

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-832870

Tim Kiefer, Hendrik Schön, Dirk Habich, Wolfgang Lehner

A Query, a Minute: Evaluating Performance Isolation in Cloud Databases

Erstveröffentlichung in / First published in:

Performance Characterization and Benchmarking. Traditional to Big Data : 6th TPC
Technology Conference, TPCTC 2014. Hangzhou, 01.-05.09.2014. Springer, S. 173–187. ISBN
978-3-319-15350-6.

DOI: http://dx.doi.org/10.1007/978-3-319-15350-6 11

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-832870
http://dx.doi.org/10.1007/978-3-319-15350-6_11

A Query, a Minute: Evaluating Performance
Isolation in Cloud Databases

Tim Kiefer(B), Hendrik Schön, Dirk Habich, and Wolfgang Lehner

Database Technology Group, Technische Universität Dresden, Dresden, Germany
{tim.kiefer,hendrik.schon,dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract. Several cloud providers offer reltional databases as part of
their portfolio. It is however not obvious how resource virtualization and
sharing, which is inherent to cloud computing, influence performance and
predictability of these cloud databases.

Cloud providers give little to no guarantees for consistent execution
or isolation from other users. To evaluate the performance isolation capa-
bilities of two commercial cloud databases, we ran a series of experiments
over the course of a week (a query, a minute) and report variations in
query response times. As a baseline, we ran the same experiments on a
dedicated server in our data center. The results show that in the cloud
single outliers are up to 31 times slower than the average. Additionally,
one can see a point in time after which the average performance of all
executed queries improves by 38 %.

1 Introduction

Cloud computing has been a hype for several years. Motivations for moving to the
cloud range from high flexibility and scalability to low costs and a pay-as-you-go
pricing model. From a provider’s point of view, consolidation of applications on
a shared infrastructure leads to increased infrastructure utilization and reduced
operational costs.

Virtually all major vendors offer relational databases as part of their cloud
ecosystem, e.g., Amazon Relational Data Services [1], Microsoft Azure SQL
Databases [11], or Oracle Database Cloud Services [13]. A common use-case
for a database in the cloud is as storage tier for a website or application run-
ning in the same cloud. Storing application data outside the infrastructure of
the provider is often unfeasible or prohibitively expensive with respect to data
transfers or performance. However, relational databases traditionally had strict
performance requirements and users have certain expectations when it comes
to database performance. The service provider has to balance his interest in a
high degree of resource sharing (which leads to an economic use of the available
resources) and the customers’ interest in a predictable, yet cheap service.

We refer to any database in a system that offers flexible provisioning, a pay-
as-you-go pricing model, and resource sharing (by means of resource virtualiza-
tion and usually transparent to the user) as a cloud database. Cloud databases
have a considerably shifted focus on requirements compared to classic relational

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

databases. Throughput, having been the number one metric in the past, is still
of interest, though many applications that run in a cloud infrastructure do not
have the highest throughput requirements. However, new quality measures like
predictability, scalability, fairness, and performance isolation determine the way,
a customer perceives a cloud database.

In this work, we concentrate on the problem of performance isolation. Per-
formance isolation refers to the customer’s requirement that his performance
is not influenced by other customers’ activities. Performance isolation directly
affects predictability, i.e., whenever different users influence one another it leads
to variation in query response times and hence to bad predictability.

Depending on the implementation of the cloud database system, perfor-
mance isolation is hard to achieve. Moreover, performance isolation is a goal
that conflicts with high resource utilization. Service providers acknowledge that
and state, e.g. “Each physical machine can service many databases, and per-
formance for each database can vary based on other activities on the physical
hosting machine.”1 Providers in the past have made little promises with respect
to performance or predictability. However, this seems to change and providers
started to add performance guarantees to their products or product road maps.

The research community also showed interest in performance isolation on
different levels. For example, Gupta et al. [4] and Krebs et al. [10] investigated
performance isolation in Xen based systems using different applications including
databases. Narasayya et al. [12] and Das et al. [3] worked on the problem of
performance isolation in shared-process cloud database implementations and
provided a prototype implementation of their solution.

The evaluation of performance isolation in commercial cloud database offer-
ings is inherently difficult. Many aspects of the implementation, especially the
placement of different cloud databases, are by design hidden from the user. It
is (from the outside) not possible to force the co-location of different databases
which would allow us to artificially generate concurrency to evaluate the per-
formance isolation. Hence, the only way we see to evaluate a cloud database
system from the outside is to consider it a black box and observe the behavior
in different situations. Our approach is to generate a constant load over a long
period of time and to “hope” for other users to generate concurrent load that
ultimately influences our query execution times. More specifically, we query the
database every minute over a period of seven days and observe the variation of
the response times for the query. In our experiments, we compare two different
commercial cloud database providers with a baseline collected on a dedicated
server.

To summarize, our key contributions in this paper are:

– An analysis of cloud database implementation options and their performance
isolation challenges.

– An overview of currently available commercial cloud offerings.
– An experimental comparison of two commercial cloud databases with respect

to performance isolation.
1 From the Microsoft Azure documentation at http://msdn.microsoft.com/en-us/

library/azure/dn338083.aspx.

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://msdn.microsoft.com/en-us/library/azure/dn338083.aspx
http://msdn.microsoft.com/en-us/library/azure/dn338083.aspx

The rest of the paper is organized as follows. Section 2 discusses performance
isolation in different cloud database implementation classes. Section 3 continues
with an overview of currently available commercial cloud offerings. Our exper-
iments are detailed in Sect. 4 before we discuss related work and conclude our
work in Sects. 5 and 6, respectively.

2 Performance Isolation in Database Clouds

In this section, we discuss the problem of performance isolation in general. Fur-
thermore, we analyze possible cloud database implementation classes and the
challenges for performance isolation related to each class.

2.1 Design Decisions

The degree of performance isolation in a cloud database system is a design
decision for the service provider to make. Independent of the ability to implement
it in the given system, the desired degree of performance isolation is not obvious.

Offering strong isolation leads to better predictability of the database perfor-
mance. Resources are constantly assigned to users to ensure consistent behavior.
At the same time, assigned resources that are currently not used by a certain
user cannot be given to other users or else there is high chance of interference
and degraded performance. Consequently, resources are often idle and the global
utilization in the system is bad.

In contrast, designing for weak isolation gives the service provider the free-
dom to assign idle resources to active users, potentially above the amount they
are actually paying for. Shared infrastructures in other domains deal with such
higher assignments with a notion of bonus resources to indicate that the per-
formance is at times better than the booked service level. With weak isolation,
systems can also be oversubscribed to further increase utilization and lower ser-
vice prices. However, depending on the global load, the performance that a single
user observes may be unpredictable.

From personal communication with one of the cloud database providers, we
know that customers seem to value predictability higher than bonus resources or
cheap service. However, whether or not there is a best decision on performance
isolation is up for debate.

2.2 Cloud Database Implementation Classes

The layered system stack of a DBMS—from the database schema to the operat-
ing system—allows for consolidation at different levels. Previous works have clas-
sified virtualization schemes, leading to classes like private OS, private process,
private database, or private schema [5,7]. The classes differ in the layer that
is virtualized and consequently in the resources that are private to a user or
shared among several users. Figure 1 shows four possible implementation classes
for cloud databases.

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 1. Cloud database implementation classes

The means as well as the extent of performance isolation depend on the cho-
sen implementation class. We differentiate different kinds of resources, system
resources and DBMS resources. System resources are, e.g., CPU, main memory,
storage, or network. DBMS resources are, e.g., page buffers, sort buffers, logging
facilities, or locking facilities. Although DBMS resources ultimately map to sys-
tem resources, their isolation and predictability depend on the ability to assign
access to them and to prevent congestion on them.

Private Operating System: The system shown in Fig. 1 on the left implements
a private OS virtualization where each user is given a complete stack of vir-
tual machine, operating system, and database management system. The virtual
machine hypervisor is responsible for balancing and isolating multiple virtual
machines that run database workloads.

The private OS implementation class offers strong isolation of the system
resources. The virtual machine hypervisor can be used to assign virtual CPU
cores, main memory, storage capacity, and network bandwidth to each virtual
machine. Depending on the system setup (disk setup), storage performance may
or may not be isolated. Multiple virtual machines that access the same set of

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

hard disks may have quotas with respect to size, but they still rival for IOPS.
Oversubscription of the system can be used to increase the system utilization,
but may harm performance isolation. DBMS resources are strongly isolated in
this class.

Private Process: The second system shown in Fig. 1 implements a private process
scheme. In this implementation class, each user is given a private database server
process and several such processes share the operating system.

In the private process implementation class, operating system facilities can be
used to isolate certain system resources. The operating system scheduler assigns
CPU time to the various competing processes and priority levels and sometimes
quotas can be used to increase or decrease the share of any process. The main
memory is per default not limited by the operating system. Each process can
use the same virtual address space. The operating system only takes care of
mapping the virtual memory to physical memory and of paging in case of memory
shortage. In the Linux operating system, the ulimit system tool can be used
to set system wide limits for certain resources (including memory). Similarly, a
process can limit its resources with the system call setrlimit. Control groups
(cgroups) are a Linux kernel feature to limit, police, and account the resource
usage of certain process groups.

Storage and network resources are hard to isolate on the OS level. There
are no integrated means in standard operating systems to assign, e.g., IOPS or
network bandwidth, to processes. DBMS resources are per process and hence
strongly isolated in this implementation class.

Private Database: The third system shown in Fig. 1 is a private database system.
Here, a single server process hosts a number of private databases—a common
setup for many database servers. The database management system needs to
provision resources and balance loads between different databases, i.e., users.
The different users are usually indistinguishable by the operating system.

In the private database class, all users share a database process and hence
all system resources (from the operating system’s point of view). The only way
to isolate the users’ performances is by means of managing and isolating DBMS
resources. In our experience, buffers (e.g., for pages or sorts) can usually be
split and assigned to different databases. Other resources, such as the logging
facility are usually shared and can hence lead to congestion and inevitably weak
performance isolation.

The detailed isolation options in currently available systems are dependent on
the DBMS implementation and usually very limited. In the research community,
Narasayya and Das et al. [3,12] investigated the problem of performance isola-
tion in shared-process cloud database implementations. They presented SQLVM,
an abstraction for performance isolation in the DBMS. Furthermore, they imple-
mented and tested a prototype of SQLVM in Microsoft Azure.

Private Schema: The system shown in Fig. 1 on the right is an example for
a private schema virtualization. Each user is implemented as a schema in a

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

single physical database. The performance isolation characteristics of the private
schema class are similar to the private database class. However, some resources
like page buffers may be even harder or impossible to isolate in a shared database.

3 Commercial Cloud Database Offerings

In this section, we present currently available commercial cloud database pro-
viders and their service characteristics and conditions. We analyzed three com-
mercial database cloud offerings, Amazon Relational Data Services [1], Microsoft
Azure SQL Databases [11], and Oracle Database Cloud Services [13]. The selec-
tion of these products is based on their availability and visibility but without
intention of promoting any particular one. The various usage options and condi-
tions are complex and detailed in the providers’ documentations. In this work,
we concentrate on a few key aspects such as pricing, resource provisioning, and
(if available) performance guarantees. Though different in detail, the aspects
we focus on are quite similar across the different service providers. Again, our
intention is to provide an overview of available services, not to compare or rank
them.

Amazon Web Services: Relational Database Service (RDS) is the part of Ama-
zon Web Services that provides relational databases in the cloud. The user can
select from four different database products (MySQL, PostgreSQL, Oracle, and
Microsoft SQL Server). To fit the database performance to the application needs,
users can select from different instance classes which differ in the provided num-
ber of virtual CPUs, the amount of memory, and the network performance.
The available classes for MySQL instances in the region US East at this time
are summarized in Table 1.2 For high availability, a database can be deployed in
multiple availability zones (Multi-AZ) so that there are a primary and a standby
version for failover. Amazon guarantees 99.95 % monthly up time for Multi-AZ
databases. Prices for the different database instances range from $0.025 per
hour (db.t1.micro) to $7.56 per hour (db.r3.8xlarge Multi-AZ) (again, prices are
exemplary for MySQL instances and the deployment region). The storage for the
database can be as large as 3 TBs, where each GB is charged with $0.1 per month
($0.2 for Multi-AZ instances). Amazon offers the use of provisioned IOPS stor-
age for fast and consistent performance at an additional cost. This provisioned
storage can help to increase performance isolation and hence predictability.

Microsoft Azure: Microsoft offers its cloud ecosystem Azure with SQL Data-
bases, a service to easily set up and manage relational databases. Databases
can grow up to 150 GB but are charged based on their actual size, starting
from $4.995 per month (up to 100 MB) and ranging to $225.78 per month for
150 GB. Microsoft maintains two synchronous copies in the same data center
for failover. Geo-replication for further availability is a preview feature at this
2 see http://aws.amazon.com/rds/pricing/.

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://aws.amazon.com/rds/pricing/

Table 1. DB instance classes in RDS (exemplary for MySQL instances in region US
East)

Instance type vCPU Memory Network Price/hour Price/hour

[GB] performance (Single-AZ) [$] (Multi-AZ) [$]

db.t1.micro 1 0.613 Very low 0.025 0.050

db.t1.small 1 1.7 Low 0.055 0.110

db.m3.medium 1 3.75 Moderate 0.090 0.180

db.m3.large 2 7.5 Moderate 0.185 0.370

db.m3.xlarge 4 15 Moderate 0.370 0.740

db.m3.2xlarge 8 30 High 0.740 1.480

db.r3.large 2 15 Moderate 0.240 0.480

db.r3.xlarge 4 30.5 Moderate 0.475 0.950

db.r3.2xlarge 8 61 High 0.945 1.890

db.r3.4xlarge 16 122 High 1.890 3.780

db.r3.8xlarge 32 244 10 gigabit 3.780 7.560

time. The Microsoft SQL Azure Service Level Agreement3 contains so called
Service Credit in case of a monthly uptime percentage below 99.9 %. As of now,
Microsoft provides two different database classes, web as backend for websites
and for testing and development purposes and business for production systems.
Details about the configurations of both classes are not known. As a preview
feature for future releases, Azure also contains additional classes basic, stan-
dard, and premium. With these classes, Microsoft introduces so called Database
Throughput Units (DTU) that represent the performance of the database engine
as a blended measure of CPU, memory, and read and write rates. It seems as
if Microsoft is aiming for more predictable database performance and better
performance isolation with DTUs and the new classes.

Oracle Cloud: Oracle’s cloud ecosystem, the Oracle Cloud, provides several ser-
vices including one for relational databases. A user can rent a schema in an
Oracle 11 g instance. Thereby, the user selects between databases of up to 5 GB,
up to 20 GB, or up to 50 GB. The prices range from $175 per month for 5 GB
to $2000 for 50 GB. As a preview feature, users can rent virtual machines with
fully configured (and optionally managed) Oracle database instances. As the
only provider in our overview, Oracle lets users decide between different cloud
database implementation class, i.e., Private Schema or Private OS.

4 Experimental Evaluation

In this section, we describe the setup and results of our experimental evaluation.
3 see http://azure.microsoft.com/en-us/support/legal/sla/.

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://azure.microsoft.com/en-us/support/legal/sla/

Two fundamental problems of evaluating cloud databases’ performance iso-
lation from a user’s point of view are a lack of control and a lack of insight.
A user can only control a database by means of starting, stopping, and using a
database. Furthermore, it is possible to configure a database in the boundaries of
what the service provider allows. It is however not possible to influence aspects
of placement (beyond the selection of a region or data center) or co-location
of several databases. The lack of insight refers to situations where a database’s
observed behavior changes. It is near impossible to reason about such changes
without knowing the infrastructure and possible events that may have caused
the change.

To overcome the problem of not being able to generate concurrency between
cloud databases, we decided to run a steady workload for several days. Assuming
that other users are actively using their cloud databases, we collect and report
variations in execution times. These variations can have several reasons that are
beyond our control and knowledge but are likely influenced by concurrency and
the degree of performance isolation. As mentioned before, we can only speculate
about reasons that may have caused certain changes in response times.

Since we are interested in performance isolation (and not absolute perfor-
mance), we only report relative execution times. We also do not disclose which
cloud database providers were used for our experiments but will refer to them
as CloudA and CloudB.

4.1 Experiment Setup

Cloud Databases: We ran our experiments on databases from two different cloud
providers. Additionally, we ran the same workload on a dedicated server in our
data center as a baseline. The cloud databases were provisioned to fit the size
of our data (1 GB). Beyond that requirement, we only used the most basic con-
figuration and did not book any additional guaranteed performance (if available
at all). We used the MulTe benchmark framework [8] to set up and fill our data-
bases as well as to execute the workload. The workload driver that queries the
cloud database was executed on a virtual machine in the cloud. We ensured that
the virtual machine and the cloud database are in the same providers cloud and
in the same region or data center.

Database Configuration: We used a TPC-H [16] database of scale factor 1 (equals
1 GB raw data) for our experiments. Primary key constraints as well as indexes
that benefit the selected queries were created on the database. We did not modify
the cloud database’s configuration in any way.

Workload Configuration: As workload, we picked a subset of TPC-H queries,
namely queries 2 (Minimum Cost Supplier), 13 (Customer Distribution), 17
(Small-Quantity-Order-Revenue), and 19 (Discounted Revenue). These queries
were selected for their different characteristics and different execution times.
The workload driver was configured to pick one of the four queries randomly
and execute it. Afterward, the workload driver slept for one minute before it

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

started the next query. Since the execution times vary for different queries and
cloud databases, we collected between 7632 and 9145 values over seven days.

Metric: The query execution times collected in our experiments are normalized
to the average execution time (per query type and cloud database). Thereby,
we are able to compare the two cloud databases although the absolute execu-
tion times differ. Additionally, we report the coefficient of variation (i.e., stan-
dard deviation divided by mean) and certain percentiles of the query execution
times. We consider execution times below the 1st percentile and above the 99th
percentile outliers and refer to the remaining execution times as being without
outliers.

4.2 Result Discussion

The relative execution times over seven days are plotted in Fig. 2. The charts
provide a high-level first impression of the execution time variations. One can see
that CloudA (Fig. 2a) has many queries that executed slowly compared to the
average. Single queries needed as long as 31 times the average execution time of
this query type. The figure also shows that there are more slow query executions
on day 6 of the experiment compared to the other days. Figure 2b shows that
query execution times in CloudB are closer around the average execution times.
There are no execution times above 5 times the average. CloudB does not show
any major changes of behavior over the duration of the experiment. Finally,
Fig. 2c shows that our on-premise database has the least variations in execution
times.

Table 2 lists the coefficient of variation of the query execution times. The
impression that the on-premise database varies least is confirmed by the values.
The table also shows that the variations are almost always higher in CloudA,
except for Query 2 where the difference is negligible.

Table 3 lists the 90th, 95th, and 99th percentile of the relative query execution
times. One can see that 95 % of all queries in CloudA finish within 1.46 times the
average execution time. Accordingly, within 1.44 times the average in CloudB,
and 1.27 times the average in the dedicated database. The high value of the 99th
percentile in CloudA is caused by the few very long query executions.

Figures 3 and 4 show the relative query execution times (without outliers) of
both cloud databases, split up by query and plotted in the range from 0 to 3.
This more detailed plots shows several interesting things. First of all, there is no
obvious daily rhythm visible. Even if the data centers are differently utilized at
different times of the day, it does not show in our experiment results. Second,
Fig. 3 shows that there must have been a distinct event in CloudA on day 3.
After that event, all queries show an improved query execution time for the rest
of the experiment (the execution time drops by 38 % for Query 17). Figure 3a
gives the impression that there may have been more events on days 5 and 6
that increased the execution times for short periods of time. We have no way of
knowing what caused the sudden change in performance, especially since we did
not change the setup whatsoever. The third conclusion from Figs. 3 and 4 is that

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0

5

10

15

20

25

30

35

Query 2 Query 13 Query 17 Query 19

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(a) CloudA

0

5

10

15

20

25

30

35

Query 2 Query 13 Query 17 Query 19

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(b) CloudB

0

5

10

15

20

25

30

35

Query 2 Query 13 Query 17 Query 19

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(c) On-Premise

Fig. 2. Experiment overview—relative execution times over seven days

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 2. Coefficient of variation of query execution times (without outliers in paran-
theses)

CloudA CloudB On-premise

Query 2 1.65 (0.81) 0.25 (0.22) 0.21 (0.20)

Query 13 0.31 (0.19) 0.36 (0.20) 0.01 (0.01)

Query 17 1.39 (0.59) 0.22 (0.19) 0.16 (0.15)

Query 19 1.04 (0.44) 0.29 (0.26) 0.11 (0.11)

Table 3. Percentiles of relative execution times over all queries

CloudA CloudB On-premise

90th percentile 1.17 1.29 1.20

95th percentile 1.46 1.44 1.27

99th percentile 5.13 1.89 1.37

in CloudA the execution times show a rather distinct baseline with variance
above that line while execution times in CloudB vary above and below the
average.

5 Related Work

Several works have investigated implementation and performance of cloud data-
bases or performance isolation in general (not specific to databases).

Kossmann et al. [9] analyzed different cloud databases when they were still
very new and partly immature. They described different cloud database architec-
tures and compared different providers with respect to performance, i.e., mainly
scalability, and cost. Shue et al. [14] propose a system for per-tenant fair shar-
ing and performance isolation in multi-tenant, key-value cloud storage services.
However, key-value stores differ from relational databases and the results cannot
easily be transferred between the two systems. Curino et al. [2] present Relational
Cloud, a Database-as-a-Service for the cloud. Unlike commercial providers, the
authors provide insights in their architecture and propose mechanisms for con-
solidation, partitioning, and security. While they try to consolidate databases
such that service level objectives are met, performance isolation is not in the
focus of their research.

Performance isolation in private OS systems has also been studied in the
past. Somani and Chaudhary [15] investigated performance isolation in a cloud
based on the Xen virtual machine monitor. They use different application bench-
marks simultaneously to evaluate the isolation strategy provided by Xen. Gupta
et al. [4] analyzed performance isolation in Xen based systems. Furthermore,
they presented a set of primitives implemented in Xen to monitor per-VM and
aggregated resource consumption as well as to limit the amount of consumed

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(a) Query 2, Minimum Cost Supplier

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(b) Query 13, Customer Distribution

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(c) Query 17, Small-Quantity-Order Revenue

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(d) Query 19, Discounted Revenue

Fig. 3. CloudA—relative execution times over seven days in the range from 0 to 3

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(a) Query 2, Minimum Cost Supplier

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(b) Query 13, Customer Distribution

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(c) Query 17, Small-Quantity-Order Revenue

0

0.5

1

1.5

2

2.5

3
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(d) Query 19, Discounted Revenue

Fig. 4. CloudB—Relative Execution Times over seven days in the range from 0 to 3

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

resources. Krebs et al. [10] propose metrics for quantifying the performance iso-
lation of cloud-based systems. Furthermore, they consider approaches to achieve
performance isolation in Software-as-a-Service offerings. Their experimental eval-
uation uses several instances of the TPC-W benchmark in a controlled environ-
ment with a system running the Xen hypervisor.

Other works focus on performance isolation in private process systems, e.g.,
Kaldewey et al. [6] virtualize storage performance, a particularly hard resource to
isolate. They used disk time utilization as the aspect of disk performance to focus
on and implemented a prototype that uses utilization based I/O scheduling.

Finally, there is work in the area of shared process cloud systems. Narasayya
et al. [12] investigated the problem of performance isolation in shared-process
cloud database implementations. They presented SQLVM, an abstraction for
performance isolation in the DBMS. Furthermore, they implemented and tested
a prototype of SQLVM in Microsoft Azure. In [3], Das et al. further detail per-
formance isolation in SQLVM with focus on the CPU as a key resource.

6 Summary

In this work, we gave an overview on performance isolation in cloud databases.
We analyzed different implementation classes for cloud databases and the chal-
lenges on performance isolation that each class poses.

A black-box analysis of two commercial cloud databases gave us insights
in their behavior. Our experiments revealed that variations in query execution
times, which are influenced by the degree of performance isolation, differ in the
two cloud databases. Moreover, we learned that both cloud databases showed
constantly higher variations than our dedicated database.

References

1. Amazon: Amazon Relational Database Service (2014). http://aws.amazon.com/
rds/

2. Curino, C., Jones, E.P.C., Popa, R.A., Malviya, N., Wu, E., Madden, S.,
Balakrishnan, H., Zeldovich, N.: Relational cloud: a Database-as-a-Service for the
cloud. In: CIDR 2011, Asilomar, California, USA (2011). http://dspace.mit.edu/
handle/1721.1/62241

3. Das, S., Narasayya, V., Li, F., Syamala, M.: CPU sharing techniques for perfor-
mance isolation in multi-tenant relational Database-as-a-Service. In: VLDB 2014,
Hangzhou, China, vol. 7 (2014). http://www.vldb.org/pvldb/vol7/p37-das.pdf

4. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance iso-
lation across virtual machines in Xen. In: van Steen, M., Henning, M. (eds.)
Middleware 2006. LNCS, vol. 4290, pp. 342–362. Springer, Heidelberg (2006).
http://link.springer.com/chapter/10.1007/11925071 18

5. Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: BTW
2007, Aachen, Germany, pp. 5–9 (2007). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.140.6429&rep=rep1&type=pdf

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://dspace.mit.edu/handle/1721.1/62241
http://dspace.mit.edu/handle/1721.1/62241
http://www.vldb.org/pvldb/vol7/p37-das.pdf
http://link.springer.com/chapter/10.1007/11925071_18
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.6429&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.6429&rep=rep1&type=pdf

6. Kaldewey, T., Wong, T.M., Golding, R., Povzner, A., Brandt, S., Maltzahn, C.:
Virtualizing disk performance. In: 2008 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pp. 319–330. IEEE, April 2008. http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4550803

7. Kiefer, T., Lehner, W.: Private table database virtualization for DBaaS. In: UCC
2011, Melbourne, Australia, vol. 1, pp. 328–329. IEEE, December 2011. http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6123516

8. Kiefer, T., Schlegel, B., Lehner, W.: MulTe: a multi-tenancy database bench-
mark framework. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol.
7755, pp. 92–107. Springer, Heidelberg (2013). http://link.springer.com/chapter/
10.1007%2F978-3-642-36727-4 7

9. Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures
for transaction processing in the cloud. In: SIGMOD 2010 - Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, p. 579
(2010). http://portal.acm.org/citation.cfm?doid=1807167.1807231

10. Krebs, R., Momm, C., Kounev, S.: Metrics and techniques for quantifying perfor-
mance isolation in cloud environments. Sci. Comput. Program. 90, 116–134 (2014).
http://linkinghub.elsevier.com/retrieve/pii/S0167642313001962

11. Microsoft: Microsoft Windows Azure (2014). http://www.windowsazure.com/
en-us/

12. Narasayya, V., Das, S., Syamala, M., Chandramouli, B., Chaudhuri, S.: SQLVM:
performance isolation in multi-tenant relational Database-as-a-Service. In: CIDR
2013 (2013)

13. Oracle: Oracle Database Cloud Service (2014). https://cloud.oracle.com/database?
tabID=1383678914614

14. Shue, D., Freedman, M.J., Shaikh, A.: Performance isolation and fairness for multi-
tenant cloud storage. In: OSDI 2012 (2012). https://www.usenix.org/system/files/
conference/osdi12/osdi12-final-215.pdf

15. Somani, G., Chaudhary, S.: Application performance isolation in virtualization. In:
CLOUD 2009, pp. 41–48. IEEE (2009). http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5284105

16. TPC: Transaction Processing Performance Council, TPC-H (2014). http://www.
tpc.org/tpch/

Final edited form was published in "Performance Characterization and Benchmarking. Traditional to Big Data :
6th TPC Technology Conference, TPCTC 2014. Hangzhou 2014", S. 173–187, ISBN 978-3-319-15350-6.

http://dx.doi.org/10.1007/978-3-319-15350-6_11

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4550803
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4550803
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6123516
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6123516
http://link.springer.com/chapter/10.10072F978-3-642-36727-4_7
http://link.springer.com/chapter/10.10072F978-3-642-36727-4_7
http://portal.acm.org/citation.cfm?doid=1807167.1807231
http://linkinghub.elsevier.com/retrieve/pii/S0167642313001962
http://www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/
https://cloud.oracle.com/database?tabID=1383678914614
https://cloud.oracle.com/database?tabID=1383678914614
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-215.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-215.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284105
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284105
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	A Query, a Minute: Evaluating Performance Isolation in Cloud Databases
	1 Introduction
	2 Performance Isolation in Database Clouds
	2.1 Design Decisions
	2.2 Cloud Database Implementation Classes

	3 Commercial Cloud Database Offerings
	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Result Discussion

	5 Related Work
	6 Summary
	References

	ADP1A04.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Tim Kiefer, Hendrik Schön, Dirk Habich, Wolfgang Lehner

