tableaux as introduced in [5]. We don’t use indexing of worlds because we treat
the �-operator as a literal and do not expand it. In the examples of this paper this works, because
we never have nested �-operators.

Thesis 1 Boxed literals occurring in open branches can be used for cheat detection: If for example
an open branch contains literals �F and �G this branch tells us to check, if the current world
fulfills both F and G.

Note that the information provided by an open branch are not necessarily minimal. Therefore in
order to find a minimal set of actions required for cheat detection, it is necessary to construct all
open branches and to compare the set of boxed literals contained in the respective branches. Only
those branches containing a minimal (w.r.t. set inclusion) set of boxed literals provide a minimal set
of actions required for cheat detection. For the WST, this thesis leads to the following interpretation
of open branches:

– If there is an open branch not containing any boxed literals, the observed situation does not
require to check the hidden side of the card.
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c(l, A)

> → c(l, A) ∨ c(l,K)

> → c(n, 4) ∨ c(n, 7)

c(l, A) ∧ c(l,K) → ⊥
c(n, 4) ∧ c(n, 7) → ⊥


B

c(l, A) → �c(n, 4)
}
N

¬c(l, A)
⊥

�c(n, 4)

c(n, 4) c(n, 7)

(a) Observation c(l, A).

c(n, 7)

> → c(l, A) ∨ c(l,K)

> → c(n, 4) ∨ c(n, 7)

c(l, A) ∧ c(l,K) → ⊥
c(n, 4) ∧ c(n, 7) → ⊥


B

c(l, A) → �c(n, 4)
}
N

c(l, A)

¬c(l, A)
⊥

�c(n, 4)

c(l,K)

¬c(l, A) �c(n, 4)

(b) Observation c(n, 7).

Fig. 2: Tableaux for the simplified 1-card WST with naive formalization. B denotes the knowledge
of the observer and N the normative system.

– If all open branches contain the same boxed literal i.e. �F we have to check the hidden side of
the card (in the example, we have to check if F is fulfilled).

– If all open branches contain boxed literals but not all open branches contain the same boxed
literals, we have to compare the open branches with respect to the set of boxed literals. Those
branches containing a minimal (w.r.t. set inclusion) set of boxed literals tell us what we have
to check in order to make sure that the given norms are fulfilled.

Thesis 2 From a model-theoretic point of view turning a card to do cheat detection corresponds to
the question, if there is a model for the set of formulae with a world fulfilling the observed situation
which is a successor of itself.

This “self loop” ensures, that whenever there is a boxed formula �F which is true in the observed
world F has to be fulfilled as well. Intuitively this means, that this world corresponds to the observed
situation and fulfills everything that “ought to be”. If there is no such model, it is obvious that the
observed situation can only be caused by cheating.

Next we discuss two formalizations of the WST.

Naive Formalization The first formalization of the WST we present, consist of the set of formulae
given in (1) to (4) together with the formula representing the norm given in formula (5). As an
example, we add the observation of letter A on the card. In the sequel, B denotes the set of formulae
consisting of formula (1) to (4) together with the observation and letter N denotes formula (5).

In Figure 2(a) we give a tableau for the resulting set of formulae B ∪ N (as mentioned above,
we do not expand the boxed formulae in the tableau). This tableau has two open branches:

B1 = {c(l, A),�c(n, 4), c(n, 4)} B2 = {c(l, A),�c(n, 4), c(n, 7)}
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Both open branches contain the same boxed literal �c(n, 4). According to Thesis 1, this tells us to
check, if the number side of the card depicts 4.

Taking a closer look at the open branches reveals, that branch B1 contains c(n, 4) and �c(n, 4).
In B1, the number side of the card depicts 4 and it ought to be the case that the number side of
the card depicts 4, meaning that B1 fulfills the norm. Contrary to that, B2 contains c(n, 7) and
�c(n, 4). In B2, the number side of the card depicts 7 even though it ought to be the case that the
number side of the card depicts 4. So B2 violates the norm. Hence only from B1 a model in form of
a Kripke structure containing a world fulfilling B ∪N which has a “self loop” can be constructed.

However this formalization of the WST does not always work as desired. Let us consider another
example, where 7 is observed on the number side of the card. The tableau for this example is given
in Figure 2(b). This tableau has three open branches:

B′
1 = {c(n, 7), c(l, A),�c(n, 4)} B′

2 = {c(n, 7), c(l,K),¬c(l, A)}
B′

3 = {c(n, 7), c(l,K),�c(n, 4)}

In the case of observing 7 on the number side of the card, the desired conclusion is, that there has to
be a K on the letter side of the card. Hence we would expect to see �c(l,K) in every open branch.
However none of the open branches contains �c(l,K). Taking a closer look at B ∪ N reveals, that
it is not possible to deduce �c(l,K) from this set. Making the even worse, is that it is not possible
to deduce information on what ought to be depicted on the letter side of a card!

The reason for this is well known in the literature about deontic conditionals. With a classical
implication c(l, A) → c(n, 4) we can equivalently formulate the contrapositive ¬c(n, 4) → ¬c(l, A)
expressing, if there is not a 4 on the number side, there is no A on the letter side. In deontic
logic, however, the norm is represented by c(l, A) → �c(n, 4). The respective contrapositive is
¬�c(n, 4) → ¬c(l, A) or equivalently, ♦¬c(n, 4) → ¬c(l, A). However what we want to state is: if
we don’t see a 4 on the number side, then there ought to be no A on the letter side. This would be
formalized as ¬c(n, 4) → �¬c(l, A). Unfortunately this is not included in the naive formalization.
Therefore we need to find a different formalization of the problem.

Formalization using Pseudo-Contraposition The drawback of the naive formalization of the
WST is the fact, that it is not possible to deduce what ought to be the case for the letter side of
the card. To remedy this situation, we use a second norm called pseudo-contrapositive:

¬c(n, 4)→ �¬c(l, A)

which can be transformed into: c(n, 7)→ �c(l,K)
We add this norm to the naive formalization resulting in the new normative system:

c(l, A)→ �c(n, 4)

c(n, 7)→ �c(l,K)

With the of help the pseudo-contrapositive, we are now able to calculate a solution for the previous
example. Again, we observe card c(n, 7). Fig. 3 shows the tableau for the resulting set of formulae.
This tableau has three open branches:

B′′
1 = {c(n, 7),�c(l,K),¬c(l, A), c(l,K)} B′′

2 = {c(n, 7),�c(l,K),�c(n, 4), c(l, A)}
B′′

3 = {c(n, 7),�c(l,K),�c(n, 4), c(l,K)}
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c(n, 7)

> → c(l, A) ∨ c(l,K)

> → c(n, 4) ∨ c(n, 7)

c(l, A) ∧ c(l,K) → ⊥
c(n, 4) ∧ c(n, 7) → ⊥


B

c(l, A) → �c(n, 4)

c(n, 7) → �c(l,K)

}
N

¬c(n, 7)
⊥ �c(l,K)

¬c(l, A)

c(l, A)
⊥

c(l,K)

�c(n, 4)

c(l, A) c(l,K)

Fig. 3: Tableaux for the simplified 1-card WST with for the formalization using the
pseudo-contrapositive. B denotes the knowledge of the observer and N the normative system.

All three branches contain �c(l,K), so we can deduce, that the letter side of the card ought to
show a K.

Reducing the Wason Selection Task to a Satisfiability Test As mentioned before, the
question in the WST is to detect cheating or to find out, which cards have to be turned in order
to detect a violation of the norm. The formalization using Pseudo-Contraposition presented in 3.2
can be used to detect, if a card has to be turned.

Next we will transform this question into a satisfiability test: If a card has to be turned, this
information is contained in all models. Given e.g. the observation c(n, 7), all models constructed
contained �c(l,K), meaning that the letter side of the card ought to show K. Assuming that the
set of formulae under consideration is satisfiable, another possibility would be to add ¬�c(l,K) =
♦c(l, A) to the set of formulae and show that the resulting set of formulae is unsatisfiable.

In the next section, we will use an automated theorem prover to solve this satisfiability test.
This leads us to an automated solution of the question of the WST.

3.3 WST and Automated Theorem Proving

SDL can be translated into decidable fragments of first order logic. See [18] for details. Hence
practically any first order theorem prover could be used to reason in SDL.

Hyper [23] is a theorem prover for first order logic with equality. It is the implementation
of the E-hypertableau calculus [3] which extends the hypertableau calculus with superposition
based equality handling. Hyper has been successfully used in various AI-related applications, like
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φ(>) = > φ(⊥) = ⊥
φ(a) = a φ(¬c) = ¬φ(c)

φ(c ∧ d) = φ(c) u φ(d) φ(c ∨ d) = φ(c) t φ(d)
φ(�c) = ∀r.φ(c) φ(♦c) = ∃r.φ(c)

Table 1: Translation of modal logic K formulae into ALC concepts.

Deontic Logic ALC
> → c(n, 7)

> → c(l, A) ∨ c(l,K)

c(l, A) ∧ c(l,K) → ⊥
> → c(n, 4) ∨ c(n, 7)

c(n, 4) ∧ c(n, 7) → ⊥
> → �(c(l, A) ∨ c(l,K))

�(c(l, A) ∧ c(l,K)) → ⊥
> → �(c(n, 4) ∨ c(n, 7))

�(c(n, 4) ∧ c(n, 7)) → ⊥
c(l, A) → �(c(n, 4))

c(n, 7) → �(c(l,K))

�Φ→ ♦Φ

c(n, 7)

c(l, A) t c(l,K)

¬c(l, A) t ¬c(l,K)

c(n, 4) t c(n, 7)

¬c(n, 4) t ¬c(n, 7)

∀r.(c(l, A) t c(l,K))

∀r.(¬c(l, A) t ¬c(l,K))

∀r.(c(n, 4) t c(n, 7))

∀r.(¬c(n, 4) t ¬c(n, 7))

¬c(l, A) t ∀r.(c(n,A))

¬c(n, 7) t ∀r.(c(l,K))

> v ∃r.>

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Table 2: Translation of formulae given in the framed part of Figure 3 into ALC.

intelligent interactive books or natural language query answering. One of the advantages of the hyper
tableau calculus is the avoidance of unnecessary or-branching. This is one reason why we decided to
use Hyper to reason in SDL. Another reason is the fact, that recently the E-hypertableau calculus
and its implementation have been extended to deal with knowledge bases given in the description
logic SHIQ [4]. There is a strong connection between modal logic and description logic. As shown
in [17], the description logic ALC is a notational variant of the modal logic Kn. Therefore any
formula given in the modal logic Kn can be translated into an ALC concept and vice versa. When
using Hyper as a theorem prover for SDL, it is not necessary to translate the SDL formulae into
first order logic. It is sufficient to translate them to description logic which is more closely related to
SLD then first order logic.Since we are only considering a modal logic as opposed to a multimodal
logic, we will omit the part of the translation handling the multimodal part of the logic. Table 1
gives the inductive definition of a mapping φ from modal logic K formulae to ALC concepts.

Mapping φ can be used to translate the deontic logic formulae into the description logic ALC
as well. The result of the translation of all formulae is shown in Table 2. For readability reasons
we decided to keep the arguments of a ground atom e.g. c(l, A) in the concept introduced for the
atom. Therefore we translate atoms like c(l, A) into atomic concepts c(l, A).

Note that line (1) of Table 2 describes the world we observe. Further line (2) to (5) describe the
way the cards are constructed. The construction of the cards should be effective for all reachable
worlds. This is why we add the formulae given in line (6) to (9). The conjunction of those formulae
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are denoted by B. φ(B) denotes the result of the translation into an ALC concept. Line (10) and
(11) describe the norm N and line (11) presents the translation of the seriality axiom.

Now the theorem prover Hyper is used to calculate if the card has to be turned in order to find
out, if the observed situation obeys the given normative system. For this, the ALC concepts given
in the right column of Table 2 are translated into DL-clauses, which is the input language of Hyper.
We denote this transformation by Ξ. The set of DL-clauses for the right column of Table 2 is

Ξ(φ(B) ∪ φ(N ) ∪ T )

During the transformation into DL-clauses, many auxiliary concepts are introduced which makes
the resulting set of DL-clauses complicated to read. Since the DL-clauses are not important to
understand our example, we refrain from presenting them. See [16] for details on DL-clauses.

In order to check, if we have to turn the card, the DL-clauses for the concept ¬∀r.c(l,K) are
added to the set of DL-clauses and afterwards Hyper is used to check the satisfiability of the
resulting set. According to Hyper, the resulting set of DL-clauses

Ξ(φ(B) ∪ φ(N ) ∪ T ∪ {¬∀r.c(l,K)})

is unsatisfiable. Hence we know that we have to turn the card.
Since there is no TBox in deontic logic, the translation of the formulae given in Table 2 lead to a

description logic concept together with one TBox axiom for the seriality axiom. The seriality axiom
has to be added to the TBox, because it is supposed to be true for every word. Another possibility
to formalize the WST would be to directly use description logic and to use the TBox not only for
the seriality axiom. The formulae describing the way the cards are constructed are also supposed
to be true in every reachable world. Hence it makes sense to add the translation of those formulae
into the TBox. This leads to the following TBox:

T = {> v ∃r.>,
> v c(l, A) t c(l,K),

> v ¬c(l, A) t ¬c(l,K),

> v c(n, 4) t c(n, 7),

> v ¬c(n, 4) t ¬c(n, 7)}

Note that, since the TBox is true in all worlds, we do not have to add formulae corresponding to
line (6) to (9) of Table 2 to the TBox.

3.4 Abstract vs context WST

We modeled the WST in deontic logic and discussed the use of an automated theorem prover to
compute cheat detection. Next we address how the differences of the performance of humans in the
abstract and in the context case of the WST can be modeled with the help of our approach.

We argued in Section 3.2 that the formalization of the task resulted in a check whether the open
branches all contain the same boxed literal, as it was the case in the branches B1 and B2 on page 7.
Such an occurrence of an ’ought-to’-literal tells us that it has to be checked.

Solving the WST in this abstract case more or less makes it necessary to involve a logical calculus
as done by Hyper in order to construct the models and to check it with respect to the boxed literals
– obviously humans are not good at constructing models out of the given specification.
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under 21 → �¬(drink beer)

drink beer → �¬(under 21 )

¬under 21

¬drink beer �¬(under 21 )

�¬(drink beer)

¬drink beer �¬(under 21 )

Fig. 4: Tableaux for the two norms for the social contract version of the WST.

In the case of a context, we follow the hypothesis that humans have the appropriate models
explicitly in their mind. They have been constructed by prior experience or even by evolution. This
is very much in accordance with the mental model theory from Johnson-Laird, which is elaborated
for the case of conditional reasoning in [13]. There the authors assume, that there is a mental
representation of models for conditionals as they are used in the WST. It is argued, that the form
and nature of the representation heavily influences the performance of people solving WST.

Thesis 3 In the case of a social contract or a precaution rule, humans have the models of a world
in which the norms hold in form of an explicit mental representation ready at hand. There is no
need to construct them like it was necessary in the abstract case. – They just have to compare the
observations in the WST with their mental model.

To sum up, in both the abstract and the context version of the WST, we have a model checking task.
In the abstract case the model is given only implicitly by the rules for the norm — before comparing
it, it has to be constructed. This can be done by a logical calculus, just as we demonstrated with
the Hyper-prover. If all models from the result of the prover still contain the same boxed literal,
we have to check it. This construction obviously is error prone if carried out by humans.

In the remainder of this section we will work this out in detail, with the help of the experiment
given in part (b) of Figure 1. The social contract rule for this example could be

under 21 → �¬drink beer

We add the pseudo-contrapositive to this formalization

drink beer → �¬under 21

resulting in the two formulae of the framed part in Figure 4. This tableau has four open branches:

B1 = {¬under 21 ,¬drink beer} B2 = {¬under 21 ,�¬under 21}
B3 = {�¬drink beer ,¬drink beer} B4 = {�¬drink beer ,�¬under 21}

Branches B1 and B2 represent those cases, in which the observed persons age is over 21. Both
models do not contain a boxed literal concerning the beverage. Therefore, whenever we observe a
person of age clearly over 21, we instantly know, that we do not have to take a closer look at the
beverage. This is totally different, as soon as the observed person is younger than 21. This case
contradicts B1 and B2. This is why we have to consider B3 and B4 in this case. Both B3 and B4
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contain �¬drink beer , stating that the observed person is not allowed to drink beer. Therefore we
know, that we have to check the beverage.

We argued above, that in the social contract case, the models are already at hand and just have
to be compared with the open branches. Those four branches are already constructed as mental
models in our brain. When we are confronted with the social contract version of the selection task,
we don’t have to perform the error prone construction of those models. We can use the mental
models we have at hand and therefore we are able to perform the social contract version of the
WST much better then the abstract version.

In the other case, where we observe a person drinking beer the two branches which remain are
B2 and B4, where we have to make sure that �¬under 21 holds. Or put it differently, we have
learned that the only cases where we have to test are those where the premises of our norm and its
pseudo-contrapositive holds.

Our approach using deontic logic can be easily extended to handle the effect of the patient from
[9]. This person had a severe brain damage such that he was able to solve the precaution task very
well, but in the task with the social contract he performed as badly as in the abstract case. It seems
as if the mental representation of a model for the norms concerning precaution rules still exist,
while the model of the social contract norm disappeared, it has to be constructed very much like
in the abstract case.

To model such a behavior we only have to switch to multi-modal logic; instead of one ought-to
operator �, we simple introduce an operator �sc for social contract norms and another �pr for
precaution rules. Hence we could formulate conditionals with different contexts with different modal
operators: The social contract rule from our example in Figure 1 could be

under 21 → �sc¬(drink beer)

whereas a precaution rule could be

driving a car → �pr(fasten seatbelt)

With such a multi-modal logic it could be that a reasoner has an explicit representation of a
norm expressed with one operator, while for the other operator it has to compute the model, before
solving the task, just the same way as in the abstract case.

We suggested above, to use the Hyper theorem prover for reasoning in deontic logic. Hyper is
able to handle knowledge bases given in the description logic SHIQ, which is the description logic
ALC extended with transitive roles, role hierarchies, qualified number restrictions and inverse roles.
Since SHIQ allows the usage of more than one role, Hyper can be used to reason in multi-deontic
logic as well.

4 Deontic Logic and the Suppression task

Another well researched phenomena is the suppression task. In [7] a series of experiments are
reported, which demonstrate that human reasoning is non-monotonic in a certain sense. Given the
following two statements:

If she has an essay to write she will study late in the library.
She has an essay to write.
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In an experiment persons are asked to draw a valid conclusion out of these premisses, it turned out
that 98% of the test persons conclude correctly that

She will study late in the library.

This shows that in such a setting modus ponens a is very natural rule of deduction. If an additional
statement is given, namely

If she has some textbooks to read she will study late in the library.

this does not change the percentage of correct answers. Obviously this additional conditional is
understood as an alternative. And indeed, we can transform the two conditionals

essay to write → study late

textbooks to read→ study late

equivalently into a single one, where the premise is an disjunction:

essay to write ∨ textbooks to read→ study late

If however as an additional premiss

If the library stays open she will study late in the library.

or as a formula library open→ study late is added, only 38% draw the correct conclusion, although
modus ponens is applicable in this case as well. People are understanding this additional conditional
not as an alternative but as an additional premiss.

We propose the same method as applied in the case of the WST. The conditional library open→
study late is not just additional knowledge, moreover it can be understood as trigger of additional
knowledge about the world. We know that usually to study late in the library, the library is open
study late→ library open.

If we assume his additional formula as a norm; which can be formulated with the help of the
deontic ought-to-operator �, this leads to the following:

essay to write →study late (6)

library open→study late
study late→�library open (7)

essay to write (8)

The question is study late, can easily be answered positively by using formulae (6) and (8). If,
however, the norm (7) is taken into account, the questions corresponds to a model checking task as
discussed in Section 3.2. We can easily find a model

M = {essay to write, study late,�library open}

by constructing a tableau similar to the one in Figure 3. However we are not able to check – in
contrast to the WST – whether �library open holds, it ought to be the case. This explains why
much lesser persons are answering the question, whether she is studying late positively.
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Natural Language Normative System N ′

a ought not steal. �¬s
a steals. s
If a steals, he ought to be punished for stealing. s→ �p
If a does not steal, he ought not be punished for stealing. �(¬s→ ¬p)

Table 3: Contrary-to-duty obligation together with the formalization in deontic logic.

Deontic Logic ALC
�Φ→ ♦Φ > v ∃R.>

�¬s ∀R.¬S
s S
s→ �p ¬S t ∀R.P
�(¬s→ ¬p) ∀R.(S t ¬P )

Table 4: Translation of the normative system N ′ into ALC.

5 Consistency Testing of Normative Systems

In the philosophical literature deontic logic is also used to formulate entire normative systems (e.g.
[21]). In practice such normative systems can be rather complex. This makes it difficult for the
creator of a normative system to see if a normative system is consistent. We will show that it is
helpful to be able to check consistency of normative systems automatically. We will use the Hyper
theorem prover for this task.

As an example, we consider the well-known problem of contrary-to-duty obligations introduced
in [8]. In Table 3 the problem is given in natural language together with its formalization in deontic
logic. As shown in [21], the normative system given in Table 3 is inconsistent. We will use Hyper to
show this inconsistency. For this, we first transform N ′ into ALC. The result of this transformation
is given in Table 4.

Checking the consistency of the normative system N ′ corresponds to checking the consistency of
φ(N ′) w.r.t. the TBox T = {> v ∃R.>}, where φ(N ′) is the conjunction of the concepts given in the
right column of Table 4. We transform φ(N ′) into DL-clauses, which is the input language of Hyper.
We will not give the result of this transformation and refer to [16] for details. Hyper constructs
a hypertableau for the resulting set of DL-clauses. This hypertableau is closed and therefore we
can conclude, that the set of DL-clauses is unsatisfiable. This tells us, that the above formalized
normative system N ′ is inconsistent.

6 Conclusion

The goal of this paper was twofold: on one side we wanted to show that deontic logic can be very well
used to model various phenomena in human reasoning. And secondly, we wanted to demonstrate
that an automated theorem proving system, like Hyper, can be used to decide deontic logic by
transforming it into description logic and in DL-clauses. The different performance of humans in
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different contexts could be explained be combining deontic logic with mental model theory from
cognitive science.

To conclude this paper we want to shortly comment a new area of research, namely the for-
malization of ’robot ethics’. In multi-agents systems and in robotics one is aiming to define formal
rules for the behavior of agents. As an example consider Asimov’s laws, which aim at controlling
the relation between robots and humans. In [6] the authors depict a small example of two surgery
robots which have to deal with ethical codes to perform there work. These codes are given with
the help of deontic logic, very much the same as we defined the normative systems in this paper.
In [10] we show how to use Hyper to resolve conflicts in multi-agent systems.
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