Skip to main content

Exposing Image Tampering with the Same Quantization Matrix

  • Chapter
  • First Online:
  • 2420 Accesses

Abstract

Image tampering, being readily facilitated and proliferated by today’s digital techniques, is increasingly causing problems regarding the authenticity of images. As the most popular multimedia data, JPEG images can be easily tampered without leaving any clues; therefore, JPEG-based forensics , including the detection of double compression, interpolation, rotation, etc., has become an active research topic in multimedia forensics. Nevertheless, the interesting issue of detecting image tampering and its related operations by using the same quantization matrix has not been fully investigated. Aiming to detect such forgery manipulations under the same quantization matrix, we propose a detection method by using shift-recompression -based reshuffle characteristic features. Learning classifiers are applied to evaluating the efficacy. Our experimental results indicate that the approach is indeed highly effective in detecting image tampering and relevant manipulations with the same quantization matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avidan S, Shamir A (2007) Seam carving for content-aware image resizing. ACM Trans Graph 26(3), Article 10

    Google Scholar 

  2. Bayram S, Sencar HT, Memon N (2009) An efficient and robust method for detecting copy-move forgery. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, April 2009

    Google Scholar 

  3. Chen Y, Hsu C (2011) Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection. IEEE Trans Inf Forensics Secur 6(2):396–406

    Article  MathSciNet  Google Scholar 

  4. Chen C, Shi YQ (2008) JPEG image steganalysis utilizing both intrablock and interblock correlations. In: Proceedings of the 2008 IEEE international symposium on circuits and systems, pp 3029–3032

    Google Scholar 

  5. Chen W, Shi YQ, Su W (2007) Image splicing detection using 2-D phase congruency  and statistical moments of characteristic function. Proc SPIE 6505: 65050R. doi:10.1117/12.704321

  6. Dirik AE, Memon N (2009) Image tamper detection based on demosaicing artifacts. In: Proceedings of the IEEE ICIP’09, November 2009

    Google Scholar 

  7. Farid H (1999) Detecting digital forgeries using bispectral analysis. AI Lab, Massachusetts Institute of Technology, Technical report AIM-1657

    Google Scholar 

  8. Farid H (2006) Digital image ballistics from JPEG quantization. Department Computer  Science, Dartmouth College, Technical report TR2006-583

    Google Scholar 

  9. Farid H (2009) Image forgery detection, a survey. In: IEEE Signal Processing Magazine, pp 16–25, March 2009

    Google Scholar 

  10. Farid H (2009) Exposing digital forgeries from JPEG ghosts. IEEE Trans Inf Forensics Secur 4(1):154–160

    Article  MathSciNet  Google Scholar 

  11. Fillion C, Sharma G (2010) Detecting content adaptive scaling of images for forensics applications. Proc SPIE, Media forensics Secur II 7541:2010. doi:10.1117/12.838647

  12. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882

    Article  Google Scholar 

  13. Fridrich J, Soukal D, Lukás J (2003) Detection of copy move forgery in digital images. In: Proceedings of the digital forensic research workshop, August 2003

    Google Scholar 

  14. Hilbe JM (2009) Logistic regression models. Chapman and Hall/CRC Press, London. ISBN: 978-1-4200-7575-5

    Google Scholar 

  15. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  16. http://www.npr.org/blogs/thetwo-way/2010/09/17/129938169/doctored-photograph-hosni-mubarak-al-ahram-white-house-obama-mideast-peace-talks

  17. Huang F, Huang J, Shi Y (2010) Detecting double JPEG compression with the same quantization matrix. IEEE Trans Inf Forensics Secur 5(4):848–856

    Article  Google Scholar 

  18. Joachims T (2000) Estimating the generalization performance of a SVM efficiently. In: Proceedings of the international conference on machine learning, Morgan Kaufmann

    Google Scholar 

  19. Kodovsky J, Fridrich J (2009) Calibration revisited. In: Proceedings of the 11th ACM  multimedia and security workshop, pp 63–74

    Google Scholar 

  20. Kodovsky J, Fridrich J (2011) Steganalysis in high dimensions: fusing classifiers built on random subspaces. Proc SPIE 7880: 78800L. doi:10.1117/12.872279

  21. Kodovsky J, Fridrich J (2011). Steganalysis in high dimensions: fusing classifiers built on random subspaces. Proc SPIE 7880: 78800L. doi:10.1117/12.872279

  22. Kodovsky J, Fridrich J (2012) Steganalysis of JPEG images using rich models. Proc. SPIE 8303, Media Watermarking Secur forensics 2012, 83030A, February 2012. doi:10.1117/12.907495

  23. Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27(6):957–968

    Article  Google Scholar 

  24. Liu Q (2011) Detection of misaligned cropping and recompression with the same quantization matrix and relevant forgery. In: Proceedings of the 3rd ACM multimedia workshop on multimedia in forensics, pp 25–30

    Google Scholar 

  25. Liu Q (2011) Steganalysis of DCT-embedding-based adaptive steganography and YASS. In: Proceedings of the 13th ACM workshop on multimedia and security, September 2011, Buffalo

    Google Scholar 

  26. Liu Q, Sung AH, Qiao M (2009) Temporal derivative based spectrum and mel-cepstrum audio steganalysis. IEEE Trans Inf Forensics Secur 4(3):359–368

    Article  Google Scholar 

  27. Liu Q, Chen Z (2014) Improved approaches with calibrated neighboring joint density to  steganalysis and seam carved forgery detection in JPEG images, ACM Trans Intell Syst Technol 5(4), article 63

    Google Scholar 

  28. Liu Q, Sung AH, Qiao M (2009) Improved detection and evaluation for JPEG steganalysis. In: Proceedings of the ACM multimedia, pp 873–876

    Google Scholar 

  29. Liu Q, Sung AH, Qiao M (2009) Novel stream mining for audio steganalysis. In: Proceedings of the 17th ACM multimedia, pp 95–104

    Google Scholar 

  30. Liu Q, Sung AH, Qiao M (2011) A method to detect JPEG-based double compression.  In: Proceedings of the 8th international symposium on neural networks, pp 466–476

    Google Scholar 

  31. Liu Q, Sung AH, Qiao M (2011) Derivative based audio steganalysis. ACM Trans.  Multimed. Comput. Commun. Appl. 7(3), 1–19, article 18

    Google Scholar 

  32. Liu Q, Sung AH, Qiao M (2011) Neighboring joint density based JPEG steganalysis. ACM Trans Intell Syst Technol 2(2), 1–16, Article 16

    Google Scholar 

  33. Luo W, Qu Z, Huang J, Qiu G (2007) A novel method for detecting cropped and recompressed image block. In: Proceedings of the IEEE conference acoustics, speech and signal processing, pp 217–220

    Google Scholar 

  34. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inf Forensics Secur 5(4):857–867

    Article  Google Scholar 

  35. Pevny T, Fridrich J (2007) Merging Markov and DCT features for multi-class JPEG steganalysis. Proc SPIE, 6505: 650503. doi:10.1117/12.696774

  36. Pevny T, Fridrich J (2008) Detection of double-compression in JPEG images for applications in steganography. IEEE Trans Inf Forensics Secur 3(2):247–258

    Google Scholar 

  37. Popescu AC, Farid H (2004) Statistical tools for digital forensics. In: Proceedings of the 6th international workshop on information hiding, pp 128–147

    Google Scholar 

  38. Popescu AC, Farid H (2005) Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans Signal Process 53(2):758–767

    Article  MathSciNet  Google Scholar 

  39. Popescu AC, Farid H (2005) Exposing digital forgeries in color filter array interpolated images. IEEE Trans. Signal Process. 53(10):3948–3959

    Article  MathSciNet  Google Scholar 

  40. Prasad S, Ramakrishnan KR (2006) On resampling detection and its application to image tampering. In: Proceedings of the IEEE international conference multimedia and exposition, pp 1325–1328

    Google Scholar 

  41. Sarkar A, Nataraj L, Manjunath BS (2009) Detection of seam carving and localization of seam insertions in digital images. In: Proceedings of the 11th ACM workshop on multimedia and security, pp 107–116

    Google Scholar 

  42. Shi YQ, Chen C, Chen W (2007) A Markov process based approach to effective attacking JPEG steganography. Lecture Notes in Computer Science, vol 4437. Springer, Berlin. pp 249–264

    Google Scholar 

  43. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The study was supported from the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice, under the Award No. 2010-DN-BX-K223 and from the Sam Houston State University under two enhanced research grants (ERG, 2011–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, Q., Sung, A.H., Chen, Z., Chen, L. (2015). Exposing Image Tampering with the Same Quantization Matrix. In: Baughman, A., Gao, J., Pan, JY., Petrushin, V. (eds) Multimedia Data Mining and Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-14998-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14998-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14997-4

  • Online ISBN: 978-3-319-14998-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics