arXiv:1409.7790v1 [cs.CC] 27 Sep 2014

Parameterized Analogues of Probabilistic Computétion

Ankit Chauhan B. V. Raghavendra Rao
August 8, 2018

Abstract

We study structural aspects of randomized parameterizegu@tion. We introduce a
new classW[P]-PFPT as a natural parameterized analogue®Bf Our definition uses the
machine based characterization of the parameterized eaityptlassW|P] obtained by Chen
et.al [TCS 2005]. We translate most of the structural prigeiand characterizations of the
classPP to the new clas8V[P]-PFPT.

We study a parameterization of the polynomial identityitgsproblem based on the degree
of the polynomial computed by the arithmetic circuit. Wealbta parameterized analogue of
the well known Schwartz-Zippel lemma [Schwartz, JACM 80 Zifgpel, EUROSAM 79].

Additionally, we introduce a parameterized variant of panent, and prove itgt17[1]
completeness.

1 Introduction

Parameterized Complexity Theopyovides a formal framework for finer complexity analysis of
problems by allowing a parameter along with the input. It wameered by Downey and Fel-
lows [10, 9] two decades ago. Since then, it has revolutehagorithmic research [19], and led
to the development of several important algorithmic teghes.

Fixed Parameter TractabilityFPT) forms the central notion of tractability in Paramied
Complexity Theory. Here, any problem that is decidable itedrinistic time f(k)poly(n) is
deemed to be tractable, whéerés the parameter anflany computable function. SeverdP hard
problems including the vertex cover problem are known taéetable under this notion [13].

The W-hierarchy serves as the basis for all intractable problientise parameterized world.
WI[1], the smallest member &¥-hierarchy, consists of problems that are FPT equivaletii¢o
p-clique problem([[1B]. The limit otV hierarchy,W[P] encapsulates all problems solvable in non-
deterministicf (k)poly(n) time using at mosy(k) logn non-deterministic bits_[€, 13], wherg
andg are arbitrary computable functions.
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There have been significant efforts towards understantimgtructure of parameterized com-
plexity classes in the last two decades. Specifically exaatacterizations of the/ hierarchy and
other related hierarchies are knownI[11]. (See also/[13) 10]

Apart from non-deterministic computation, probabilistmmputation serves as one of the cru-
cial building blocks of Complexity Theory. Probabilistioroplexity classes have been well studied
in the literature and has been an active area of researchda than three decades. There are a
significant number of parameterized algorithms that usdaamzation [10, Chapter 8]. Hence,
development of randomized complexity classes in the paenmed framework is necessary to
understand the use of randomization in the parameterizédge

Muller [18,[17] was the first to do a systematic developmertt study of parameterized ran-
domization. He defined bounded error probabilistic paranetd classes such 8¢[P]-BPFPT
andW/[1]-BPFPT. Further, he obtained amplification results and conditfonglerandomization
of these classes. Further, Muller [18] studied severadpaterizations of the well known poly-
nomial identity testing problem (ACIT) and obtained seVéradness results as well has upper
bounds in terms of the newly defined randomized classes.

We continue the line of research initiated by Muller/[18Hastudy a parameterized variant of
probabilistic computation with unbounded error and essla relationship with the corresponding
parameterized counting class.

It should be noted that almost all of the randomized FPT #lyois use randomness of the
same magnitude as their running times. However, such amithigpcannot be visualized as a
non-deterministic algorithm witlf (k) log n random bits, wher¢ (k) is an arbitrary computable
function. This is in stark contrast to the classical seftimigere every randomized algorithm with
bounded error probability can also be seen as a non-detstimialgorithm with the same time
bound. Soitis desirable to have randomized FPT algorithatsuse at mos?( f (k) logn) random
bits instead off (k)poly(n) random bits. As a first step towards this we obtain such arrighgo
for a suitable parameterization of ACIT.

Finally, following the recent developments in the paramegel complexity theory of counting
problems|[5| 7|, 8], we develop a parameterized variantseptbblems of computing permanent
and determinant of a matrix.

Ourresults We make an attempt at understanding the relations betwegmning and probabilis-
tic classes. We focus on a probabilistic analogue of thes®l4B]. Using the notion of-restricted
Turing machines [6], we introdud®[P]-PFPT as a parameterized variant of the probabilistic poly-
nomial time PP). As in the classical complexity setting, we establish @eloonnection between
WI[P]-PFPT and the counting clasgW/[P] (Theoreni2). Further, we show thét[P|-PFPT is
closed under complementation and symmetric differenddgedreni 8 and Lemnia 3.)

We consider the polynomial identity testing problem&(T) with the syntactic degre€See
Section 2 for a definition) as a parameter. Using the consbruof hitting set generators by
Shpilka and Volkovich[[211], we obtain what can be called asaeameterized analogue of the
celebrated Schwartz-Zippel Lemma[20] 23]. (Theokém 4.)

Finally, we introduce a parameterized variant of the peenafunctionp-perm and prove that
it characterizes the clagéW([1]. (Theorenib.) Analogously, a variant of the determinantfiom



(p-det) and show that it is Fixed Parameter Tractable (Theddem 5).

2 Preliminaries

We include some of the definitions from Parameterized Coxitgléheory and Complexity the-
ory here. For Parameterized Complexity, the notations @[1B] are followed. Definitions of
complexity classes can be found in e.g.,/ [12, 4].

A parameterizethnguage is a sdt C ¥* x N, whereX is a finite alphabet. Ifz, k) € ¥* x N
is an input instance of a parameterized language, thsnreferred to as theputandk as the
parameter

A parameterized countingroblem is a paif f, k), wheref : ¥* — N is a counting function
andk is the parameter antl is a finite alphabet. For notational convenience, we willatera
parameterized counting problem as a functfon¥* x N — N, where the second argumentjfo
is considered as the parameter.

A parameterized language C >* x N is said to befixed-parameter tractablé there is an
algorithm that given a paifz, k) € ¥* x N, decides if(x, k) € P in at mostO(f(k)|x|®) steps,
wheref : N — N is a computable function ande N is a constant.

Definition 1. FPT denotes the class of all parameterized languages that aed fiarameterized
tractable.

A parameterized languadeis said to be irRFPT (RandomizedPT) if there is af (k)poly(n)
time bounded randomized machine accepfingith bounded one-sided error probability. Se€ [13,
10] for more details.

Definition 2. A k-restricted machiné a non-deterministig/(k)poly(n) time bounded Random
Access Machine (RAM) that uses at mp@t) non-deterministic words, whergand g are arbi-
trary computable functions. Here we assume that the womrlisi2(log n), wheren is the length
of the input.

A k-restricted Turing machinas a non-deterministig (k)poly(n) time Turing machine that
makes at mosf (k) log n non-deterministic moves, whefeand g are arbitrary computable func-
tions.

Definition 3. Atail non-deterministic machine iskarestricted machine in which all non-deterministic
steps are among lagi(k) steps.

WI[P] is the class of all parameterized problem@s k) that can be decided bykarestricted non-
deterministic machine (for more details see chapter(3 iH) [M8[1] is the class of all parameterized
problems (), k) that can be decided kgil non-deterministic machine (for more details see [6]).

For a non-deterministic machine, let #acc(z, k) and#rej,, (x, k) respectively denote the
number of accepting and rejecting paths\éfon input(z, k). Definegap,,(x, k)=#accy (z, k) —
#rejy (z, k).

Definition 4. [13] A parameterized counting functidiy, k) over the alphabek is in #W[P] if
there is ak-restricted non-deterministic machié such thatf (z, k) = #accy(x, k).
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Definition 5. A probabilistic k-restricted machine is a probabilistig(%)poly(n) time bounded
RAM that make at mogt(k) probabilistic moves, wher¢ and g are some computable functions.
Here we assume that one probabilistic move involves chg@mndom word o) (log n) bits.

A languagelL is said to be inW|[P]-RFPT [18] if there is ak-restricted probabilistic machine
suchthatz, k) € L = Pr[M acceptsz, k)] >2/3; andx ¢ L = Pr[M rejects(z, k)] =
0.

An arithmetic circuitC is a directed acyclic graph with labelling on the verticesa®ws.
Nodes of in-degree zero are callegut gates and are labelled frofn-1,0,1} U {xy,...,x,}
wherez, ..., z, are the input variables. The remaining gates are labelled +. An arithmetic
circuit has exactly one gate of zero out-degree calleathputgate. Every gate in an arithmetic
circuit can naturally be associated with a polynomigk Z[z1, ..., z,], where the polynomials
associated at input nodes are either constants or varidbles- v, + v, thenp, = p,, + p., and
if v =v; X vy thenp, = p,, X p,,. The polynomial computed by the circuitis the polynomial
associated with its only output gate and is denote@dyThe size of an arithmetic circuit is the
number of gates in it and is denoted die(C).

We associate a number called gyntactic degreesyntdegﬂ with every gate of an arithmetic
circuitC'. For aleaf node, syntdeg(v) = 1. If v = v1+v, thensyntdeg(v) = max{syntdeg(v;), syntdeg(vs)}
and ifv = vy x vy thendeg(v) = syntdeg(v,) + syntdeg(v,). It should be noted that the degree of
the polynomial computed by a circuit is bounded by its sytitategree.

Remark 1. the parameterl, introduced in [18] is closely related teyntdeg, in factsyntdeg <
2d>< S 2syntdeg.

In [3], Alon obtained a characterization for multivariatelynomials that are not identically
zero known as the Combinatorial Nullstellensatz:

Proposition 1 (Combinatorial Nullstellensatz,|[3]Let P € K|y, ..., z,| be a polynomial where
for everyi € [n], the degree of; is bounded by. LetS C K be a finite set of size at least 1,
andA = S". ThenP =0 <= P(a) =0, Va € A.

3 Probabilistic Computation

In this section, we develop a parameterized analogue ofl#ssical complexity clasBP. Our
definition of W[P]-PFPT is based ork-restricted probabilistic Turing machines.

Throughout this section unless otherwise staféd) denotes an arbitrary computable function,
andP(n, k) = f(k)logn. For an inputc, we denote: = |z|.

Definition 6. Let L be a parameterized languageé.is said to be in the clasé/[P]-PFPT if there
is a k-restricted probabilistic Turing machin&/ such that for anyx, k) € ¥* x N we have,

(x,k) € L = Pr[M acceptyz, k)| >

N DN

(x,k) ¢ L = Pr[M acceptyz, k)] <

1Syntactic degree is also known as the formal dedree [15]sadiandard parameter for arithmetic circuits.
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where the probabilities are over the random choices mad&/by

Without loss of generality, we assurie= {0, 1}.

In the classical settind?P is known to have several characterizations based on, PErelifte
between twa#P functions [14], 2) difference between the number of acogpaind rejecting paths
of a polynomial time bounded non-deterministic Turing maeH14], 3) logics based on majority
guantifiers[16] and 4) large fan-in circuits with threshgiates[2]. We observe that all of the
characterizations except (3) hold \&f{P]-PFPT. However, it is not clear if the majority quantifier
logical characterization d?P [16] translates to the parameterized setting.

Definition 7 (Diff-FPT, Gap-FPT). A parameterized functiofi : ¥* x N — Z is said to be in
Diff-FPT if there are two functions, h € #W|P] such thatf (z, k) = g(x, k) — h(z, k).

f is said to be inGap-FPT if there is ak-restricted TMM such thatf (z, k) = #accy (z, k) —
H#rejy(x, k), V(z, k) € X* x N.

Firstly, we observe that the two classes-FPT andDiff-FPT coincide.
Lemma 1. Gap-FPT = Diff-FPT

Proof. To showGap-FPT C Diff-FPT: Let f € Gap-FPT, then there is &-restrictedM with
f(z, k) = #accy(x, k) — #rejy,(z, k). Let M’ be a new machine that simulatéson input(zx, k)
and accepts if and only if/ rejects(x, k). Then we havef (x, k) = #accy(z, k) — #accyy (z, k).
For the converse inclusion, I¢te Diff-FPT, andM;, M, be such thaf (x, k) = #accyy, (¢, k) —
#accy,(z, k). Let M be a new machine: on inpdt, k), M runs M; on (x, k), and accepts
if M, does so. IfM; rejects thenV/ simulatesM; on (x, k) and rejects ifM, accepts. IfA;
rejects, thenV/ guesses a non-deterministic bjtaccepts ifb = 1 and rejects otherwise. Then

H#Haccyy(x, k) — Frejy (v, k) = #aceyy, (x, k) — #acep, (2, k) = f(x, k). O

Lemma 2. Gap-FPT is closed under taking-boundedsummations and products, i.e.gif . . ., gy €
Gap-FPT, then so arg; + g - - -+ gyx) @ndgy X g2 X - - - X g¢(xy, Wheret is any computable function.

Proof. The arguments here are straightforward adaptations offpfoam classical complexity.
We include it here for completeness. For summation, we castoact a new maching/ that first
guesses € [1,¢(k)] and and runs thg-restricted machine fag; on (z, k).

For product, we will show for the case wheit) = 2. Let f1, fo € Gap-FPT. Let M; and M,
as thek-restricted machines such thatz, k) = #accy, (2, k) — #rejy, (2, k), 1 < i < 2. LetM;
be the machine that flips the answers\éf Let M bek-restricted machine defined as follows: On
input (x, k) first simulateM; on (z, k). If M, accepts then run/; on (z, k) and accept if and only
if M, does so. I1f\; rejects then rud/, on (z, k) and accept if and only ifi/; does so. It can be
seen thaff, (z, k) fo(x, k) = #accy (z, k) — #rejy, (x, k).

The above argument can be generalized to the itase> 2. O

Theorem 1. Let L be a parameterized language. The following are equivalent:

1. L € W[P)-PFPT.



2. There is & —restricted Turing machin@/ such that,
(x,k) € L <= Faccept,,(x, k) — #reject,,(x, k) > 0.

3. Thereis a functiorf € Gap-FPT suchthafx, k) € L <— f(x,k) >0

4. There is aB € FPT, and P(n,k) = f(k)logn such that(x,k) € L <= |{y €
{0,178 | (2,y, k) € B}| > 2P0WP71 41,

TheoreniIl.(1 = 2) Let L € W[P]-PFPT. Let M be ak-restricted probabilistic machine fdr.
Then,
1 #accepty, (z, k) 1
k) e L Pr|M acce k = =
(v.k)e L = Prl pte, k)] > 27 #accept,, (z, k) + #rejecty, (x, k) 73
= #accepty,(z, k) — #rejecty, (2, k) >0

(2 = 3) This directly follows from the definition oGap-FPT.

(3 = 4) Let f € Gap-FPT with (z,k) € L <= f(z,k) > 0, andM be ak-restricted
machine withf(x, k) = gap,,(x, k). Let P(n, k) be the number of non-deterministic bits used
by M on an input of lengte with parametett. Thengap,,(z,k) > 0 = #accy(z, k) >
2P (k) /9 = 2Pk~ | et

B = {(z,y,k) | M on the non-deterministic path defined pncceptsc.}

Clearly, B € FPT and

#acey (2, k) = [{y € {0. 1} | (z,y, k) € B}|.

Thus(z,k) € L = |{y € {0,1}®™0) | (2,9, k) € B}| > 2F(k)—1,

(4 = 1) Let L as given in 4. LetV be k-restricted machine that on inp(t, k) guesses a
stringy € {0,1}’™% and accepts if and only ifz,y, k) € B. Then we haver € [ <=
#accy(z, k) > 2PR—1 — Pr[M acceptyr, k)] > 1/2.

U

Similar to the case dPP, we observe that an FPT machine with oracle access to a dmnati
#W|[P] is equivalent to an FPT machine with a languag®/ii*|-PFPT as an oracle.

Theorem 2. FPT#WIFl — ppTWIPIZPFPT

Theoreni.2.We show the containment in both the directions. We start trigheasier direction,
i.e., we showrPTWPI"PFPT ¢ ppT#WIFI,

Let L € FPTVPI"PPPT and M be a deterministic oracle Turing machine that runs in time
f(k)poly(n) and A € WI[P]-PFPT be such that such thdt = L(M*). We need to show that
L € FPT#WIPI. By TheorenilL, there are two parameterized functigris: {0,1}* x k& — N
with g, h € #WIP] such that

(x,k) e A <> g(x,k) — h(z, k) > 0. (1)
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Letv : {0,1}* x & — N wherey(0z, k) = g(z, k), andy(lz, k) = h(z,k),Vz € {0,1}*. On
strings of lengthd and 1, v can be defined arbitrarily. We havwe € #W/|P], since a on input
y = ax, with a € {0, 1}, the machine would run the machine fpif « = 0 and machine fof if
a=1.

We can simulate a query, k') made by the machin&/ to A by two queries to the function
v: (1) Query(0y, k') and (2)(1y, k'), compute the difference of the values obtained and[use (1) to
decide the membership 6§, k') in A. Thus we can conclude € FPT#WIP),

For the reverse containment, given a Turing machifielet L.,, be the language defined as :
Ly = {((z,k,y) € ¥* x N x N | #accy (z, k) > y}

Claim 1. Let M be ak-restricted Turing machine, theh,, € W|[P]-PFPT.

Claim. Let M’ be a Turing machine computing functiéfx, k, ), that on inpu{z, &, y), produces
exactlyy accepting paths, whergis represented in binary, ande [0,2°*)]. Clearly, M’ is a
k-restricted Turing machine, since it needs to use @t(ly, k) many non-deterministic bits. Thus
the functiont(x, k,y) = y is in #WI[P]. Let fy(x, k,y) = #accy(x, k) — y. Then by Lemmall
far is in gapW([P] and the claim now follows from Theorem 1. O O

Let L € FPT#WIPI then there is a deterministic oracle Turing machifiethat runsFPT time,
and a functiory € #W|[P] such thatL. = AM'?. Let M be ak-restricted Turing machine that uses
at mostf (k) logn non-deterministic steps such thdtr, k) = #accy(x, k). We use the standard
binary search technique to show tht, k) can be computed using(kn) many queries to the
languagel ;.

Input (z, k), oracle access tb,,. Output g(z, k).

1. Initialize p = P(|z|, k), y = 2P.

2. Repeat steps 3 & 4 until > 0

3. Query(z, k,y) to the oracle; If YES, then sé} = 1 andy = y + 27~!; Else seb, = 0.
4. Setp=p—1

5. Returna = binary(b,b,—1 ... by).

In the abovéinary(b,b,—1 . ..bo) = > +_, 2'b;. Clearly, the algorithm above runs in tinfiék)poly(n),
and hence computing can be done iffPT with oracle access ta,, ¢ W[P|-PFPT. This con-
cludes the inclusion in the converse direction. O O

Theorem 3. W[P]-PFPT is closed under complementation.
Proof can be found in the appendix.

Lemma 3. W[P]-PFPT is closed under symmetric difference.



Proof. The proof essentially follows the ideas in the classicairsg{2]. LetL,, L, € W[P]-PFPT.
By Theoreni L, there are languages B, € FPT, and a functionP(n, k) = f(k)logn such that
foranyz € {0,1}*, k € Nandi € {1, 2},

(r,k) € L, < [{y; € {0, 1}P("’k)|(x,k,yi) € B;}| > oP(nk)=1 4 |

Using a construction similar to the one used in the proof oédrem[ 8, we get parameterized
languages3; and B), and a function”’(n, k) = f'(k)logn with the following property forl <
1< 28

(r.k) € L = |{g € {0,1)7N|(a,k,y,) € B} > 2" "H" 1 1;and
(0.k) ¢ L = |y € {0. 17N (a,k,y) € B} < 2P 0h-1 1,

Leta, (), ax(x) € Z suchthat{y € {0, 1}7"® | (z,y) € Bl}| = 2P =1 q;(z) for 1 <i < 2.
Thus|{y € {0, 1}~ | (z y) ¢ B/}| = 2P(k=1 — g,(z). Forz € 2, let

Uz, k) 21S(x, k)]

_ ‘<2P’(n,k)—1 + a1><2P’(n,k)—1 - a2> + <2P’(n,k)—1 - a1><2P’(n,k)—1 + a2)‘
(22P’(n,k)—1

— alag),

whereS(z, k) = {(y1,y2) | (< 2,41 >€ BiN(@,y2) & B2)V((z,y1) & BiA(x,y2) € Ba)}. Now,

if # € L1 A Ly then either(a; > 1 anday < 0) or (a; < 0 anda, > 1) then? > 22Pk)~1 gand if

x ¢ Ly A Ly then either bothu; anda, are greater than equal to 1 or both are less than 1, and in
both the caseé < 22°(™*)~1 et M’ be ak-restricted Turing machine that on ingut k) guesses
two stringsy; andy, of lengthP’(n, k) each, and querigs;, k, y;) to B/, 1 <i < 2, accepts if and
only if exactly one of the oracle answers is YES. It can be skat¥accy (¢, k) = ¢(x, k). We
concludelL; A L, € WI[P]-PFPT. O

4 Polynomial Identity Testing

Muller [18] studied the Arithmetic Circuit Identity Tesiy (ACIT) problem with various parame-
ters and obtained upper bounds as well as hardness resudtado of the parameters considered.
However none of the parameters considered in [18] seem atiefur developing a complexity
theory for the parameterized probabilistic and countirageks along the lines of classical com-
plexity classes.

Recall that, in ACIT we are given an arithmetic circaitas an input and the task is to test
if the polynomial computed by’ is identically zero. We consider the degree of the polynbmia
computed byC' as a parameter.

Problem 1 (p-acit). Input Arithmetic circuitC', syntdeg(C') < k.
Parameterk.
Task Test if the polynomial computed lyis identically zero.



Our main objective now is to show thgtacit € W[P|-RFPT. However, it should be noted that
this does not follow directly from the Schwartz-Zippel Lemnsince it would requiré(n log k)
random bits. So the challenge here is to reduce the numbandbm bits required t@ (%) log n.
Towards this, we use a mapping defined by Shpilka and Volkojdd] that reduces the number
of variables fromn to 2k. Then we apply Alon’s Combinatorial Nullstellensé&tz [3]dbtain what
can be treated as a parameterized version of the Schwanpeldemma.

We begin with a few observations on polynomials of degree @sétit. Let S be any finite
subset ofK that includes) € K and letiV*(S) denote the set of all vectors 1" with at mostk
non zero entries i.e, the set of all vectors of Hamming weagimostk.

Lemma 4. Let f be ann-variate polynomial of degree at mdst Then
f=0 <= YaecWFS) f(a) =0,
whereS C K has at least + 1 elements.

Proof. For simplicity, we denotéV*(S) by W*. The proof is by induction om. For the base
case, suppose < k. Since individual degrees of each variable is bounded, iy Propositiom L,
we havef =0 < f(a) =0V a € 5", foranS with |S| > k.

For the induction step, let > k, andf(a) =0V a € WF. Fori € {1,...,n}, let fi=f|.,—o,
i.e., f substituted withz; = 0. Note that each of th¢; is a degree: polynomial on at most
n — 1 variables, and&a € W* |, fi(a) = 0. By the induction hypothesis, we hayg= 0, and

hencez; divides f. Repeating the argument for alle [1,...,n], we haver;x, - - -z, divides
f, and henceleg(f) > n > k, a contradiction sincéeg(f) = & < n. Thus we conclude
Va € W¥ f(a) =0 = f = 0. The converse direction is trivially true. O

We need a function introduced by Shpilka and Volkovich [244t gives a mafyy, : K[z, ..., z,] —
K[y1, ..., yor] @and serves as a non-identity preserving for a large classipfipmials. We observe
that G}, also functions as a non-identity preserving map for thesotdsall » variate polynomials
of degree at most. We begin with the definition of the generatGy,.

Definition 8 (Shpilka-Volkovich Hitting set generator,[21])eta, . .., a, be distinct elements in
K. LetG: € Kys, - - -, Uk, 21, - - - , 2] be the polynomial defined as follows:

k
| Iz —a))
G;f(y17 RN IR PR Zk) = E Ll(yl)z“ where LZ(x) B I_IJ;”é (CL' — aj-) .
jil0i = 4

j=1
The generator~, is defined a7, 2 (Gh,...,GY).
Lemma 5. For any finite set C K, thenW*(S) C {(G}(a),...,G}(a)) |a € (SU{ay,...,a,})*}.

Proof. The proof essentially follows the argumentslin/[21]. We g a sketch here for the sake
of completeness. Note that,
Li(a) = {o a=ay, if j#i

1if a = aq,.
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Thus if we sety, = a;, then the image of?, containsz; as a summand. By ensuring thati # j
gets somey,, i # ¢, we getGt = z;. In this way we can obtain all vectors of Hamming weight
by settingy,’s andz;’s accordingly. O O

Combining Lemmal5 with Lemnid 4 we have:
Lemma 6. Let f be a polynomial of degree at mdstThenf =0 <— f(Gy) = 0.
Theorem 4. p-acit is in W[P]-RFPT

Proof. By Lemma_ 6p-acit reduces to testing identity @f-variate polynomials of degre@(nk)
(since the polynomial&; have degree). Now applying the Schwartz-Zippel lemma [20] 23], we
obtain a randomized algorithm that useg#k log(nk)) random bits and runs in time polynomial
in n andk. 0J

5 Parameterized Permanent vs Determinant

The determinantdet) permanentgerm) functions are defined as

det(A) = Z Hsgn<a>ai,a(i) (2)
oc€Sy, =1

perm(4) = Z Ha'i,cr(i)a (3)
UESn =1

whereA = (a; j)1<i j<n € N**", S, is the set of all permutations ensymbols andgn is the sign
function for permutations. It is known that, given an integetrix A, computingA can be done in
polynomial time (e.g., Gaussian Elimination method). Indelebrated paper, Valiant [22] showed
that computingperm of an integer even for 0 or 1 matrix is complete f#6P. Though there are
several natural counting problems that characte#iZ€[1], it is desirable to have a parameterized
variant of permanent so that we get access to the algeb@peries of the permanent function.
Naturally, we expect any parameterized variant of permetodre a function of degreein n?
variables, wheré: is the parameter. One way to achieve this would be to restriecsummation
given in (3) that move exactlg-elements. Formally, a permutatien € S,, is said to be &-
permutationif |{i | o(i) # i}| = k. Let S, denote the set of all-permutations om symbols.

Definition 9. Letk be a parameter. The parameterized determinpstdt) and permanentperm)
functions of a matrix4 € Z"*" are defined as follows:

p-det(A k) = > [ sen(@)aw

0ESn i 1#0 (1)

p-perm(A, k) = Z H io (i),

0ESn K i#0 (1)

wherek is a parameter. By abusing the notation, we alsoplgterm denote the problem of
computingp-perm of ann x n matrix, wherek is the parameter.
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Quite expectedlyp-det is FPT andp-perm can be shown to bV [1] complete under fpt-
reductions. We start with the tractability pfdet.

Theorem 5. p-det on integer matrices is fixed parameter tractable.

Proof. Let A € Z™*", andk be the parameter. Let’ be the matrix obtained from by replac-
ing the diagonal entries id by zeroes. Clearly-det(A, k) = p-det(A’, k). Letx be a formal
variable. Thendet(zA’) is a univariate polynomial of degree boundedrhyand the coefficient
of 2% in det(zA’) is equal top-det(A, k). The valuep-det(A, k) be recovered using the standard
interpolation of univariate polynomials. 0 0J

Theorem 6. p-perm on matrices irN"*" is #WW[1] complete. The hardness holds even in the case
of 0-1 matrices.

Proof. Itis known that counting-matchings in a bipartite graph is complete §6V[1] even in the
weighted case [8]. We prove a parameter preserving equisleetweemp-perm and the problem
of countingk-matchings in a bipartite graph which completes the proof.tke upper bound, we
give a reduction fromp-perm to countingk-matchings in a bipartite graph. For a given matrix
A € N™*™ define the matrixA’ by setting the diagonal entries dfto zero, i.e. A’[i, j] = A[4, j]

if i #jandA’[i,i] = 0,1 < i < n. Note thatp-perm(A) = p-perm(A4’). Everyk-permutation
of {1,...,n} corresponds to a matching of sizeén the bipartite grapld’ with A’ is the bipartite
adjacency matrix. Thus-perm(A’) =the sum of weights of-matchings in’.

For the hardness we give a reduction in the reverse diredteona parameter preserving reduc-
tion from counting the number df- matchings in a Bipartite grapi = (U, V, E') to computing
p-perm of an integer matrix.

Let G = (U,V, E) be a bipartite graph. Without loss of generality, assumetha- V' =
{1,...,n}. Construct a new bipartite graghl = (U, V', E') with U’ = V' = {1,...,2n}. For
every edge of the forn, j) € E,i # j, G’ contains the edgg, j) € E’. For edges of the form
(i,7) € E, G’ contains the edgé,n + i) € E’. Note that the vertices + 1,....2n in U’ are
isolated vertices.

Note that the number of matchings@hand those i’ of a given size: are equal. Letd’ be
the bipartite adjacency matrix 6. Everyk-permutation of2n| that contributes a non-zero value
to p-perm(A’) corresponds to a matching of sizén G’. Moreover, none of thé-matchings in’
will have an edge of the forry, i),7 € [2n]. Thus,p-perm(A’, k) = #matchings of sizé& in G'.
This completes the proof. O O

Conclusions

We have studied parameterized variants of probabilisticpzgation. We hope that our definition
of W[P]-PFPT leads to further developments in the structural aspectsadfgbilistic and count-

ing complexities in the parameterized world. Furth&fP]-PFPT might be useful in defining a
parameterized variant of the Counting Hierarchy (CH) whsolld in turn have implications to

11



parameterized complexity of numerical and algebraic caatmn [1]. Though definition of a pa-
rameterized CH based &M[P|-PFPT is straightforward, the usefulness of such a definition woul
rely onW[P]-PFPT being closed under intersection, which is not known cutyent

Further, we believe any fixed parameter tractable randairaigorithm should naturally place
the problem inW[P]. One way to achieve this is to obtain randomized FPT algmstthat use
at mostO( f(k) logn) random bits. As a first step towards this direction, we inticela natural
parameterization to the polynomial identity testing foriethwe obtain such an algorithm. We
hope our observations will lead to further development atlamness efficient parameterized al-
gorithms.
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A Proof of Theorem[3

Let L € W[P]-PFPT then there exist &-restricted Turing machin@/ running using at most
P(n, k) random bits such that

1
(z,k) € L = Prycroyrmesn | M acceptdz, k)| > - + PR and

N =N

(z,k) ¢ L = Prycioiyrmesn | M acceptgz, k)] <

Let M’ be the machine that on inp(t, k) simulates\/, rejects(z, k) if M does so, and whenever
M accepts, chooses a random string of length, k) + 1 and rejects only if the random string is
17(#)+1 and accepts otherwise. For afwy k) € ©* x k, we have:

1 1
(z,k) € L = Prycio1yremn [M" acceptgz, k)] > (5 + 72]3(”7,6))(1 — 7213("7@"‘1)
1
> —; and
2)
1 1 1
(.flf, k) ¢ L = Prye{o’l}f(k)long[M/ aCCGptE(x, k’)] S 5(1 — W) < 5

Now, let V¢ be the machine that flips the answers\éf, i.e., M © accepts whenevéll’ rejects and

vice versa. We have :

(4)
()

(z,k) ¢ L = Pr[M°acceptr,y, k)] = Pr[M°rejects(z,y, k)] <

l\DI»—tl\Dl}_l

(z,k) € L = Pr[M°acceptdr,y, k)] = Pr[M rejects(z,y, k)] >

Note that)M’ is k restricted. This completes the proof. O
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