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Evolving Unipolar Memristor Spiking Neural Networks

David Howard, Larry Bull and Ben De Lacy Costello

Abstract— Neuromorphic computing — brainlike computing  closely replicates the biological plasticity observed bbH,
in hardware — typically requires myriad CMOS spiking  and as such the two are often paired [1], [19], [25] to allow
neurons interconnected by a dense mesh of nanoscale plastlcfor adaptive learning by permitting each synapse a gradual
synapses. Memristors are frequently cited as strong synaps . . '
candidates due to their statefulness and potential for lowpower analog traversal over a continuous r:_;mge of resistancesalu
implementations. To date, plentiful research has focusedrothe Although much current research is devoted to the use of
bipolar memristor synapse, which is capable of incremental this type of device (and this type of plasticity), there is in
weight alterations and can provide adaptive self-organisiéon  fact a distinction to be made between two types of memristor
under a Hebbian learning scheme. In this paper we consider ___ the one capable of analog, Hebbian plasticity, which is

the Unipolar memristor synapse — a device capable of non- f Hl led simolv the © istor” but which
Hebbian switching between only two states (conductive and requently called simply the “memristor:, but which may

resistive) through application of a suitable input voltage— and ~ more correctly be called the “bipolar memristor”, and the
discuss its suitability for neuromorphic systems. A self-daptive  less-discussed “unipolar memristor” [32], which shares th

evolutionary process is used to autonomously find highly fit statefulness and memory but switches in a binary fashion
network configurations. Experimentation on two robotics tasks between only two resistance states. They are interesting to

shows that unipolar memristor networks evolve task-solvig h hvsical fact . idered ol
controllers faster than both bipolar memristor networks and ~ US @S, WNhen physical manutacture 1S considered, unipolar

networks containing constant nonplastic connections whst ~memristors are much simpler to reliably Create qnd more
performing at least comparably. durable, meaning that they are more viable candidates for

physical realisation. In this paper we simulate and analyse
unipolar memristor networks, and ascertain the suitghilft
the unipolar memristor when used as an alternative to the

Neuromorphic computing [20] is concerned with develbipolar memristor as a synapse in spiking neural networks.
oping brainlike information processing, and requires the We employ a Genetic Algorithm (GA) [16] to automati-
creation of hardware neural networks of appropriate scaf@lly discover high-performance spiking network topoksgi
together with associated learning rules. Typically, dgrse Where each synapse is a unipolar memristor. These networks
packed CMOS spiking neurons [22] communicate with eachreé compared to identically-evolved benchmark networks
other via voltage pulses sent along nanoscale synapses. F@sisting of (i) bipolar memristor synapses, and (ii) ¢cant
memristor [6] (memory-resistor) is a two-terminal circuit(nonplastic) synapses on two simulated robotics scenarios
element that can change between various resistance std@e purely reactive, one requiring adaptation). Restitsvs
in an analog manner through application of a suitable inpifiat by foregoing the biological plausibility of bipolargsi-
voltage. Memristors display statefulness (resistancagés ticity, networks comprised of homogenously-parameterise
are chemical in nature, so persist indefinitely and require rinipolar memristors can adapt to dynamic environments
power to store) and a context-sensitive memory (a memrigore expediently than either of the benchmark networks
tors instantaneous resistance value depends on the pastéhout a significant degradation in other key metrics. When
voltage activity it has experienced). Statefulness adims coupled with the comparative ease of manufacture compared
typical nanoscale concerns regarding heat and power cd@-their bipolar counterparts, unipolar memristors arehhig
sumption, and context-sensitive memory allows for synaps#ighted as a promising, although currently overlookedteou
like information processing. Combined, these featuresemakowards the creation of physical neuromorphic architestur
memristors strong candidates for the role of synapse in Original contributions include the introduction of such
neuromorphic spiking networks. unipolar memristor networks and an analysis of the role of

An adaptive self-organising mechanism is required to bdlasticity in the unipolar networks. Finally, the use of ttest
stow learning abilities to the neuromorphic network. Helpbi Scenarios (one reactive, one dynamic) allows us to acdyrate
learning rules [14] provide a biologically-realistic wag t gauge the computational properties of the unipolar meotrist
alter synaptic resistance values in a context-sensitivenera  networks in terms of behaviour generation and adaptapility
depending on the activities of the neurons they connect tBoth of which are key requirements for neuromorphic archi-
Conveniently, the adaptive resistance found in memristof§Ctures.

I. INTRODUCTION
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Integrate and Fire (LIF) model and the Spike Responseeans that the order of spike arrival at a synapse affects
Model (SRM) [13], with the most well-known mechanisticthe polarity of the voltage experienced by the device and
alternative being the Hodgkin-Huxley model [15]. A SNNthus the direction of synaptic weight change. Briefly, if the
comprises a number of neurons connected by numeropeesynaptic neuron fires first it can be said to have caused
unidirectional synapses. Each neuron has a state, whichtli® postsynaptic neuron to fire and the synaptic weight
a measure of internal excitation, and emits a voltage spike strengthened (the classic Hebb rule). To prevent weight
to all forward-connected neurons if sufficiently excitethisI  saturation the synaptic weight is weakened if the postsymap
state is a form of memory which allows the network to solvaeeuron fires first as such causality cannot be implied (the
temporal problems. anti-Hebb rule). Although we focus on unsupervised Hebbian
The memristor was first theoretically characterized by [6]learning, we note that supervised learning approaches also
and first manufactured from titanium dioxide by HPexist for memristive neural networks [4].
labs [29]. This fabrication has led to numerous other groups Unipolar memristors are less sensitive to voltage than
creating memristors from metal oxides and a variety dfipolar memristors, and as such require multiple coinaigen
materials, e.g. conductive polymers [8], metal silicidesd events to flip between their two resistance states. Unipo-
crystalline oxides [7]. lar memristors are ambivalent to the polarity of incoming
According to filament theory [32], both memristor typesvoltage, so there is no notion of spike order affecting
can form internal conductive pathways callétaments weight change and as such the scheme cannot be considered
which may arise due to material defects or conditions duiHebbian. In more detail, the unipolar synapse switches its
ing synthesis. Unipolar memristors form complete filamentsesistance after a number of repeated coincidence events
(Figure [1(a)), resulting in drastic changes in resistancaithin a given timeframe, but is not sensitive to which neuro
Mechanistically, the unipolar memristor acts as a devicfres first. A bipolar synapse requires only one coincidence
whose resistance can change between two values — the Loswent to switch, but the direction of weight change depends
Resistance State (LRS) (Figlie 1(a)) and the High-Resistanon which neuron (presynaptic or postsynaptic) first first,
State (HRS) (Figurie] 1(b)) — through application of a voltagend multiple repeated coincidences in a given direction are
over some threshold. The memristor enters the LRS wheraquired to affect a behavioural change in the network. Note
complete filaments are formed. Driving over a thresholthat unipolar plasticity removes the element of biologieal
voltage breaks these filaments and transfers the deviceto tilism, deriving a switching mechanism more from electronic
HRS. A further voltage input of suitable magnitude reformsgircuitry than neural circuitry, but nevertheless implerse
these filaments and reinstates the device to the LRS. Umipolalasticity and allows for adaptivity.
devices are ambivalent to the polarity of the applied vatag In practice, the bistable nature of the unipolar memristor
Bipolar memristors do not form complete filaments (Figsynapse means that the network forgoes traditional plastic
ure [A(b)), meaning they must instead use comparativetgeans of behaviour generation and alteration. Typicallaipo
weaker mechanisms such as ionic transport to alter theitasticity involves either sensory inputs of internal neu-
resistance to any value between the minimum and maximuran/synapse states are used to drive some “trigger” neurons
resistance of the device in a continuous, analog manner. Timo firing, which alters the plasticity of some synapses and
“classic” HP bipolar memristor can be thought of as comdrives the network into a different region of attractor spac
prising two regions, one of titanium dioxide, and the othepotentially changing the firing rate at the output neuror$.[1
of more conductive oxygen-depleted titanium dioxide, wahic Unipolar memristors must set up weight oscillators in the
are represented respectively by variable resisfeys; and network, so that coordinated synaptic weight switchingltea
R,,. Voltage across the device causes the oxygen vacanctesa suitable amount of spikes being received by the output
to drift, altering the position of the boundary and changingeurons to generate an appropriate action. Again, sensory
the resistance depending on the polarity of the appliedputs or internal network states can change the switching
voltage (see Figurgl 1(c)). Note that the unipolar memristatynamics of the weight oscillator (e.g., the amount of time
also features this ionic transport; complete filament fdioma between a switch event for each synapse in the oscillator),
is simply a stronger form of resistance change so ionic &ffecleading to changes in behaviour.
are largely mitigated. Due to these non-standard network dynamics, the hand-
Memristive plasticity involves a bidirectional voltageilsp  design of such networks is far from intuitive. It should
(a discrete or continuous waveform), which is emitted bylso be noted that the eventual aim of this work is in au-
a sufficiently excited neuron and can be used to track thematically creating neuromorphic architectures for #pec
coincidences of spikes across a synapse. Two voltage spikasks, which implies some measure of self-organised legrni
(one from each neuron that the synapse connects) arrivingaatd the freedom to discover suitable networks per-task.
the synapse in a short time window causes a coinciden@iven these considerations, we have elected to use a genetic
event to take place. A single coincidence event causesafgorithm to automatically explore the space of network
bipolar memristor to change its resistance by a small amoutapologies. Related work on neuro-evolution includes [10]
under a Hebbian learning scheme (which when used imho survey various methods for evolving both weights and
the context of computer science is more correctly termearchitectures. [21] describe the evolution of networks for
Spike Time Dependent Plasticity, or STDP) [2]. This schemeobotics tasks. Combined with plasticity, neuro-evolo#oy
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Fig. 1. Showing the differences in resistance change wijth)(anipolar and (c) bipolar memristors. Unipolar memristo
form complete filaments, allowing electrons to travel ldygenimpeded through the substrate and resulting in a very
low resistance when formed (a), but a very high resistancenvidnoken (b). The bipolar memristor (which could also be
represented in (b)) does not form these filaments and s rieléead on ionic conductivity (c). The device is abstyactl
modelled as two variable resistof, s and Ron; the boundary between the resistors represents the moveshen
oxygen vacancies from electrode to electrode and changasasction of applied voltage.

controllers have shown increased performance comparsgecific resistance profile to a given degree of accuracg. Thi
to similarly-evolved nonplastic-synapse networks [28]L]]  benefit extends to the testing of physical networks — “does
Related research on neuromorphic memristive networks iit- switch?” is an easier question to answer than “does it
cludes the use of conductive polymers [9] and crossbdollow this continuous resistance profile accurately eritig
implementations [18]. and requires less time to test. Similar benefits have been
Numerous groups have previously used bipolar memristorsported by [5] — reducing the amount of device variance
as plastic synapses [1], [19], [25], seeking to exploit thés highlighted as a route to a simpler manufacturing pracess
similarities between analog resistance alteration andtd@b e.g. in the context of Very Large-Scale Integration (VLSI).

learning (e.qg., [34]). To our knowledge, no previous work ha puring operation, unipolar memristors require multiple
considered the use of unipolar memristor synapses to fulhike conincidence events to force a single state change;
the same role. Examples of unipolar memristors are confingdsgliows that they undergo fewer total state changes and
to binary operation for traditional logic [30], althoughurel  therefore may be more long-lasting. A single resistance
implementations exist for non-memristor binary switchingchange can perturb the network state more than is possible in
devices [33]. Although we note that spiking unipolar memyipolar networks, potentially leading to simpler implerteen
ristor networks have not been studied in detail before,laimi tigns requiring reduced spike traffic (and hence lower power
studies give cause for optimism. A string of publicationsequirements). Simpler network activity through a lower-
from the group of Stefano Fusi focuses on the how thgimensional attractor space may permit a more tractable ana
number of available synaptic resistance states affectsanem ysis and understanding of candidate networks. In summary,
and learning in neural networks e.g., [11], [12]. In pafécy  they are simpler to reliably and repeatedly create, and may

they conclude that binary synapses (similar to our unipolgjive rise to lower-power and simpler implementations than
memristors) allow for learning given certain prerequisiéde  pipolar memristors.

met [5]. [28] uses synaptic weight saturation that is semsit
to initially-noisy synaptic states to a similar effect.

A. Motivation for the Focus on Unipolar Memristors 1. TASKs

We focus on unipolar memristors because they are easier

to implement in reality than bipolar memristors — using Two robotics tasks are used to evaluate the unipolar
binary rather than analog resistance states means that Hymapse networks in the context of the other network types.
devices are less reliant on precise nanoscale fabricatiorhe first — phototaxis — is purely reactive, and designed to
which can be compromised by device variations that anlustrate the quality of behaviour that can be elicitednfro
currently an intrinsic part of the nanoscale manufacturingach network type. The second task, performed in a T-maze,
process. In other words, the device only needs to reliabshows the speed of adaptation to a dynamically-changing
switch between two resistance states, rather than followemvironment.
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Fig. 2. (i) The phototaxis environment. The agent (circleyjibs randomly positioned in the lower-left (checkeredrgle) and must reach a light source
in the upper-right, circumnavigating the central obsta@l¢ The T-maze. The robot (circle) begins randomly pasigd in the start zone (checkered box)
and must travel to reward zones R1 or R2. A light source istéatin the top-centre. Both figures are to scale.

A. Task I: Phototaxis B. Task Il: Adaptation

A dynamic T-maze [3], [27] scenario is used to measure

The phototaxis task is classed as reactive as it does nfie adaptation capabilities of the synapses. The T-maze is a
require memory or adaptation to solve. In the phototaxignclosed arena with coordinates ranging from [-1,1] in both
environment, a differential drive robot is randomly loghte ; and y directions, with walls placed to represent a “T”
within a walled arena, with boundaries at -1 and 1 in bothFigure[2(b)). Reward zones R1 and R2 are situated at the
z and y. A three-dimensional box, which the robot mustend of the left and right arms respectively. A 15 Watt bulb is
navigate around, is placed centrally in the arena, withe@st placed at the top-centre of the arena= 0.5, y = 1) and is
at @ = —0.4, y = —0.4), (0.4, 0.4), (0.4, 0.4), and 0.4, used to indirectly feed position information to the network
—0.4). A 15 Watt bulb is placed at the top-right hand corneks well as enabling it to produce any action from anywhere
of the arena{ = 1, y = 1). The environment is shown in jn the arena.
Figure2(a). At the start of a trial, a differential-drive robot initigll

The robot initially faces North, with an initial start pdst ~ faces North, randomly positioned in the start zone at the
randomly generated but constrained+ y < —1.5. The bottom of the “T” (-0.4 > = < 0.4, y < —0.4). The agent
robot must perform phototaxis — light-seeking behavioumust navigate to the initial reward zone R1. The trial istspli
— and receives fitness proportional to the closest distan#@io two phases, each of which is 4000 robot steps long for a
it achieves to the light source. When the robot reaches tteaximum trial length of 8000 steps. Phase 1, similarly to the
goal state (where: + y > 1.6), the responsible controller first task, evolves controllers that can navigate from tlaet st
receives a constant fitness bonus of 2500, which is addedzene to R1. Arriving in R1 resets the robot in the start zone
the fitness functiory (f > 0) outlined in equation [J1). The and commences phase 2. Any controller that reaches R1 is
denominator in the equation expresses the difference ketweémmediately retested 5 times to ensure that the pathfinding
the position of the goal state (1.6) and the current robds stable.
position (s andy,,s), andst is the number of robot steps  In phase 2, the adaptation of the network is measured by
taken to reach the goal state. A simple step-based fitneswitching the reward zone to R2. To give the robot memory
could have been used, but our fitness function allows for @f phase 1, membrane potentials and synaptic weights are
gradual improvement of behaviour that does not require th#t reset during this process. By measuring the number of
goal state to be found to begin optimisation. generations that each network type takes to adjust to the new

The fitness of a controller is calculated at the end of evell_%f)al position, we quantify how quickly the network can adapt
robot step, with the highest attained value fotluring the 'S behaviour to match the dynamic reward zone. Again, 5
trial kept as the fitness value for that controller. Optimal®lests are carried out to ascertain the stability of thetisol.

performance givest = 11800, which corresponds to 700 The_ aim is to measure the_ length of adaptation, encapsu-
robot steps from start to goal state with no collisions. lated in the “solved” generation of the network. The fithess

function, f, is simply the total number of robot steps required

to solve the trial (equatio}2) — lower fitness is better). A

controller that cannot locate R1 receives maximum fitness
J=(1/(1.6 = (|zpos + Ypos|))) x 1000 — st (1)  (8000) for the trial. A controller that locates R1 but cannot



subsequently adapt to R2 receives maximum fitness for R2 Our bidirectional voltage spikes are discrete-time stepwi
(4000), plus however many robot steps it took to locatevaveforms, matching the discrete-time operation of the
R1. Fitness measures quality of pathfinding, and ensur8NNs. Each neuron in the network is augmented with a
that the best networks optimise towards useful goal-seekirilast spike time” variable LS, which represents voltage

behaviour. buildup at the synapse and is initially 0. When a neuron
spikes, this value is set to an experimentally-determined
f=st (2) Ppositive number, in this case 3. At the end of each of the
21 procesing steps that make up a single robot step, each
C. Experimental Procedure memristor synapse is analysed by summating/tbevalues

gf its presynaptic and postsynaptic neurons — any value

are randomly generated. The synapse type used varies Eé?at?dr than a threshohIﬁLS=4 IS Sa'gdg ha\I/e qaushed a
experiment, being either a unipolar memristor, a bipolafoincidence event at the synapse. value s then

memristor, or a constant connection. Each network is théffcreased by 1 to a minimum of 0, creating a discrete

evaluated on the task over a maximum of 8000 robot step%t.ep"vise waveform through time, see Figlire 4(a).

Each robot step involves the network processing its sensory
input for a number of processing steps, after which the spik€ controller Integration
trains generated at the output nodes are used to select a

action. The robot executes the action, concluding the rob\%rt%]ot? :;R/eer'?;r?ttssgﬁsosgeaﬁgrge aciltf;fveeregii?z:\n?:réveserr?sb(?:s
step, and recieves the next sensory input as the first pareof t S o
P yinp P hown at positions 0, 2, and 5 in Figuré 3(b). Random-

subsequent robot step. After a trial (which ends either witf i ise in included £2% for IR
success or timeout), each controller is assigned a fitness.UA!TOrM SENSOry NOISE In Include o for sensors

o .
genetic algorithm then optimises the population of networkznd il_O/O for I'.ght SENSOrs. To prevent the robot from
for a task-dependent number of generations ecoming stuck in the environment, two bump sensors are

used (see FigurEl 3(b) for placement) — activating either
IV. SPIKING CONTROLLERS causes the robot to immediately reverse 10cm (an effective
penalty of 10 robot steps spent reversing).

Leaky Integrate and Fire [13] networks are used as spik-
ing controllers. Three layers of neurons (input, hidden and For each robot step (64ms in simulation time), the robot
output) have sizes of 6, 9 and 2 respectively. On networgmples the six sensors: the six-dimensional input vector
creation, the hidden layer is populated with 9 hidden laygg then scaled so that the entire sensor range falls within
neurons, whose types are intitially excitatory (transnoitv [0,1], and is used a$ in equation [(#). The network is then
agesV’> 0) with P=0.5, otherwise they are inhibitory €0).  run for 21 processing steps — experimentally determined to
Each connection has a weight(all weights constrained [0- allow the bipolar synapses enough time to change synaptic
1]). Each possible connection site is initially likely tovea pjasticity to affect useful behaviour generation — and the
a connection with P=0.5. spike trains at the output neurons discretised as havihgreit

During activation, stimulation by incoming voltage alters high or low activation to generate an actiohigh activation
neurons internal state, m > 0, which by default decreases if more than half of the 21 processing steps generated a
over time. Surpassing a threshold, causes a spike to spike at the neurorlpw otherwise). Three discrete actions
be transmitted to all postsynaptic neurons. The amougte used to enforce more distinct changes in network agtivit
of voltage sent is equal to the weight of the connectiorand to encourage more differentiation between the actfity
multiplied by -1 if sent from an inhibitory neuron. The statethe different synapse types. Actions doeward, (maximum
of a neuron at processing stepl is given in equatio]3; movement on both wheelhigh activation of both output
equatioriL# shows the reset formula(t) is the neuron state neurons) and continuous turns to both lésfé(high activation
at processing step, [ is the scaled state input is an  on the first output neuromow on the second) andght (low
excitation constant and is the leak constant. Immediately activation on the first output neurohigh on the second) —

after spiking, the neuron resets its state ddfollowing caused by halving the left/right motor outputs respedivel
equatiori#t. A spike sent between two hidden layer neurons is

receivedn (n > 0) processing steps after it is sent, wheris ~ B. Synapse Types

the number of neurons spatially between the sending neuronin this section we describe our implementation of the
and receiving neuron in the layer. This implements a weakree synapse types used in the experiment. Both memristor
form of spatial ordering to the networks, without expligitl synapses rely on the concept of a “coincidence event”, which
placing the networks on a virtual substrate. Parameters ggedefined as two spikes arriving at the synapse at consecutiv

At the start of each experiment, 100 spiking network

a=0.3,b=0.05c=0.0, mp = 0.6 processing steps. Thanipolar memristor synapse has
parameters,,, which represents the sensitivity of the device
m(t+1) =m(t) + (I +a—bm(t)) (3) to voltage buildup (in the form of repeated coincidence

events), andS., which tracks the number of consecutive
If (m(t) >mp) m(t)=c (4) coincidence events the synapse has experienced. All symaps
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Fig. 3. (@) A typical spiking network architecture. The topnput neurons receive light sensor activations, the bottom
3 receive IR sensor activiations, and spike trains gengratehe two output neurons are used for action calculation.
In the hidden layer, green/light neurons denote excitatmyrons and blue/dark neurons signify inhibitory neurghy.
The differential drive robot used in both experiments. Ehare 8 sensor mounting positions (labelled 0-7). In ourgsetu
three light sensors and 3 IR sensors share positions 0, 25 @mdl form the network input. The other numbers show
unused sensor positions. Two bump sensors, B1 and B2, avenshitached at 45 degree angles to the front-left and
front-right of the robot.

are initially in the Low Resistance State & 0.9). Thisisan is seen in the plastic behaviour of the synapses. We elect
arbitrary selection, performance is unaffected if the meks to use a linear model as this provides the most bias-free
begin in the HRS. Starting in the HRS would just start theomparison, whilst still providing incremental resistanc
network in a different stage of its weight oscillator, whish changes. This model is competitive with real-world mem-
initially determined by the initial network topology, whkitl ristor models [17]. Bipolar memristor connection weights
preserving the coincidences of weight switches which arare initially 0.5. Bipolar memristors have an effecti$g
required to generate the output action. of 1 (Figure[#(a)), so every coincidence event causes a
At each processing step every synapse is checked, incahange in synaptic weight by,,=0.001, meaning 1000
menting S.. if a coincidence event occurs at the synapseonsecutive Hebbian events will take the synapse from
and decrementingS. if no coincidence event occurs atmaximally resistive to minimally resistive. Weight incees
that processing step. 1§.=S, (Figure[4(a)), the unipolar if the postsynaptic neuron has the highdsi value, and
memristor switches to the HRSv(= 0.1) if it was pre- decreases if the presynapticS is higher, in other words
viously in the LRS, or the LRS if it was previously in the bipolar memristor is sensitive to the polarity of apglie
the HRS. S, is reset to 0. The device can switch betweewoltage.
these states multiple times per trial. Due to the requirédmen The constant synapse is non-plastic (essentially a resis-
of multiple consecutive coincidence events per switch, thi@r). The resistance of the connection is initialised raneo
actual frequency of synapse alteration is lower than ther seuniformly in the range [0,1] and may be altered during
in the bipolar networks. Note that switching between twapplication of the GA, but is constant during a trial. The
resistance states, maximally resistive and minimallystes, constant connection is used as a baseline that shows the
likens the unipolar plasticity mechanism to network-wideeffects of having no plasticity in the network. It should
feature selection, rather than online weight adaptatiomiis be noted that all networks have memory (in the form of
traditional Hebbian plasticity schemes. neuron membrane potentials), but only the plastic unipolar
Initial experimentation (excluded for the sake of brevity)and bipolar synapse networks have the additional freedom to
performed a sensitivity analysis on ti$e parameter — no adapt their connection weights online.
statistically significant differences were observed betwe
values of 2, 4, and 6. In this work we sele§;,=4 as a
compromise between switching speed and potential deviceln our steady-state GA, two child networks are created per
longetivity in hardware implementations. generation. Two parents are selected via fitness-propaitto
selection on the 100 population networks, and their genomes
We use a generalised model of th@olar memristor  copied to two child networks and probabilistically mutated
synapse— as previously noted, memristor materials andCrossover is omitted — sufficient network space exploration
fabrication techniques are highly varied, and similaraace is obtained via a combination of weight and topology mu-

V. GENETIC ALGORITHM



----- - - E —— - @LS
7 : Voltage
— 2 source key
=
KEY L
[ spike 1 oE
. 1 spike 2 2 E
g g & spike 3 1 t tel t+2
S ] [ spike 4 .
~ FRE Time POST

-3 t-1 Ttel 642 t43 .
_ Memristor
Time

@ (b)

Fig. 4. Showing a spike coincidence event for both memrisfoes. A presynaptic voltage spike is received at procgssin
stept-1, with a postsynaptic voltage spike at processing $tép “coincidence event”). For the unipolar memristor (a)
multiple subsequent events (.h$%, = 3, r.h.s.S,, = 4) are required to push the voltage past a threshold, causing a
switch. Dotted lines show the derived voltage thresholdtage spike values are decremented by one per subsequent
processing step. (b) A single event allows the voltage tpassd s, decresing the resistance of the bipolar memristor
by a smaller amount.

tations; a view that is reinforced in the literature [24].€eTh a random position) if satisfied. New neurons are randomly
networks are then trialled on the test problem and assignedsigned a type, and each connection site on a new neuron
a fitness before being added to the population. Finally, tHeas a 50% chance of having a connection. New constant
two worst-fithess networks are deleted from the populatiomonnections are randomly weighted between 0 and 1.

Each network has its own self-adaptive mutation rates, lwhic

are initially seeded uniform-randomly in the range [0,0.5] VI. EXPERIMENTATION

and mutated as with an Evolution Strategy [23] as they are

passed from parent to child following equatiéh (5). We test the three synapse types (unipolar, bipolar, con-

stant) on each environment for 30 experimental repeatsgusi
the averages to create the statistical analysis given below
Each phototaxis experiment is run for 1000 generations,
This approach is adopted as it is envisaged that efficieand each T-maze experiment for 500 generations. Two-
search of weights and neurons will require different rategailed T-tests are used to asses statistical significanitk, w
e.g., adding a neuron is likely to impact a network moréignificance at R0.05. As well as fitness, we also track
than changing a connection weight, so less neuron additiéihe first generation in which each population produces a
events than connection weight change events are likely eontroller that solves the problem, which we term “success”
be desirable. Self-adaptation is particularly relevamttfe The two environments test different aspects of the com-
application area of neuromorphic computing — brainlikeputational abilities of the synapses. In both environments
systems must be able to autonomously adapt to a changifitpess represents the quality of the pathfinding behaviour.
environment and adjust their learning rates accordingly. In the phototaxis task, “success” straightforwardly measu
The genome of each network comprises a variable-lengthe number of generations to generate a controller that
vector of connections and a variable-length vector of newsucessfully reaches the goal state. In the T-maze, “success
rons, plus a number of mutation rates. Different parametemseasures the speed at which the controllers can alter their
govern the mutation rates of connection weight$, con- behaviours in response to the change in goal state position,
nection addition/removalr), and neuron addition/removal an indicator of adaptivity.
(w). For each comparison to one of these rates a uniform- In both cases, we wish to find differences that strengthen
random number is generated; if it is lower than the rateur position, i.e., that the unipolar memristors are a \@abl
the variable is said to bsatisfiedat that allelle. During GA alternative to bipolar memristors. These tasks allow usito a
application, for each constant connection, satisfactibm o swer important questions regarding the power of the unipola
alters the weight byt0-0.1. Memristive synapses cannot beplasticity mechanism — does the plasticity permit suffitien
mutated from their initial weights of 0.9 for unipolar andadaptivity to solve the problem? Does the discontinuous
0.5 for bipolar, forcing those networks to use plasticity teswitching behaviour allow the evolutionary process to et u
perform well. Each possible connection site in the networkiseful attractors more expediently? What are the benefits an
is traversed and, on satisfactionmfeither a new connection drawbacks in terms of controller performance and network
is added if the site is vacant, or the pre-existing connacticcomposition? In the case of the Tmaze, is the unipolar
at that site is removed is checked once, and equiprobablynetworks memory ability impacted by the binary nature of
adds or removes a neuron from the hidden layer (insertedthe synapse?

= peaxp™ Ol (5)



A. Results I: Phototaxis from ~16.9 to~17.1 during generations400-500, with a

_ ) corresponding increase in average best fithess over the same
_ Umpolar_ memristor networks are shown to have bettegeriod (FigureB(a)). Connectivity (Figufé 5 does not vary
final best fitness than the other two network types (TBble Iignificantly between network types, with bipolar networks
Figure [5(a) shows that unipolar networks have a highgy particular displaying a large amount of standard error
initial fitness :10000) then the comparative network typesnoughout the generations. As the synapse itself is more
(constant~4000, bipolar~8500), indicating some passable, 5 iaple, larger subset of connectivity maps (with varying

unipolar controllers in the initial population. This is &l 51 qunts of connections) can provide the same types of
because of the “constrained flexibility” afforded to uni@ol ,.h4viour.
networks — plastic online behaviour but a relatively simple Self-adaptive mutation parameters (Figlile 6, Table II)

attractor space that has vastly fewer dimensions than that ot statistically differ between the synapse types, but
of the bipolar networks. This result highlights the role of

e L ) X ) — = “are all statistically different for different values withia
switching plasticity in generating high quality pathfingin synapse type. This shows some context-sensitivity as the

behaviour in terms of being able to generate heterogenoys s meters automatically find suitable values to allow for
action sequences (a single switch can perturb network 0UtR{e g,ccessful evolution of succesful networks. In palicu
enough to change the action, and the switching nature gy, e[4(c) shows a smoother profile and faster convergence
unipolar plasticity allows the synapse FO repeatedly SWis ¢, (the rate of connection selection) for unipolar and
and off to generate heterogenous action sequences). Follgyy,,iar networks compared to constant networks. We note
ing a period of low-performing controllers in generatioa8- .+ the higher rate for constant networks, and specifically
400, constant connection networks undergo a rapid fitne increase in from generations=400-500 permits more
improvement from generations400-500. A stable plateau gearch and corresponds to the jump in fitness evidenced in
occurs for all network types a¢500 generations. Figure[®(a). If nothing else, this demonstrates a very ‘ire

Both plastic networks have the ability to search the b&syample of how self-adaptive search rates are used to drive
haviour space online as well as offline, which is reflected iRetwork exploration to find fitter solutions.

their “solved” generation values being statistically suge
to constant networks (Tabl@ I). As the constant network8. Results Il: Tmaze

must search entirely offline via the GA, they take longer Taple[T[] shows that the unipolar memristor networks are
to develop the required behaviour (avg. 77.6 generations fpe to find solutions to the test problems in significantly
solve, compared to 0.76 for unipolar and 14.7 for bipolarkewer generations than both the bipolar memristor and con-
Additionally, the unipolar networks solve statisticaligster  stant connection networks. The unipolar memristors cap onl
than the bipolar networks. In concordance with the analysise in two states, and as such the possible network attractor
of Figures$(a)-(c) above, these results show that althougace is significantly more constrained during a trial than
plasticity is beneficial in general to the evolutionary ®ss, that of the bipolar network. As the GA is responsible for
the more gradual Hebbian plasticity used by the bipolagetting up useful network activity — attractors that progluc
networks results in a larger search space than that of th@thfinding behaviour — the relationship between topology
unipolar networks, resulting in slower convergence. and in-trial behaviour can be more expediently exploreé Th
This notion is echoed in results for average fitness (Talasticity provided by the unipolar network is still useful
ble[l). Constant networks have statistically better finarav for behaviour generation, hence the significant speedup ove
age fitness than bipolar networks — bipolar synapses hagenstant connection networks. The role of plasticity wil b
a more complex attractor space which leads to more fitnesgplored further in Sectiop VIC.
variance in the final population as full convergence is not Best and average fitness values (Talflel 1) do not vary
achieved within the generation limit. Although the popigat significantly between the network types. This indicates tha
of constant networks initially struggles to achieve umfty  the unipolar memristor can generate competitive pathfondin
high fitness values due to a lack of behavioural flexibilitthehaviour in addition to adapting significantly faster te th
in the networks (large standard error and low mean idynamic T-maze. Figur€l7(a) shows the best fitness for
Figure[5(b) between generations 200 and 600), it eventualypnstant networks always lagging behind those of the other
converges due to having a simpler search space. Unipol@gtwork types, and shows that the final order is the same
and bipolar synapses are seen to approximately equal eagthe order of synapse complexity. The more homogeneous
other, with much lower standard error then the constatarting fitness values (compare Figlie 5(a)) are due to the
connection between generatiors200-600. We note that allocation of fitness in the networks, which receive a value
the final fitness order of the synapses (constant, unipolat 8000 if neither reward zone is reached, showing that none
bipolar) is also the synapse complexity order, indicatimtt of the network types contain even partial solutions in their
population convergence is related to the compexity of thgitial populations. Average fitness (Figurk 7(b)) showatth
network behaviour space that the GA has to optimise in. unipolar networks gain a fitness advantage in the #2600
Average connected hidden layer nodes (Fiddre 5(c)) dgenerations which is ceded in the final 200 generations.
not vary significantly between the network types. We note In terms of topology (the last two columns of Takblg Ill),
that the number of neurons in the constant networks jumplse numbers of connected hidden layer nodes (Fifiure 7(c))



TABLE |
PHOTOTAXIS AVERAGES AND STANDARD DEVIATIONS FOR CONTROLLERPARAMETERS FOR THE THREE SYNAPSE TYPESYMBOLS INDICATE THE
VALUE IS STATISTICALLY (P<0.05)BETTER THAN® = UNIPOLAR T = BIPOLAR, * = CONSTANT.

Best fit Avg fit Gens. to solve Nodes Connectivity
Unipolar ~ 11718{*(186) 11362 (452) 0.26*(1.28) 16.9 (0.4) 51.75 (4.47)
Bipolar 11363 (398) 11058 (728) 14.7 *(32.5) 16.89(0.54) .061(4.06)
Constant 11420 (423) 11402(277) 77.6 (130.0) 17.10 (0.7)  51.24 (3.58)
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PHOTOTAXIS AVERAGES AND STANDARD DEVIATIONS FOR MUTATION PARAMETERS FOR THE THREE SYNAPSE TYPESSYMBOLS INDICATE THE
VALUE IS STATISTICALLY (P<0.05)HIGHER THAN © = UNIPOLAR T = BIPOLAR, * = CONSTANT.

Unipolar
Bipolar
Constant

“w
NA
NA
0.018 (0.01)

P w
0.065 (0.03) 0.092 (0.03)
0.052 (0.02) 0.135 (0.07)
0.056 (0.03) 0.122 (0.09)

and constant synapse networks. Bars denote sthedar.
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Fig. 6. Phototaxis mean (a) node addition/removal evertyat) node addition rate (c) connection addition/removal
rate 7 for unipolar, bipolar, and constant synapse networks.

TABLE Il
T-MAZE AVERAGES AND STANDARD DEVIATIONS FOR CONTROLLER PARANETERS FOR THE THREE SYNAPSE TYPESYMBOLS INDICATE THE VALUE
IS STATISTICALLY (P<0.05)BETTER THAN © = UNIPOLAR | = BIPOLAR, * = CONSTANT.

Best fit Avg fit Gens. to solve Nodes Connectivity
Unipolar  1602.5 (422)  3115.0 (631) 12.4%10.7) 17.01 (0.62) 52.98 (3.7)
Bipolar 1368.3 (806)  2679.6 (966) 47.93 (70.8) 17.07 (0.56)51.7 (5.98)
Constant  1671.6 (656) 2837.1 (1284) 27.73 (38.9) 16.9 J0.69%2.38 (4.32)

and connections (FigurE] 7(d)) do not vary significanthand leave it there, and (ii) varying the connectivity map of
between the three network types. We note that the standah® network multiple times during a trial to create weight
error is very high for the number of enabled connectiongyscillators in the network, whereby the firing on the neurons
this variance is the reason that no statictical significasce and switching of the synapses synchronises through time
observed. to generate appropriate output actions from a subgroup of
Self-adaptive parameters (Figure 8, Tablé 1V) are agaimeurons.

shown to be context-sensitive. For the same network type, It was initially thought that binary nature of unipolar
the parameters are statistically different from each otheesistance switching would lead to “twitchy” controller
(compare Figurél6, Tablelll. Across the networks(rate behaviour. Some of the less fit/early generation unipolar
of node addition/removal events) was statistically higimer networks showed noticable oscillations in path generation
unipolar networks than either bipolar or constant networkgut later, fitter networks were shown to avoid this problem
T (rate of connection addition/removal) has statisticallpy synchronising switching between two synapses to the
higher in unipolar networks (avg. 0.049) than in constardame neuron, e.g. where one is in the LRS and the other is

networks (avg. 0.024) — TableZ]V. Unipolar networksin the HRS simulataneously, the receiving neuron receives
appear to require more genetic search of connection spageconstant input of 0.1 + 0.9 / 2 = 0.5. By switching at
in this task. the same time, this constant input can be preserved, and

used to stabilise the network making behaviour generation
_ o easier. In other words, the quality of generated paths is not
C. Synaptic Plasticity significantly impeded by the simpler binary switching natur

Plasticity was seen to effect both key indicators of conof the synapse when compared to bipolar memristors.
troller performance: fithess and the number of generations
taken to “solve” the task. For fitness, plasticity is used as Figure[9 shows how plasticity gives rise to fast adaptation
a way of flexibly generating the required action from arin the T-maze environment. When comparing the best
arbitrary sequence of input states. Action sequences are sgontroller for each synapse type, it is shown that unipolar
to be more heterogeneous in the unipolar case as a singlasticity allows for a more expedient search of a larger
switch can cause a large peturbation in network activitthwi immediate behaviour space, leading to solving the problem
constant connections being the most homogeneous in tmre quickly. On the other hand, the constant networks
regard. For the number of generations to solve, plasticityave to perform all of their behaviour exploration via GA
allows some degree of behavioural exploration to take placeration, and so react more slowly. Both constant and
online, removing the onus from the GA and increasingipolar networks initially struggle to locate the second
adaptivity. reward zone as their behavioural exploration is more
Unipolar networks used the rapid-switching ability of theconstrained than the unipolar networks.
synapse in two main ways: (i) to perform online “connection
selection” e.g. to switch a synapse to a given state onceFigure[I0(a) shows the average synaptic weight in the
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Fig. 7. T-maze mean (a) best fithess (b) avg. fitness (c) hitlwler nodes (d) percentage connectivity for unipolar,
bipolar, and constant synapse networks. Bars denote sthedar.

TABLE IV
T-MAZE AVERAGES AND STANDARD DEVIATIONS FOR MUTATION PARAMETERS FOR THE THREE SYNAPSE TYPESYMBOLS INDICATE THE VALUE IS
STATISTICALLY (P<0.05)HIGHER THAN © = UNIPOLAR | = BIPOLAR, * = CONSTANT.

K ¥ w T
Unipolar NA 0.111*(0.03) 0.358 (0.18)  0.049 *(0.04)
Bipolar NA 0.09 (0.03)  0.315(0.17)  0.04 (0.03)
Constant  0.044 (0.03)  0.074 (0.04)  0.33 (0.22)  0.033 (0.02)

best network of each memristor type during the first 90@s the chemical mechanism is less likely to wear down or
robot steps of activation in the T-maze. It is immediatelyoreak (given that a unipolar switch is no more damaging
obvious that the networks internally function differently  to the device than a bipolar switch). Robot steps 400-525
average weight is much smoother in the bipolar case (avgorrespond approximately to the time where the network
weight 0.528), whereas the unipolar synapses are muchanges from finding R1 to finding R2.

more distcontinuous (avg. weight 0.629). In contrast, the In the bipolar case, the increased activity in this period
total number of synaptic weight changes (Figlird 10(b)3hows that the network is reconfiguring to produce the
over the same time period (67968 total for unipolar, 75478quired behaviour. Network stability is achieved throegh
total for bipolar) display a smoother profile in the unipolarther spikes being sent by two neurons at the same processing
case. Fewer total switches in the unipolar case indicatggep (meaning no synaptic change occurs), saturation of a
that physical unipolar networks will be more long-lastingsynapse to a minimum/maximum (after which it is stable),
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Fig. 9. Showing adaptation in the T-maze environment. Ferttist controller of each synapse type, (a) shows the final
path for that controller in finding R1 before the reward zoseswitched to R2. Note that all paths are approximately
equally good. (b) 15 generations after the reward zone bwite best unipolar network uses online plasticity adapted
to the new reward zone. Binary switching allows a diversegeanf behaviours to be explored online, reducing the
number of generations required to adapt. The bipolar méonrssmilarly uses online adaptation to search a behavioura
repertoire, but the gradual analog plasticity variationamgethat the potential behaviours are less diverse thanein th
unipolar case. The constant connection can only adaptdhr@A application, and as such it's best path is similar to
the final path for finding R1. The best controllers in this case those that come closest to finding R2. (c) After 50
generations, all controllers have adapted to the new emviemt. Paths are: unipolar (black solid line), bipolar éblu
dotted line), and constant (red dashed line).
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of total synaptic weight changes, during network activatiSuch results are typical of each memristor type and simila
between experiments.



or repeated pairs of positive/negative coincidence evdiots formance benefits compared to the two other synapse types
change actions, typically, a “trigger” neuron drives a @@t in terms of faster attainment of the required behaviour and
hidden-to-outpusynapse to increase its weight in responsbetter generated paths. The use of two experimental setups
to a change in input neuron firing (frequently) or internalone reactive, one dynamic) allows us to talk with some
network state (rarely), increasing the efficacy of spike# segenerality about the results: both the memory ability and
along that synapse and thus the firing frequency of theactive behaviour are in some way improved through use of
postsynaptic output neuron). Many coincidence events atiee unipolar memristor. It has been clearly demonstratad th
required due to the more gradual nature of the weight changée more coarse-grained attractors and restricted bifasy p
We note that such changes are more stable in the bipol&ity scheme do not overtly impede the unipolar networks
case, due to the limited effect that a synapse has on netwakility to generate highly-fit pathfinding behaviour.
activity in a short period of time. Similar results are rejgar Evolution is shown to find solutions statistically faster on
by [17]. both tasks when the networks used unipolar memristors when
The unipolar networks are based on the concept of settimpmpared to the other synapse types. More expedient goal-
up “weight oscillators” to create a context-sensitive dyia  finding behaviour can be attributed to the simpler unipolar
connectivity map through time. Unlike the bipolar netwgrksattractor space compared to bipolar memristors. Expeiisnen
activity can be perturbed in a single processing step tmdicate that the ability to perform online behaviour adapt
move the network into a different region of attractor spaceion gives the unipolar memristor a similar advantage over
However, the attractors have approximately equal switchinconstant synapses. We can view the unipolar memristor as
activity. As the impact of a single switch on the networksitting in a “sweet spot” in terms of complexity/evolvabjli
can be dramatic, potentially disparate regions of theeitira (bipolar memristors are capable of richer behaviours bet ar
space can be very quickly traversed and explored — the typesore difficult to evolve, constant connections are simplér b
of network topology (and hence variation in behavioursj thdack online adaptability).
can be reached in a single processing step is much larger inOne lingering question relates to the scalability of the
the unipolar case. This is perhaps most easily shown in thmipolar synapse to more complex tasks. Due to the sim-
time to solve each task, which is always statistically fastepler switching characteristics and (at least) equivalestt p
than the other two network types. Figurel 10(b) shows formance when compared to the more traditional bipolar
smoother switching frequency for unipolar networks — asynapse, we do not expect scalability to be an issue with
a single switch can have a large impact on the network, mine synapse type any more than it would be with the
rapid spikes in switching activity are required. On a handwa other. In fact, due to the reduced attractor space of the
level, the bipolar networks can be seen to place a lot ofstreanipolar network, one may expect it to scale better than the
on a few key synapses, wheres the unipolar networks rely dipolar networks. Due to their simpler two-state behaviour
moderate switching activity of many synapses — potentiallynipolar memristors are much easier to repeatedly falericat
a more long-lasting strategy. en masse¢han the more ubiquitous bipolar memristors due to
Stable activity is achieved through synchronised switghinhaving switching profiles that are less sensitive to syrishes
and balanced use of both LRS and HRS to moderate tltenditions as they are only required to switch between two
percolation of activity through the network. As with thestates, and encapsulate more robust behaviours as they do no
bipolar networks, unipolar networks use “trigger” neuronsely on potentially complex interactions of specific analog
to change the action when required. In this case, the trigg8TDP curves to function. When this knowledge is combined
neuron affects a change on a network-wide scale, rather thavith the experimental results presented herein, intergsti
between only a small subnetwork. Self-stabilising actiist questions are raised regarding the direction of neuromorph
observed, e.g. the network moves into a state which addagineering, in particular the issue of biological realigs
activity which keeps the attractor in the given state eveaomputational efficiency. Do we aim for computing like a
when the neuron that causes the state change is subsequéemtisnan brain, or would some hybrid analog/digital approach
non-firing. be more efficient? This article provides some basis to the
Unipolar attractors involve more of the network to createiew that a non-biologically realistic, non-Hebbian archi
the weight oscillator. It is thought that attractor pagaiion tecture may present a more easily-traversable path towards
is higher as the synapses can cause much more activitguromorphic computing.
peturbation, larger attractors therefore a method of Istabi
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