
ar
X

iv
:1

40
9.

77
90

v1
 [

cs
.C

C
]

27
 S

ep
 2

01
4

Parameterized Analogues of Probabilistic Computation∗

Ankit Chauhan B. V. Raghavendra Rao

August 8, 2018

Abstract

We study structural aspects of randomized parameterized computation. We introduce a
new classW[P]-PFPT as a natural parameterized analogue ofPP. Our definition uses the
machine based characterization of the parameterized complexity classW[P] obtained by Chen
et.al [TCS 2005]. We translate most of the structural properties and characterizations of the
classPP to the new classW[P]-PFPT.

We study a parameterization of the polynomial identity testing problem based on the degree
of the polynomial computed by the arithmetic circuit. We obtain a parameterized analogue of
the well known Schwartz-Zippel lemma [Schwartz, JACM 80 andZippel, EUROSAM 79].

Additionally, we introduce a parameterized variant of permanent, and prove its#W [1]
completeness.

1 Introduction

Parameterized Complexity Theoryprovides a formal framework for finer complexity analysis of
problems by allowing a parameter along with the input. It waspioneered by Downey and Fel-
lows [10, 9] two decades ago. Since then, it has revolutionized algorithmic research [19], and led
to the development of several important algorithmic techniques.

Fixed Parameter Tractability(FPT) forms the central notion of tractability in Parameterized
Complexity Theory. Here, any problem that is decidable in deterministic timef(k)poly(n) is
deemed to be tractable, wherek is the parameter andf any computable function. SeveralNP hard
problems including the vertex cover problem are known to be tractable under this notion [13].

TheW-hierarchy serves as the basis for all intractable problemsin the parameterized world.
W[1], the smallest member ofW-hierarchy, consists of problems that are FPT equivalent tothe
p-clique problem [13]. The limit ofW hierarchy,W[P] encapsulates all problems solvable in non-
deterministicf(k)poly(n) time using at mostg(k) logn non-deterministic bits [6, 13], wheref
andg are arbitrary computable functions.

∗Department of Computer Science and Engineering Indian Institute of Technology Madras, Chennai, India.
{ankitch,bvrr}@cse.iitm.ac.in

1

http://arxiv.org/abs/1409.7790v1

There have been significant efforts towards understanding the structure of parameterized com-
plexity classes in the last two decades. Specifically exact characterizations of theW hierarchy and
other related hierarchies are known [11]. (See also [13, 10].)

Apart from non-deterministic computation, probabilisticcomputation serves as one of the cru-
cial building blocks of Complexity Theory. Probabilistic complexity classes have been well studied
in the literature and has been an active area of research for more than three decades. There are a
significant number of parameterized algorithms that use randomization [10, Chapter 8]. Hence,
development of randomized complexity classes in the parameterized framework is necessary to
understand the use of randomization in the parameterized setting.

Müller [18, 17] was the first to do a systematic development and study of parameterized ran-
domization. He defined bounded error probabilistic parameterized classes such asW[P]-BPFPT
andW[1]-BPFPT. Further, he obtained amplification results and conditionsfor derandomization
of these classes. Further, Müller [18] studied several parameterizations of the well known poly-
nomial identity testing problem (ACIT) and obtained several hardness results as well has upper
bounds in terms of the newly defined randomized classes.

We continue the line of research initiated by Müller [18] and study a parameterized variant of
probabilistic computation with unbounded error and establish a relationship with the corresponding
parameterized counting class.

It should be noted that almost all of the randomized FPT algorithms use randomness of the
same magnitude as their running times. However, such an algorithm cannot be visualized as a
non-deterministic algorithm withf(k) logn random bits, wheref(k) is an arbitrary computable
function. This is in stark contrast to the classical setting, where every randomized algorithm with
bounded error probability can also be seen as a non-deterministic algorithm with the same time
bound. So it is desirable to have randomized FPT algorithms that use at mostO(f(k) logn) random
bits instead off(k)poly(n) random bits. As a first step towards this we obtain such an algorithm
for a suitable parameterization of ACIT.

Finally, following the recent developments in the parameterized complexity theory of counting
problems [5, 7, 8], we develop a parameterized variants of the problems of computing permanent
and determinant of a matrix.

Our results We make an attempt at understanding the relations between counting and probabilis-
tic classes. We focus on a probabilistic analogue of the classW[P]. Using the notion ofk-restricted
Turing machines [6], we introduceW[P]-PFPT as a parameterized variant of the probabilistic poly-
nomial time (PP). As in the classical complexity setting, we establish a close connection between
W[P]-PFPT and the counting class#W[P] (Theorem 2). Further, we show thatW[P]-PFPT is
closed under complementation and symmetric differences. (Theorem 3 and Lemma 3.)

We consider the polynomial identity testing problems (ACIT) with the syntactic degree(See
Section 2 for a definition) as a parameter. Using the construction of hitting set generators by
Shpilka and Volkovich [21], we obtain what can be called as a parameterized analogue of the
celebrated Schwartz-Zippel Lemma [20, 23]. (Theorem 4.)

Finally, we introduce a parameterized variant of the permanent functionp-perm and prove that
it characterizes the class#W[1]. (Theorem 6.) Analogously, a variant of the determinant function

2

(p-det) and show that it is Fixed Parameter Tractable (Theorem 5).

2 Preliminaries

We include some of the definitions from Parameterized Complexity theory and Complexity the-
ory here. For Parameterized Complexity, the notations in [10, 13] are followed. Definitions of
complexity classes can be found in e.g., [12, 4].

A parameterizedlanguage is a setP ⊆ Σ∗×N, whereΣ is a finite alphabet. If(x, k) ∈ Σ∗×N

is an input instance of a parameterized language, thenx is referred to as theinput andk as the
parameter.

A parameterized countingproblem is a pair(f, k), wheref : Σ∗ → N is a counting function
andk is the parameter andΣ is a finite alphabet. For notational convenience, we will denote a
parameterized counting problem as a functionf : Σ∗ × N → N, where the second argument tof
is considered as the parameter.

A parameterized languageP ⊆ Σ∗ × N is said to befixed-parameter tractableif there is an
algorithm that given a pair(x, k) ∈ Σ∗ × N , decides if(x, k) ∈ P in at mostO(f(k)|x|c) steps,
wheref : N → N is a computable function andc ∈ N is a constant.

Definition 1. FPT denotes the class of all parameterized languages that are fixed parameterized
tractable.

A parameterized languageL is said to be inRFPT (RandomizedFPT) if there is af(k)poly(n)
time bounded randomized machine acceptingL with bounded one-sided error probability. See [13,
10] for more details.

Definition 2. A k-restricted machineis a non-deterministicg(k)poly(n) time bounded Random
Access Machine (RAM) that uses at mostf(k) non-deterministic words, wheref andg are arbi-
trary computable functions. Here we assume that the word size isO(logn), wheren is the length
of the input.

A k-restricted Turing machineis a non-deterministicg(k)poly(n) time Turing machine that
makes at mostf(k) logn non-deterministic moves, wheref andg are arbitrary computable func-
tions.

Definition 3. A tail non-deterministic machine is ak-restricted machine in which all non-deterministic
steps are among lastf(k) steps.

W[P] is the class of all parameterized problems (Q, k) that can be decided by ak-restricted non-
deterministic machine (for more details see chapter 3 in [13]). W[1] is the class of all parameterized
problems (Q, k) that can be decided bytail non-deterministic machine (for more details see [6]).

For a non-deterministic machineM , let#accM(x, k) and#rejM(x, k) respectively denote the
number of accepting and rejecting paths ofM on input(x, k). DefinegapM(x, k)=#accM(x, k)−
#rejM(x, k).

Definition 4. [13] A parameterized counting function(f, k) over the alphabetΣ is in #W[P] if
there is ak-restricted non-deterministic machineM such thatf(x, k) = #accM(x, k).

3

Definition 5. A probabilistick-restricted machine is a probabilisticg(k)poly(n) time bounded
RAM that make at mostf(k) probabilistic moves, wheref andg are some computable functions.
Here we assume that one probabilistic move involves choosing a random word ofO(logn) bits.

A languageL is said to be inW[P]-RFPT [18] if there is ak-restricted probabilistic machine
such that(x, k) ∈ L =⇒ Pr[M accepts(x, k)] ≥ 2/3 ; and x /∈ L =⇒ Pr[M rejects(x, k)] =
0.

An arithmetic circuitC is a directed acyclic graph with labelling on the vertices asfollows.
Nodes of in-degree zero are calledinput gates and are labelled from{−1, 0, 1} ∪ {x1, . . . , xn}
wherex1, . . . , xn are the input variables. The remaining gates are labelled× or +. An arithmetic
circuit has exactly one gate of zero out-degree called theoutputgate. Every gatev in an arithmetic
circuit can naturally be associated with a polynomialpv ∈ Z[x1, . . . , xn], where the polynomials
associated at input nodes are either constants or variables. If v = v1 + v2 thenpv = pv1 + pv2 and
if v = v1 × v2 thenpv = pv1 × pv2 . The polynomial computed by the circuitC is the polynomial
associated with its only output gate and is denoted bypC . The size of an arithmetic circuit is the
number of gates in it and is denoted bysize(C).

We associate a number called thesyntactic degree(syntdeg)1 with every gate of an arithmetic
circuitC. For a leaf nodev, syntdeg(v) = 1. If v = v1+v2 thensyntdeg(v) = max{syntdeg(v1), syntdeg(v2)}
and ifv = v1 × v2 thendeg(v) = syntdeg(v1) + syntdeg(v2). It should be noted that the degree of
the polynomial computed by a circuit is bounded by its syntactic degree.

Remark 1. the parameterd× introduced in [18] is closely related tosyntdeg, in fact syntdeg ≤
2d× ≤ 2syntdeg.

In [3], Alon obtained a characterization for multivariate polynomials that are not identically
zero known as the Combinatorial Nullstellensatz:

Proposition 1 (Combinatorial Nullstellensatz, [3]). LetP ∈ K[x1, . . . , xn] be a polynomial where
for everyi ∈ [n], the degree ofxi is bounded byt. LetS ⊆ K be a finite set of size at leastt + 1,
andA = Sn. ThenP ≡ 0 ⇐⇒ P (a) = 0, ∀a ∈ A.

3 Probabilistic Computation

In this section, we develop a parameterized analogue of the classical complexity classPP. Our
definition ofW[P]-PFPT is based onk-restricted probabilistic Turing machines.

Throughout this section unless otherwise stated,f(k) denotes an arbitrary computable function,
andP (n, k) = f(k) logn. For an inputx, we denoten = |x|.

Definition 6. LetL be a parameterized language.L is said to be in the classW[P]-PFPT if there
is ak-restricted probabilistic Turing machineM such that for any(x, k) ∈ Σ∗ × N we have,

(x, k) ∈ L ⇒ Pr[M accepts(x, k)] >
1

2

(x, k) /∈ L ⇒ Pr[M accepts(x, k)] ≤
1

2
1Syntactic degree is also known as the formal degree [15] and is a standard parameter for arithmetic circuits.

4

where the probabilities are over the random choices made byM .

Without loss of generality, we assumeΣ = {0, 1}.
In the classical setting,PP is known to have several characterizations based on, 1) difference

between two#P functions [14], 2) difference between the number of accepting and rejecting paths
of a polynomial time bounded non-deterministic Turing machine [14], 3) logics based on majority
quantifiers [16] and 4) large fan-in circuits with thresholdgates [2]. We observe that all of the
characterizations except (3) hold forW[P]-PFPT. However, it is not clear if the majority quantifier
logical characterization ofPP [16] translates to the parameterized setting.

Definition 7 (Diff-FPT, Gap-FPT). A parameterized functionf : Σ∗ × N → Z is said to be in
Diff-FPT if there are two functionsg, h ∈ #W[P] such thatf(x, k) = g(x, k)− h(x, k).

f is said to be inGap-FPT if there is ak-restricted TMM such thatf(x, k) = #accM(x, k)−
#rejM(x, k), ∀(x, k) ∈ Σ∗ × N.

Firstly, we observe that the two classesGap-FPT andDiff-FPT coincide.

Lemma 1. Gap-FPT = Diff-FPT

Proof. To showGap-FPT ⊆ Diff-FPT: Let f ∈ Gap-FPT, then there is ak-restrictedM with
f(x, k) = #accM(x, k)−#rejM(x, k). LetM ′ be a new machine that simulatesM on input(x, k)
and accepts if and only ifM rejects(x, k). Then we havef(x, k) = #accM(x, k)−#accM ′(x, k).
For the converse inclusion, letf ∈ Diff-FPT, andM1,M2 be such thatf(x, k) = #accM1(x, k)−
#accM2(x, k). Let M be a new machine: on input(x, k), M runsM1 on (x, k), and accepts
if M1 does so. IfM1 rejects thenM simulatesM2 on (x, k) and rejects ifM2 accepts. IfM2

rejects, thenM guesses a non-deterministic bitb, accepts ifb = 1 and rejects otherwise. Then
#accM(x, k)−#rejM(x, k) = #accM1(x, k)−#accM2(x, k) = f(x, k).

Lemma 2.Gap-FPT is closed under takingp-boundedsummations and products, i.e., ifg1, . . . , gt(k) ∈
Gap-FPT, then so areg1+g2 · · ·+gt(k) andg1×g2×· · ·×gt(k), wheret is any computable function.

Proof. The arguments here are straightforward adaptations of proofs from classical complexity.
We include it here for completeness. For summation, we can construct a new machineM that first
guessesi ∈ [1, t(k)] and and runs thek-restricted machine forgi on (x, k).

For product, we will show for the case whent(k) = 2. Let f1, f2 ∈ Gap-FPT. LetM1 andM2

as thek-restricted machines such thatfi(x, k) = #accMi
(x, k)−#rejMi

(x, k), 1 ≤ i ≤ 2. LetMi

be the machine that flips the answers ofMi. LetM bek-restricted machine defined as follows: On
input(x, k) first simulateM1 on(x, k). If M1 accepts then runM2 on(x, k) and accept if and only
if M2 does so. IfM1 rejects then runM2 on (x, k) and accept if and only ifM2 does so. It can be
seen thatf1(x, k)f2(x, k) = #accM(x, k)−#rejM(x, k).

The above argument can be generalized to the caset(k) ≥ 2.

Theorem 1. LetL be a parameterized language. The following are equivalent:

1. L ∈ W[P]-PFPT.

5

2. There is ak−restricted Turing machineM such that,

(x, k) ∈ L ⇐⇒ #acceptM(x, k)−#rejectM(x, k) > 0 .

3. There is a functionf ∈ Gap-FPT such that(x, k) ∈ L ⇐⇒ f(x, k) > 0

4. There is aB ∈ FPT, and P (n, k) = f(k) logn such that(x, k) ∈ L ⇐⇒ |{y ∈
{0, 1}P (n,k) | (x, y, k) ∈ B}| ≥ 2P (n,k)−1 + 1.

Theorem 1.(1 ⇒ 2) Let L ∈ W[P]-PFPT. Let M be ak-restricted probabilistic machine forL.
Then,

(x, k) ∈ L ⇒ Pr[M accept(x, k)] >
1

2
⇒

#acceptM(x, k)

#acceptM(x, k) + #rejectM(x, k)
>

1

2

⇒ #acceptM(x, k)−#rejectM(x, k) > 0

(2 ⇒ 3) This directly follows from the definition ofGap-FPT.
(3 ⇒ 4) Let f ∈ Gap-FPT with (x, k) ∈ L ⇐⇒ f(x, k) > 0, andM be ak-restricted

machine withf(x, k) = gapM(x, k). Let P (n, k) be the number of non-deterministic bits used
by M on an input of lengthn with parameterk. ThengapM(x, k) > 0 =⇒ #accM(x, k) >
2P (n,k)/2 = 2P (n,k)−1. Let

B = {〈x, y, k〉 | M on the non-deterministic path defined byy acceptsx.}

Clearly,B ∈ FPT and

#accM(x, k) = |{y ∈ {0, 1}P (n,k) | 〈x, y, k〉 ∈ B}|.

Thus(x, k) ∈ L =⇒ |{y ∈ {0, 1}P (n,k) | 〈x, y, k〉 ∈ B}| > 2P (n,k)−1.
(4 ⇒ 1) Let L as given in 4. LetM be k-restricted machine that on input(x, k) guesses a

string y ∈ {0, 1}P (n,k) and accepts if and only if〈x, y, k〉 ∈ B. Then we havex ∈ L ⇐⇒
#accM(x, k) > 2P (n,k)−1 ⇐⇒ Pr[M accepts(x, k)] > 1/2.

Similar to the case ofPP, we observe that an FPT machine with oracle access to a function in
#W [P] is equivalent to an FPT machine with a language inW[P]-PFPT as an oracle.

Theorem 2. FPT#W[P] = FPTW[P]-PFPT

Theorem 2.We show the containment in both the directions. We start withthe easier direction,
i.e., we showFPTW[P]-PFPT ⊆ FPT#W[P].

Let L ∈ FPTW[P]-PFPT andM be a deterministic oracle Turing machine that runs in time
f(k)poly(n) andA ∈ W[P]-PFPT be such that such thatL = L(MA). We need to show that
L ∈ FPT#W [P]. By Theorem 1, there are two parameterized functionsg, h : {0, 1}∗ × k → N

with g, h ∈ #W[P] such that

(x, k) ∈ A ⇐⇒ g(x, k)− h(x, k) > 0. (1)

6

Let γ : {0, 1}∗ × k → N whereγ(0x, k) = g(x, k), andγ(1x, k) = h(x, k), ∀x ∈ {0, 1}∗. On
strings of length0 and1, γ can be defined arbitrarily. We haveγ ∈ #W[P], since a on input
y = ax, with a ∈ {0, 1}, the machine would run the machine forg if a = 0 and machine forh if
a = 1.

We can simulate a query(y, k′) made by the machineM to A by two queries to the function
γ: (1) Query(0y, k′) and (2)(1y, k′), compute the difference of the values obtained and use (1) to
decide the membership of(y, k′) in A. Thus we can concludeL ∈ FPT#W[P].

For the reverse containment, given a Turing machineM , let LM be the language defined as :
LM = {((x, k, y) ∈ Σ∗ × N× N | #accM(x, k) > y}

Claim 1. LetM be ak-restricted Turing machine, thenLM ∈ W[P]-PFPT.

Claim. LetM ′ be a Turing machine computing functiont(x, k, y), that on input(x, k, y), produces
exactlyy accepting paths, wherey is represented in binary, andy ∈ [0, 2P (n,k)]. Clearly,M ′ is a
k-restricted Turing machine, since it needs to use onlyP (n, k) many non-deterministic bits. Thus
the functiont(x, k, y) = y is in #W[P]. Let fM (x, k, y) = #accM(x, k) − y. Then by Lemma 1
fM is in gapW[P] and the claim now follows from Theorem 1.

LetL ∈ FPT#W[P], then there is a deterministic oracle Turing machineM ′ that runsFPT time,
and a functiong ∈ #W[P] such thatL = M ′g. LetM be ak-restricted Turing machine that uses
at mostf(k) logn non-deterministic steps such thatg(x, k) = #accM(x, k). We use the standard
binary search technique to show thatg(x, k) can be computed usingO(kn) many queries to the
languageLM .

Input (x, k), oracle access toLM . Output g(x, k).

1. Initialize p = P (|x|, k), y = 2p.

2. Repeat steps 3 & 4 untilp ≥ 0

3. Query(x, k, y) to the oracle; If YES, then setbp = 1 andy = y + 2p−1; Else setbp = 0.

4. Setp = p− 1

5. Returna = binary(bpbp−1 . . . b0).

In the abovebinary(bpbp−1 . . . b0) =
∑p

i=0 2
ibi. Clearly, the algorithm above runs in timef(k)poly(n),

and hence computingg can be done inFPT with oracle access toLM ∈ W[P]-PFPT. This con-
cludes the inclusion in the converse direction.

Theorem 3. W[P]-PFPT is closed under complementation.

Proof can be found in the appendix.

Lemma 3. W[P]-PFPT is closed under symmetric difference.

7

Proof. The proof essentially follows the ideas in the classical setting [2]. LetL1, L2 ∈ W[P]-PFPT.
By Theorem 1, there are languagesB1, B2 ∈ FPT, and a functionP (n, k) = f(k) logn such that
for anyx ∈ {0, 1}∗, k ∈ N andi ∈ {1, 2},

(x, k) ∈ Li ⇐⇒ |{yi ∈ {0, 1}P (n,k)|(x, k, yi) ∈ Bi}| ≥ 2P (n,k)−1 + 1

Using a construction similar to the one used in the proof of Theorem 3, we get parameterized
languagesB′

1 andB′
2, and a functionP ′(n, k) = f ′(k) logn with the following property for1 ≤

i ≤ 2:

(x, k) ∈ Li =⇒ |{yi ∈ {0, 1}P
′(n,k)|(x, k, yi) ∈ B′

i}| ≥ 2P
′(n,k)−1 + 1; and

(x, k) /∈ Li =⇒ |{yi ∈ {0, 1}P
′(n,k)|(x, k, yi) ∈ B′

i}| ≤ 2P
′(n,k)−1 − 1.

Let a1(x), a2(x) ∈ Z such that|{y ∈ {0, 1}P (n,k) | 〈x, y〉 ∈ B′
i}| = 2P (n,k)−1+ai(x) for 1 ≤ i ≤ 2.

Thus|{y ∈ {0, 1}P (n,k) | 〈x, y〉 /∈ B′
i}| = 2P (n,k)−1 − ai(x). Forx ∈ Σ∗, let

ℓ(x, k)
△
= |S(x, k)|

= |(2P
′(n,k)−1 + a1)(2

P ′(n,k)−1 − a2) + (2P
′(n,k)−1 − a1)(2

P ′(n,k)−1 + a2)|

= (22P
′(n,k)−1 − a1a2),

whereS(x, k) = {〈y1, y2〉 | (< x, y1 >∈ B1∧〈x, y2〉 /∈ B2)∨(〈x, y1〉 /∈ B1∧〈x, y2〉 ∈ B2)}. Now,
if x ∈ L1 △ L2 then either(a1 ≥ 1 anda2 < 0) or (a1 < 0 anda2 ≥ 1) thenℓ > 22P (n,k)−1 and if
x /∈ L1 △ L2 then either botha1 anda2 are greater than equal to 1 or both are less than 1, and in
both the casesℓ ≤ 22P (n,k)−1. LetM ′ be ak-restricted Turing machine that on input(x, k) guesses
two stringsy1 andy2 of lengthP ′(n, k) each, and queries(x, k, yi) toB′

i, 1 ≤ i ≤ 2, accepts if and
only if exactly one of the oracle answers is YES. It can be seenthat#accM ′(x, k) = ℓ(x, k). We
concludeL1 △ L2 ∈ W[P]-PFPT.

4 Polynomial Identity Testing

Müller [18] studied the Arithmetic Circuit Identity Testing (ACIT) problem with various parame-
ters and obtained upper bounds as well as hardness results for each of the parameters considered.
However none of the parameters considered in [18] seem adequate for developing a complexity
theory for the parameterized probabilistic and counting classes along the lines of classical com-
plexity classes.

Recall that, in ACIT we are given an arithmetic circuitC as an input and the task is to test
if the polynomial computed byC is identically zero. We consider the degree of the polynomial
computed byC as a parameter.

Problem 1 (p-acit). Input: Arithmetic circuitC, syntdeg(C) ≤ k.
Parameter: k.
Task: Test if the polynomial computed byC is identically zero.

8

Our main objective now is to show thatp-acit ∈ W[P]-RFPT. However, it should be noted that
this does not follow directly from the Schwartz-Zippel Lemma, since it would requireO(n log k)
random bits. So the challenge here is to reduce the number of random bits required tof(k) logn.
Towards this, we use a mapping defined by Shpilka and Volkovich [21] that reduces the number
of variables fromn to 2k. Then we apply Alon’s Combinatorial Nullstellensatz [3] toobtain what
can be treated as a parameterized version of the Schwartz-Zippel lemma.

We begin with a few observations on polynomials of degree at most k. Let S be any finite
subset ofK that includes0 ∈ K and letW k

n (S) denote the set of all vectors inSn with at mostk
non zero entries i.e, the set of all vectors of Hamming weightat mostk.

Lemma 4. Letf be ann-variate polynomial of degree at mostk. Then

f ≡ 0 ⇐⇒ ∀a ∈ W k
n (S) f(a) = 0,

whereS ⊂ K has at leastk + 1 elements.

Proof. For simplicity, we denoteW k
n (S) by W k

n . The proof is by induction onn. For the base
case, supposen ≤ k. Since individual degrees of each variable is bounded byk, by Proposition 1,
we havef ≡ 0 ⇐⇒ f(a) = 0 ∀ a ∈ Sn, for anS with |S| ≥ k.

For the induction step, letn > k, andf(a) = 0 ∀ a ∈ W k
n . For i ∈ {1, . . . , n}, let fi=f |xi=0,

i.e., f substituted withxi = 0. Note that each of thefi is a degreek polynomial on at most
n − 1 variables, and∀a ∈ W k

n−1 fi(a) = 0. By the induction hypothesis, we havefi ≡ 0, and
hencexi dividesf . Repeating the argument for alli ∈ [1, . . . , n], we havex1x2 · · ·xn divides
f , and hencedeg(f) ≥ n > k, a contradiction sincedeg(f) = k < n. Thus we conclude
∀a ∈ W k

n f(a) = 0 =⇒ f ≡ 0. The converse direction is trivially true.

We need a function introduced by Shpilka and Volkovich [21],that gives a mapGk : K[x1, . . . , xn] →
K[y1, . . . , y2k] and serves as a non-identity preserving for a large class of polynomials. We observe
thatGk also functions as a non-identity preserving map for the class of alln variate polynomials
of degree at mostk. We begin with the definition of the generatorGk.

Definition 8 (Shpilka-Volkovich Hitting set generator,[21]). Leta1, . . . , an be distinct elements in
K. LetGi

k ∈ K[y1, . . . , yk, z1, . . . , zk] be the polynomial defined as follows:

Gi
k(y1, . . . , yk, z1, . . . , zk) =

k
∑

j=1

Li(yi)zi, where Li(x) =

∏

j 6=i(x− aj)
∏

j 6=i(ai − aj)
.

The generatorGk is defined asGk
△
= (G1

k, . . . , G
n
k).

Lemma 5. For any finite setS ⊂ K, thenW k
n (S) ⊆ {(G1

k(a), . . . , G
n
k(a)) | a ∈ (S∪{a1, . . . , an})

2k}.

Proof. The proof essentially follows the arguments in [21]. We include a sketch here for the sake
of completeness. Note that,

Li(α) =

{

0 α = aj , if j 6= i

1 if α = ai.

9

Thus if we setyℓ = ai, then the image ofGi
k containszi as a summand. By ensuring thatyj, i 6= j

gets someaℓ, i 6= ℓ, we getGi
k = zi. In this way we can obtain all vectors of Hamming weightk,

by settingyi’s andzi’s accordingly.

Combining Lemma 5 with Lemma 4 we have:

Lemma 6. Letf be a polynomial of degree at mostk. Thenf ≡ 0 ⇐⇒ f(Gk) ≡ 0.

Theorem 4. p-acit is in W[P]-RFPT

Proof. By Lemma 6p-acit reduces to testing identity of2k-variate polynomials of degreeO(nk)
(since the polynomialsLi have degreen). Now applying the Schwartz-Zippel lemma [20, 23], we
obtain a randomized algorithm that usesO(2k log(nk)) random bits and runs in time polynomial
in n andk.

5 Parameterized Permanent vs Determinant

The determinant (det) permanent (perm) functions are defined as

det(A) =
∑

σ∈Sn

n
∏

i=1

sgn(σ)ai,σ(i) (2)

perm(A) =
∑

σ∈Sn

n
∏

i=1

ai,σ(i), (3)

whereA = (ai,j)1≤i,j≤n ∈ N
n×n, Sn is the set of all permutations onn symbols andsgn is the sign

function for permutations. It is known that, given an integer matrixA, computingA can be done in
polynomial time (e.g., Gaussian Elimination method). In his celebrated paper, Valiant [22] showed
that computingperm of an integer even for 0 or 1 matrix is complete for#P. Though there are
several natural counting problems that characterize#W [1], it is desirable to have a parameterized
variant of permanent so that we get access to the algebraic properties of the permanent function.

Naturally, we expect any parameterized variant of permanent to be a function of degreek in n2

variables, wherek is the parameter. One way to achieve this would be to restrictthe summation
given in (3) that move exactlyk-elements. Formally, a permutationσ ∈ Sn is said to be ak-
permutation, if |{i | σ(i) 6= i}| = k. LetSn,k denote the set of allk-permutations onn symbols.

Definition 9. Letk be a parameter. The parameterized determinant (p-det) and permanent (p-perm)
functions of a matrixA ∈ Z

n×n are defined as follows:

p-det(A, k) =
∑

σ∈Sn,k

∏

i 6=σ(i)

sgn(σ)aiσ(i)

p-perm(A, k) =
∑

σ∈Sn,k

∏

i 6=σ(i)

aiσ(i),

wherek is a parameter. By abusing the notation, we also letp-perm denote the problem of
computingp-perm of ann× n matrix, wherek is the parameter.

10

Quite expectedly,p-det is FPT andp-perm can be shown to be#W [1] complete under fpt-
reductions. We start with the tractability ofp-det.

Theorem 5. p-det on integer matrices is fixed parameter tractable.

Proof. Let A ∈ Z
n×n, andk be the parameter. LetA′ be the matrix obtained fromA by replac-

ing the diagonal entries inA by zeroes. Clearlyp-det(A, k) = p-det(A′, k). Let x be a formal
variable. Thendet(xA′) is a univariate polynomial of degree bounded byn, and the coefficient
of xk in det(xA′) is equal top-det(A, k). The valuep-det(A, k) be recovered using the standard
interpolation of univariate polynomials.

Theorem 6. p-perm on matrices inNn×n is#W [1] complete. The hardness holds even in the case
of 0-1 matrices.

Proof. It is known that countingk-matchings in a bipartite graph is complete for#W[1] even in the
weighted case [8]. We prove a parameter preserving equivalence betweenp-perm and the problem
of countingk-matchings in a bipartite graph which completes the proof. For the upper bound, we
give a reduction fromp-perm to countingk-matchings in a bipartite graph. For a given matrix
A ∈ N

n×n define the matrixA′ by setting the diagonal entries ofA to zero, i.e.,A′[i, j] = A[i, j]
if i 6= j andA′[i, i] = 0, 1 ≤ i ≤ n. Note thatp-perm(A) = p-perm(A′). Everyk-permutation
of {1, . . . , n} corresponds to a matching of sizek in the bipartite graphG′ with A′ is the bipartite
adjacency matrix. Thusp-perm(A′) =the sum of weights ofk-matchings inG′.

For the hardness we give a reduction in the reverse direction, i.e., a parameter preserving reduc-
tion from counting the number ofk- matchings in a Bipartite graphG = (U, V, E) to computing
p-perm of an integer matrix.

Let G = (U, V, E) be a bipartite graph. Without loss of generality, assume that U = V =
{1, . . . , n}. Construct a new bipartite graphG′ = (U ′, V ′, E ′) with U ′ = V ′ = {1, . . . , 2n}. For
every edge of the form(i, j) ∈ E, i 6= j, G′ contains the edge(i, j) ∈ E ′. For edges of the form
(i, i) ∈ E, G′ contains the edge(i, n + i) ∈ E ′. Note that the verticesn + 1, . . . , 2n in U ′ are
isolated vertices.

Note that the number of matchings inG and those inG′ of a given sizek are equal. LetA′ be
the bipartite adjacency matrix ofG′. Everyk-permutation of[2n] that contributes a non-zero value
to p-perm(A′) corresponds to a matching of sizek in G′. Moreover, none of thek-matchings inG′

will have an edge of the form(i, i), i ∈ [2n]. Thus,p-perm(A′, k) = #matchings of sizek in G′.
This completes the proof.

Conclusions

We have studied parameterized variants of probabilistic computation. We hope that our definition
of W[P]-PFPT leads to further developments in the structural aspects of probabilistic and count-
ing complexities in the parameterized world. Further,W[P]-PFPT might be useful in defining a
parameterized variant of the Counting Hierarchy (CH) whichcould in turn have implications to

11

parameterized complexity of numerical and algebraic computation [1]. Though definition of a pa-
rameterized CH based onW[P]-PFPT is straightforward, the usefulness of such a definition would
rely onW[P]-PFPT being closed under intersection, which is not known currently.

Further, we believe any fixed parameter tractable randomized algorithm should naturally place
the problem inW[P]. One way to achieve this is to obtain randomized FPT algorithms that use
at mostO(f(k) logn) random bits. As a first step towards this direction, we introduce a natural
parameterization to the polynomial identity testing for which we obtain such an algorithm. We
hope our observations will lead to further development of randomness efficient parameterized al-
gorithms.

Acknowledgements

We thank anonymous reviewers for their comments on an earlier version of this paper which helped
in improving the presentation of the article.

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of
numerical analysis.SIAM J. Comput., 38(5):1987–2006, 2009.

[2] E. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant.Bulletin
of the EATCS, 40:182–194, 1990.

[3] N. Alon. Combinatorial nullstellensatz.Combinatorics, Problem and Computing, 8, 1999.

[4] S. Arora and B. Barak.Computational Complexity: A Modern approach. Cambridge Uni-
veristy Press, 2009.

[5] M. Bläser and R. Curticapean. Weighted counting of k-matchings is #W[1]-hard. InIPEC,
pages 171–181, 2012.

[6] Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity the-
ory. Theor. Comput. Sci., 339(2-3):167–199, 2005.

[7] R. Curticapean. Counting matchings of size k is w[1]-hard. In ICALP (1), pages 352–363,
2013.

[8] R. Curticapean and D. Marx. Complexity of counting subgraphs: only the boundedness of
the vertex-cover number counts.CoRR, abs/1407.2929, 2014. To Appear in FOCS 2014.

[9] R. G. Downey and M. R. Fellows. Fixed-parameter intractability. In Structure in Complexity
Theory Conference, pages 36–49, 1992.

[10] R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer-Verlag, 1997.

12

[11] R. G. Downey, M. R. Fellows, and K. W. Regan. Parameterized circuit complexity and the
W hierarchy.Theor. Comput. Sci., 191(1-2):97–115, 1998.

[12] D.-Z. Du and K.-I. Ko.Theory of Computational Complexity. Springer Verlag, 2000.

[13] J. Flum and M. Grohe.Parameterized Complexity Theory. Springer-Verlag, 2008.

[14] L. Fortnow. Counting complexity.In L. Hemaspaandra and A. Selman, editors, Complexity
Theory Retrospective II, pages 81–107, 1997.

[15] N. Kayal, C. Saha, and R. Saptharishi. A super-polynomial lower bound for regular arithmetic
formulas. InSTOC, pages 146–153, 2014.

[16] J. Kontinen. A logical characterization of the counting hierarchy.ACM Trans. Comput. Log.,
10(1), 2009.

[17] M. Müller. Parameterized derandomization. InIWPEC, pages 148–159, 2008.

[18] M. Müller. Parameterized Randomization. PhD thesis, Albert-Ludwigs-Universität Freiburg
im Breisgau, 2008.

[19] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 ofOxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, 2006.

[20] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.J. ACM,
27(4):701–717, 1980.

[21] A. Shpilka and I. Volkovich. Improved polynomial identity testing of read-once formulas.
In Approximation, Randomization and Combinatorial Optimization. Algorithms and Tech-
niques, volume 5687 of LNCS, pages 700–713, 2009.

[22] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979.

[23] R. Zippel. Probabilistic algorithms for sparse polynomials. InEUROSAM, pages 216–226,
1979.

13

A Proof of Theorem 3

Let L ∈ W[P]-PFPT then there exist ak-restricted Turing machineM running using at most
P (n, k) random bits such that

(x, k) ∈ L ⇒ Pry∈{0,1}f(k) log n [M accepts(x, k)] ≥
1

2
+

1

2P (n,k)
; and

(x, k) /∈ L ⇒ Pry∈{0,1}f(k) log n [M accepts(x, k)] ≤
1

2

LetM ′ be the machine that on input(x, k) simulatesM , rejects(x, k) if M does so, and whenever
M accepts, chooses a random string of lengthP (n, k) + 1 and rejects only if the random string is
1P (n,k)+1 and accepts otherwise. For any(x, k) ∈ Σ∗ × k, we have:

(x, k) ∈ L ⇒ Pry∈{0,1}P (n,k)[M ′ accepts(x, k)] ≥ (
1

2
+

1

2P (n,k)
)(1−

1

2p(n,k)+1
)

>
1

2
; and

(x, k) /∈ L ⇒ Pry∈{0,1}f(k) log n [M ′ accepts(x, k)] ≤
1

2
(1−

1

2p(n,k)+1
) <

1

2

Now, letM c be the machine that flips the answers ofM ′, i.e.,M c accepts wheneverM ′ rejects and
vice versa. We have :

(x, k) /∈ L ⇒ Pr[M c accepts(x, y, k)] = Pr[M c rejects(x, y, k)] <
1

2
(4)

(x, k) ∈ L ⇒ Pr[M c accepts(x, y, k)] = Pr[M rejects(x, y, k)] >
1

2
(5)

Note thatM ′ is k restricted. This completes the proof.

14

	1 Introduction
	2 Preliminaries
	3 Probabilistic Computation
	4 Polynomial Identity Testing
	5 Parameterized Permanent vs Determinant
	A Proof of Theorem ??

