
Structured Document Algebra in Action

Don Batory1, Peter Höfner2, Dominik Köppl3,
Bernhard Möller4, and Andreas Zelend4

1 Dept. of Computer Science, University of Texas at Austin, USA
2 NICTA and UNSW, Australia

3 Department of Computer Science, TU Dortmund, Germany
4 Institut für Informatik, Universität Augsburg, Germany

Abstract. A Structured Document Algebra (SDA) defines modules with
variation points and how such modules compose. The basic operations
are module addition and replacement. Repeated addition can create
nested module structures. SDA also allows the decomposition of mod-
ules into smaller parts. In this paper we show how SDA modules can
be used to deal algebraically with Software Product Lines (SPLs). In
particular, we treat some fundamental concepts of SPLs, such as refine-
ment and refactoring. This leads to mathematically precise formalization
of fundamental concepts used in SPLs, which can be used for improved
Feature-Oriented Software Development (FOSD) tooling.

Keywords: software product lines, feature-oriented design, algebraic reasoning

It is our pleasure to dedicate this paper to Martin Wirsing on the occasion of
his Formal Retirement. We contribute a study on a recently developed algebra
for all kinds of structured and interconnected documents, but particularly the
ones that describe product families or product lines in Feature Oriented Software
Design — a topic on which Martin has been quite active for a while now. The
frame of this are general formal methods and semantics. We pick up this latter
theme to endow the algebra, which previously had a more syntactic flavour, with
a semantic component, too. The particular approach we take uses the terminology
of algebraic specification; this gives the fourth author the opportunity to fondly
remember the days of the CIP project at TU Munich, in which Martin and he
cooperated quite a lot on that topic. We hope that Martin will enjoy that bit of
scientific nostalgia, too! Best wishes, Martin, for your Formal Retirement —
enjoy! — but also for many further successful years, since we do hope that your
Retirement is only Formal!

1 Introduction

A Software Product Line (SPL) is a family of related programs constructed
from a common set of assets. Variations in programs are explained by features—
increments in program functionality. The assets of an SPL are modules that
implement features. These modules are the building blocks of SPL programs [2].

Today’s SPL researchers are exploring two rather different forms of feature-
based modularity: alternative-based variation (a.k.a. classical modularity) and
projectional variation (a.k.a. SYSGEN or virtual modularity). Classical mod-
ularity is what you would expect: there are physical files that define a feature
module and tools that compose modules to produce a desired program. Here, files
refer to arbitrary documents, such as specifications, code composed of elemen-
tary program features, text fragments or manuals. In contrast, virtual feature
modularity is a preprocessor technology called coloring. The idea is simple: the
code of the Blue feature is painted blue; code of the Green feature is painted
green. Whenever Blue is not needed in a product, all blue-colored code is re-
moved or is said to be projected out. The tools for virtual modularity are his-
torically based on text preprocessors; more advanced tools color abstract syntax
trees (ASTs) [5, 15, 18]. The current debate is which implementation technique
is most appropriate for an SPL. Our position is that both implement the same
abstractions—feature modules—in very different ways. What is important is to
understand the algebraic nature of these abstractions.

The Structured Document Algebra (SDA), partially first presented in [6],
aims at providing a simple, yet effective, algebra of feature modularity (e.g., the
modularization of text files, text fragments, ASTs, etc.).

It is completely independent of the underlying programming paradigm, such
as Object-Oriented Programming or Functional Programming. In fact, it is even
independent of programming, since it is abstract enough to cover also general
structured documents, such as manuals or collections of web pages. It is meant
as an aid for formal reasoning about the process of decomposing larger docu-
ment pieces into smaller ones (and vice versa). It can be implemented on top
of or inside any text editor, IDE or web page editor. Depending on the desired
level of reasoning, it can be used purely syntactically or at a semantic level,
as demonstrated in the Appendix. Phenomena modelled by the algebra include
coherence, uniform transformations, deletion, overriding. In the special case of
SPL documents, SDA additionally allows a description of their fine structure.
This is in contrast to other algebraic approaches in this area (e.g., [1, 24, 25]),
where modules are often treated as atomic units.

In the present paper we extend the basic repertoire of the version of SDA
from [6] and show how it can be used to formally describe some standard tech-
niques used in feature oriented software construction and SPLs.

The basis of SDA are structured, inter-linked documents or document frag-
ments. A link is represented as a Variation Point (VP), i.e., a labeled position
in a fragment where contents can be inserted to yield a larger fragment. The
association between VPs and their assigned fragments, if any, is provided by
modules, i.e., partial functions from VPs to fragments.

SDA allows multiple “applied occurrences”, i.e., replication of one and the
same VP v; they all stand for (or share) the fragment assigned to v by some
module. Conversely, different VPs may be associated with the same fragment (a
module need not be an injective partial function).

2

In this paper we show how modules and fragments can be treated alge-
braically and discuss algebraic operations for module (de)composition and pre-
sent an operation for overriding.

2 Structured Document Algebra

This section recapitulates a formal model of VPs, modules containing VPs, and
compositions of such modules first presented in [6]. To keep SDA language-
independent, we leave the exact nature of fragments (e.g., text or abstract syntax
trees) unspecified and view it as a parameter of the algebra. For our examples
we will use Java code fragments.

2.1 SDA Basics

Variation Points and Fragments. We now formalize the notions mentioned
above. Let V be a set of VPs, denoted by v1, v2, . . . at which fragments may be
inserted and F(V) be a set of fragments, denoted by f1, f2, Fragments may
contain VPs from V.

In incremental software design it is often advantageous to leave certain parts
unspecified and to insert placeholders where (optionally) further features may
be added. As an abstraction of such placeholders we use default fragments. In
addition, it is convenient to introduce a special pseudo-fragment that represents
an error, namely that there has been an attempt to assign two or more non-
default and different fragments to the same VP. To this end we assume that the
set F(V) includes two special elements, a default fragment 0 and an error .

The addition, or supremum, operator + on fragments has the axioms

0 + x = x , + x = , fi + fj = (i 6= j) ,

f1 f2 . . .

0

where x, fi, fj ∈ F(V) with fi, fj 6= 0. If we assume as-
sociativity, idempotence and commutativity of addition,
this structure forms a flat lattice with least element 0

and greatest element .

Modules. A module is a partial function m : V F(V). A VP v is assigned by
m if v ∈ dom(m), otherwise unassigned or external. Thus the domain dom(m) of
a module is the set of VPs it “knows about” or administers. By using partial
functions rather than relations, a VP can be filled with at most one fragment
(uniqueness).

Example 2.1 Figure 1(a) is a sample file/module, structured by the assignment
of fragments to its VPs. Its partial function is given in Figure 1(b). ut

Ducasse et al. [12] also use a flat lattice of composable units, called traits.
Our modules correspond to the method dictionaries there. However, these have
to be total rather than partial maps, which makes distinguishing assigned and
external VPs difficult. Had we taken the same decision, our algebraic laws would
have become much more cumbersome.

A module m can be viewed in different ways:

3

v0 7→

class Stack {

v1 7→

int ctr = 0;

int size(){
return ctr;

}

String s = new String();

void empty() {
v3 7→

{
ctr = 0;

s = "";

}
void push(char a) {

v4 7→
{

ctr++;

s = String.valueOf(a)

.concat(s);

}
void pop() {

v5 7→
{

ctr--;

s = s.substring(1);

}
char top() {
return s.charAt(0);

}

← [v2

}

class v0 7→ { class Stack { v1 v2 }

stack v2 7→ { String...v3...v4...v5

count

v1 7→ { int ctr = 0;...

v3 7→ { ctr = 0;

v4 7→ { ctr++;

v5 7→ { ctr--;

(a) (b)

Fig. 1. Variation Points, Fragments and Modules.

– as a collection of fragments that instantiate the VPs of dom(m), i.e., a struc-
tured document;

– as filling certain VPs with contents (in term rewriting etc., it would be called
a substitution); and

– as a generalized context-free grammar with dom(m) as the set of nonterminals
and a production v 7→ m(v) for each v ∈ dom(m).

The simplest module is the empty module 0, i.e., the empty partial map. An-
other very simple kind of module is provided by constant modules, i.e., modules
which assign one and the same fragment—for instance 0—to a number of VPs.
Let W ⊆ V be a set of VPs and f a fragment. We set

[W 7→ f](v) =df

{
f if v ∈ W,
undefined otherwise.

If W = {w} is a singleton set, we abbreviate [{w} 7→ f] to [w 7→ f]. Such singleton
modules are the atomic building blocks from which all other modules can be
constructed by the addition operation introduced next.

Module Addition. We want to construct larger modules step by step by assign-
ing more and more fragments to VPs. The central operation for this is module
addition (+), which fuses two modules while maintaining uniqueness (and signal-
ing an error upon a conflict). Basically, module addition can be viewed as union
with flagged inconsistent VP/fragment associations. Desirable properties for +
are commutativity and associativity. If two modules have no VPs in common,

4

the partial functions characterizing them can easily be combined. For example,
class + stack (Figure 1(b)) is the partial function

class + stack =

{
v0 7→ class Stack {v1 v2}
v2 7→ String ... v3 ... v4 ... v5

Module addition can be defined as the lifting of + on fragments

(m + n)(v) =df

m(v) if v ∈ dom(m)− dom(n)
n(v) if v ∈ dom(n)− dom(m)
m(v) + n(v) if v ∈ dom(m) ∩ dom(n)
undefined if v 6∈ dom(m) ∪ dom(n)

If in the third case m(v) 6= n(v) and m(v), n(v) 6= 0 then (m + n)(v) = , thus
signaling an error. By the above laws for fragment addition, the set of modules
forms a commutative and idempotent monoid under +.5 Therefore we can define
a submodule relation as the natural order

m ≤ n ⇔df m + n = n . (1)

Example 2.2 Figure 1(b) shows three modules: class and stack contain single
fragments, assigned to v0 and v2 respectively; count contains fragments assigned
to v1, v3, v4, and v5. The module addition class + stack + count corresponds
to the code in Figure 1(a). ut

Implementation. A simple example suggests several ways in which SDA mod-
ules can be implemented. Figure 2(a) shows how preprocessor macros might de-
fine three non-default fragments (labeled BLUE, GREEN, RED) and a default for an
implicit variation point. Figure 2(b) shows how this might be rendered in a “col-
oring” tool (e.g., the one contained in the integrated development environment
CIDE [18, 19, 2]) where the fragments assigned to the VPs are explicitly shown.
(There is no need to actually “see” the names of VPs). However, Figure 2(b)
would require significant engineering: a Java compiler would have to understand
the preprocessor semantics of coloring (Figure 2(a)) so as not to alert program-
mers that the GREEN fragments and beyond are unreachable if BLUE is true. In
a Java-like language this can be accomplished by defining feature variables as
static Booleans and put a wrapper if (feature){ fragment } around each
fragment. So if the feature variable is false, the compiler will effectively ignore
the fragment as dead code. This is, for instance, offered by the CIDE compiler.

A more likely possibility—which is consistent with current text coloring
tools—would be to “fool” the compiler by pretending that the code of Fig-
ure 2(c) is the definition of the add method, where a projection would produce
a simpler method with only one assignment to the variable result.

5 Modules and module addition can be recoded in terms of total functions, which
makes it easier to see that the + operation indeed is commutative, associative and
idempotent, hence induces a lattice, too. Moreover, it has the empty module 0 as its
neutral element and satisfies dom(m + n) = dom(m) ∪ dom(n).

5

int add(int x) {
#if BLUE

return x+3;
#elif GREEN

return x+5;
#elif RED

return x+11;
#else

return x+1
#endif
}

int add(int x) {

v1 7→
{

return x+3;

v1 7→
{

return x+5;

v1 7→
{

return x+11;

v1 7→
{

return x+1;

}

int add(int x) {

v1 7→
{

result = x+3;

v1 7→
{

result = x+5;

v1 7→
{

result = x+11;

v1 7→
{

result = x+1;

return result;

}

(a) (b) (c)

Fig. 2. Module Implementations

These ideas are, in effect, standard fare for SPL development, except that
the tool support needs to be beautified by coloring and VP recognition. Code
fragments or mini-modules can indeed be expressed in terms of classical module
systems; see [10] for examples. Coloring also presents the connection between
modules and virtual modularity (cf. Sect. 1).

2.2 Structural Properties of Modules

Since fragments may contain VPs, cycles could occur when composing modules.
A module, however, should be cycle-free. To handle this we use a dependence
relation.

Cycle-Freeness. For a fragment f∈ F(V) let VP(f) be the set of VPs that occur
in f. We define a direct dependence relation depm ⊆ V× V within a module m by

v depm w ⇔df v ∈ dom(m) ∧ w ∈ VP(m(v)) .

This means that VP w occurs in the fragment assigned to VP v by m, so that
v depends on w. For example, in Figure 1(b), v2 depstack v3. A module m is
acyclic if no VP depends directly or indirectly on itself, i.e., no VP v satisfies
v depm

+
v, where depm

+
is the transitive closure of depm. Henceforth we only consider

cycle-free modules.
The concepts of dependence and module addition do not interfere. Since the

latter is just the “union” of VP/fragment associations, for acyclicity it does
not matter whether dependences occur inside one module or between different
modules.

Assembling Fragments. We now describe how to assemble a structured doc-
ument into a single fragment (while “forgetting” the structure). To define this
formally we use an auxiliary function single fill(f, m). It takes a fragment f

and a module m and yields the fragment that results from f by replacing, in
parallel, all occurrences of every v ∈ VP(f) by the corresponding fragment m(v)
(if any). The precise definition of single fill depends on the special type of

6

fragments considered; as stated in the introduction we want to keep that para-
metric. For an acyclic module m and v ∈ dom(m), the fragment frag(v, m) can be
computed by iterating the single fill function. By the assumed acyclicity of
m this always terminates. To cope with unassigned (= external) VPs we assume
that every VP is also a fragment, i.e., that V ⊆ F(V). Then the external VPs can
simply be left unchanged by the assembly function. A corresponding program
looks as follows:

fragment frag (vp v, module m){
fragment f = v;
while (VP(f) ∩ dom(m) 6= ∅)

f = single fill(f, m);
return f; }

Note that frag(v, m) = v if v 6∈ dom(m).

Module Equivalence. Two modules m, n are equivalent if they generate the
same fragments for all VPs:

m ≡ n ⇔df ∀v ∈ VP : frag(v, m) = frag(v, n) .

Lemma 2.3 For modules m, n we have m ≡ n ⇒ dom(m) = dom(n).

Restructuring. Module m restructures into module n, in symbols m v n, if
m v n ⇔df dom(m) ⊆ dom(n) ∧ ∀ v ∈ dom(m) : frag(v, m) = frag(v, n) .

This means that n offers a possibly more detailed representation of the fragments
of m using auxiliary VPs in dom(n)− dom(m). The empty module is the smallest
one w.r.t. v, since it does not offer any choice—in particular since dom(0) = ∅.

It is easy to check that the relation v is reflexive and transitive, i.e., a pre-
order. It is, however, not antisymmetric as the following example shows.

Example 2.4 Consider the modules m and n defined as follows:

m : v 7→ i++; w; and w 7→ j++;

n : v 7→ i++; j++; and w 7→ j++;

These are equivalent, i.e., m ≡ n, in that they produce the same text. Hence,
m v n and n v m. If v were antisymmetric, this should imply m = n, but m and
n are different as modules. ut

However, we always have m v n ∧ n v m ⇔ m ≡ n.
We provide some basic properties of v that can be used to restructure larger

modules in a modular fashion. To state them we define the set of all VPs occur-
ring in a module m by VP(m) =df dom(m) ∪

⋃
v∈dom(m)

VP(m(v)). First we treat the

case of decomposing the fragment belonging to a single VP.

Lemma 2.5 Assume fragments f, g and a module m with dom(m) = VP(g) and
f = single fill(g, m). This means that the VPs in g are filled by m yielding f.
Moreover let v be a fresh VP, i.e., v 6∈ dom(m) ∪ VP(m). Then

[v 7→ f] v ([v 7→ g] + m) .

7

The proof is immediate from the definitions and assumptions.

Lemma 2.6 For modules mi v ni(i = 1, 2) with VP(n1) ∩ VP(n2) = ∅ we have

m1 + m2 v n1 + n2 .

Proof. (Sketch) We first state an auxiliary property. Assume modules m, n such
that m+ n is acyclic and VP(m)∩ VP(n) = ∅. Then ∀ v ∈ dom(m) : frag(v, m+ n) =
frag(v, m). In words, if n does not mention the VPs of m then it cannot influence
the fragment represented by m. This is shown by induction on the length of
the longest depm-path (or equivalently the smallest natural number i such that
depm

i= ∅), which exists by the assumed acyclicity of m + n and hence also of m.
With that, the main claim follows easily from the definition of v, because

VP(n1) ∩ VP(n2) = ∅ implies VP(mi) ∩ VP(nj) = ∅ (i 6= j). ut

3 Additional SDA Operators

3.1 Subtraction

In this section we present a way of defining an “inverse” to addition. The useful-
ness of this operation might not be straightforward. However, as we will show, it
lays the foundation for more sophisticated operations such as overriding, which
is a common technique in feature-oriented software development.

For modules m and n we define the subtraction m− n via restriction | as

m− n =df m |dom(m)−dom(n) .6

This spells out to

(m− n)(v) =df

{
m(v) if v ∈ (dom(m)− dom(n))
undefined otherwise .

Among others, subtraction satisfies, for arbitrary modules m, n and p, the
following laws. (Proofs are straightforward.)

dom(m− n) = dom(m)− dom(n) m− n ≤ m

(m + n)− p = (m− p) + (n− p) m− 0 = m

m− (n + p) = (m− n)− p m− m = 0
m ≤ n ⇒ m− n = 0 0− n = 0 .

Note that the left law in the last line is only an implication, while the correspond-
ing one for set theoretic difference is an equivalence. For the reverse direction
we only have m− n = 0 ⇒ dom(m) ⊆ dom(n). Moreover, m− n v m need not hold.
Subtraction is isotone in its right argument and antitone in its left, i.e.,

m ≤ n ⇒ m− o ≤ n− o , and n ≤ o ⇒ m− o ≤ m− n .

6 Instead, one could define another subtraction operator 	 of type (V F(V)) ×
P(V) → (V F(V)) by m	 U =df m |dom(m)−U and then set m− n =df m	 dom(n).

8

3.2 Overriding

Ideally, modules that are composed have disjoint domains. And by using subtrac-
tion or deletion, modules can be customized. Still, object-oriented programmers
are used to the notion of overriding or replacing definitions, an operation that
can be defined in terms of subtraction and addition. The module m−. n which
results from overriding n by m is defined as

m−. n =df m + (n− m) .

This replaces all assignments in n for which m also provides a value. It may
destroy acyclicity. −. is associative and idempotent with neutral element 0, but
not commutative.

Example 3.1 A classic example of feature interaction and product lines is the
fire-and-flood control [17]. Assume a building is equipped with two systems: a
fire control and a flood control. The flood control turns off the water supply as
soon as sensors in the building indicate a water level is too high. It is specified
by the following module.

Flood :

{
pv 7→ void flood(){ pt }

pt 7→ if(isWaterHigh()) waterOff(); else waterOn();

Fire control works in an opposite manner: as soon as sensors detect a too
high temperature, sprinklers are turned on.

Fire :

{
pw 7→ void fire(){ i1 }

i1 7→ if(isTemperatureHigh()) spriOn(); else spriOff();

Note that the sprinklers’ functionality depends on a working water supply.
Their composition/sum is FplusF = Fire + Flood:

FplusF :

pv 7→ void flood(){ pt }

pt 7→ if(isWaterHigh()) waterOff(); else waterOn();

pw 7→ void fire(){ i1 }

i1 7→ if(isTemperatureHigh()) spriOn(); else spriOff();

After a fire has been detected, it must be guaranteed that the water supply is
not turned off; otherwise the building would burn down. This is not guaranteed
with Fire + Flood; it depends on a race condition determined by the order of
fire() and flood() execution.

The solution is to impose one more module, representing a feature interaction
FI, denoted Fire#Flood in [5], whose alterations make Flood and Fire work
correctly together. This is achieved by a shared VP pv and the use of overriding.
FI replaces Flood’s fragment at pv with FI’s fragment:

FI :

{
pv 7→ void flood(){ i2 }

i2 7→ if(isTemperatureHigh()) waterOn(); else { pt }

9

The occurrence of pt in the fragment of i2 may be viewed as an original call
to the respective method (e.g., [8]).

The composition of all three modules, FandF = FI−. (Fire+Flood), yields
a correct implementation:

FandF :

pw 7→ void fire(){ i1 }

i1 7→ if(isTemperatureHigh()) spriOn(); else spriOff();

pv 7→ void flood(){ i2 }

i2 7→ if(isTemperatureHigh()) waterOn(); else { pt }

pt 7→ if(isWaterHigh()) waterOff(); else waterOn();
ut

To state further laws, we call modules m and n compatible, in signs m ↓ n, if
their fragments coincide on their shared domains. Formally,

m ↓ n ⇔df ∀ v ∈ dom(m) ∩ dom(n) : m(v) = n(v) .

All submodules of a module are pairwise compatible with each other. It follows
that the properties below are equivalent:

m ↓ n ⇔ m−. n = m + n ⇔ m−. n = n−. m

Module addition and overriding interact by the following laws, where the left
implication ⇐ means “provided”.

m−. (n + p) = (m−. n) + (m−. p) (left distributivity)
(m + n)−. p = m−. (n−. p) ⇐ m ↓ n (sequentialisation)
(m + n)−. p = n−. p ⇐ m ↓ n ∧ m−. n = n (absorption I)
(m + n)−. p = m−. p ⇐ m ↓ n ∧ n−. p = p (absorption II)
m−. (n + p) = n + (m−. p) ⇐ dom(m) ∩ dom(n) = ∅ (localisation)

The sequentialisation law means that a complex overriding may also be done by
two successive simpler overridings. Absorption II, which is an immediate conse-
quence of sequentialisation, allows simplifying a complex overriding by omitting
the part that is “already there”. Finally, localisation allows propagating an over-
riding to the submodule it really affects.

The previous laws for overriding dealt with immediate links from VPs to
fragments. We now deal with preservation of transitive links under overriding.
Let depm

∗
be the reflexive, transitive closure of depm. For a module m and a

VP v ∈ dom(m) we define deps(v, m) =df {w | v depm
∗
w}, i.e., the set of VPs on

which v depends transitively, plus v itself. We now want to override or extend
a module n with a module m. If n does not alter the assignments of the VPs on
which v transitively depends in m then the overriding/extension does not change
the transitive dependence of v (cf. [23, 13]):

deps(v, m + n) = deps(v, m)
deps(v, m−. n) = deps(v, n)

}
⇐ deps(v, m) ∩ dom(n) = ∅ .

10

3.3 Solving Module Equations

As discussed in [5], it is useful to be able to solve module equations. Subtraction
and its relatives enable us to do so. Suppose that m is a submodule of n, i.e.,
m ≤ n (see Equation (1)). Then the equation m + x = n has x = n − m as a
solution. Moreover, this is the unique solution that is domain-disjoint from m.7

Example 3.2 Consider a composition comp = a + b + c + d with pairwise
domain-disjoint modules a, b, c, d. Then the equation a + x + b + d = comp has
the unique solution x = c domain-disjoint from a + b + d. ut

Note that the condition dom(m) ⊆ dom(n) is necessary for m + x = n to be
solvable, because we need to have dom(m+x) = dom(m)∪dom(x) = dom(n), which
implies dom(m) ⊆ dom(n). The above assumption m ≤ n implies that necessary
condition. In fact, solvability of m + x = n conversely implies m ≤ n, since

m + n = m + (m + x) = (m + m) + x = m + x = n .

In short: m + x = n is solvable iff m ≤ n.

Next, we have a brief look at equations involving overriding. Since

dom(m−. n) = dom(n−. m) = dom(m) ∪ dom(n) ,

again dom(m) ⊆ dom(n) is necessary for m−. x = n and x−. m = n to be solvable.
But by the definition of −. , solvability of m−. x = n even implies the stronger
necessary condition m ≤ n. In this case again x = n − m is the unique solution
domain-disjoint from m. A closer inspection shows that the same is the case for
the equation x−. m = n. This means that it is sufficient to restrict interest to
the solution of equations involving +.

3.4 Transformations

In this section we sketch another extension of SDA, intended to cope with some
standard techniques in software refactoring (e.g., [4, 20]). Examples of such tech-
niques are consistent renaming of methods or classes in a large software system.
To stay at the same level of abstraction as before, we realize this by a mechanism
for generally modifying the fragments in SDA modules.

By a transformation or modification or refactoring we mean a total function
T : F(V) → F(V). By T · m we denote the application of T to a module m. It yields
a new module defined by

(T · m)(v) =df

{
T(m(v)) if v ∈ dom(m)
undefined otherwise .

7 Another solution is x = n, since m ≤ n means m + n = n. Such solutions are uninter-
esting.

11

We use the convention that · binds stronger than all other operators. The fol-
lowing properties hold:

(1) dom(T · m) = dom(m) , (2) T · (m + n) = T · m + T · n ⇐ m ↓ n ,
(3) T · (m− n) = T · m− T · n , (4) T · (m−. n) = T · m−. T · n .

The proofs are straightforward calculations.
The analogue of Equation (2) is also used in the feature algebra of [1]; it

entails that a transformation T is propagated and applied to all components of
a composed module.

This applies, in particular, to transformations like method renaming; there
T would be implemented using a global table with all the old-name/new-name
associations which would be consistently applied in all submodules of the overall
module under consideration. Note that, although T is supposed to be a total
function on all fragments, it might well leave many of those unchanged, i.e., act
as the identity on them.

Future work in this area will deal with further operators that reflect ex-
tended transformations concerning several modules, like moving methods from
one module to another.

4 Using the Algebra

4.1 Projecting Out

Next, we deal with some aspects of modularity. In classical modularity there are
physical files that define the feature modules and tools that compose them to
produce a desired program. This is also known as alternative-based variation.
Contrarily, virtual modularity, also known as SYSGEN (e.g. [14]) or projectional
variation is a preprocessor technology. A prominent representative of this tech-
nique is the coloring approach of [5, 15, 18]. The idea is simple: every document
is painted in different colors, one color per feature. A color C that appears “in-
side” another color D indicates a feature interaction—C changes the source of D
(denoted C#D in [5]). VPs are implicit in coloring. At every point in a document
where coloring changes, an implicit VP is created. Figure 1 is not only an exam-
ple for variation points, fragments and modules, but also for coloring: the code
is colored white, light gray and dark gray. If a feature is not needed in a product,
all code colored in the corresponding color (e.g., dark gray) is projected out, i.e.,
does not show up in the final product. Since one colors the entire code base of
a product line, it is possible to compute the contents of SDA modules and their
VPs.

We now show how this operation can be expressed in our algebra. Assume a
module m and a subset U ⊆ dom(m). Projection to U is supposed to hide everything
that does not correspond to a VP in U. This needs to be done in such a way
that later the hidden parts can be uncovered again. Therefore, a corresponding
operation should not remove the VPs outside U from m. We preserve the hidden
part n =df m|dom(m)−U and temporarily work with the module p =df [(dom(m)−

12

U) 7→ 0]−. m which masks all VPs outside U with the default fragment. To restore
the original module, i.e., to switch the masked parts back on again we use that
n−. p = m.

The difference between restriction and projecting out is that in the former
case all VPs outside U are removed and hence become external to the resulting
module so that they would be considered as “fresh” there, whereas after projec-
tion they are still “known” and hence “protected” against unintentional change,
so that they can be refilled later.

4.2 Introducing Wrappers

We can use overriding for adding a wrapper to a module. Let m be a module and
v ∈ dom(m) be the VP where we want to insert the wrapper. Choose a “fresh”
VP w 6∈ dom(m) and a non-trivial wrapper fragment f such that VP(f) = {w}
and w occurs only once in f. Then w marks the place in f where the original
“contents” of v is to be put and thereby wrapped. The old contents m(v) of v is
remembered by a link from w to it, so that it can be overridden by a link from
v to the wrapper f. Algebraically, the module with the wrapper is expressed by

m′ =df ([v 7→ f]−. m) + [w 7→ m(v)] .

An illustration is given in Figure 3.

m:

v0

v

m(v)

→ m′:

v0

v

w

m(v)

f

Fig. 3. Introducing a Wrapper (Splicing).

5 Small Case Study: Constructing Product Lines

There are often multiple ways how a finished product (i.e., a single fragment
without further VPs) can result within a product line. This is, for example, the
case when modules can be grouped into sets of features that are orthogonal to
each other. Conversely, one may wish to refactor an existing monolithic system
by decomposing it into directly re-usable or at least easily adaptable parts.

We illustrate this by taking up an example from [7]. Notationally we deviate
a bit from that paper by not distinguishing “defining” and “applied” occurrences
of VPs. All VP names start with @ (for text processing reasons); in a module

13

every VP is assigned the text indented to the position after the VP name. If no
text appears to the right of a VP this means that the default is assigned to it.

We look at software for a basic calculator. It deals with arithmetic expressions
composed by the operations addition and multiplication; expressions can be
displayed and evaluated. First we present a program (or single module) CALC,
given in [7] (see Figure 4). Formally, this is a module that has only one single
root VP @0 to which the complete program is assigned, without any VPs in
its text. However, to prepare the restructuring to come, we already indicate a
number of further VPs, to be read as comments at this level. For operator signs
op, such as + or *, the abbreviation ?op? stands for the string concatenation
+ "op" +.

CALC

@0 abstract class Exp {
@1 String print();
@2 int eval();

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
@3 String print() { return v; }
@4 int eval() { return v; }

}

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R) {l=L; r=R;}
@5 String print()

{ return l.print() ?+? r.print(); }
@6 int eval()

{ return l.eval() + r.eval(); }
}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R) {l=L; r=R;}
@7 String print()

{ return l.print() ?*? r.print();}
@8 int eval()

{ return l.eval() * r.eval(); }
}

Fig. 4. The module CALC

CALC contains sub-packets, which may have interest of their own. For exam-
ple, a user may only want to deal with arithmetic expressions for addition. This
can be achieved by grouping the parts of CALC into Base, Plus and Times as given
in Figure 5 and then forming adequate sums of some of these. For instance, the
product line TPL combines all three submodules: TPL =df Base+ Plus+ Times.
Using the restructuring preorder from Sect. 2.2, we have the relation CALC v TPL

between the original code base CALC and TPL.
A second restructuring reflects that some users may only wish to evaluate

expressions but not to print them. This can be accommodated by decomposing
the original code base CALC into a Core module and two optional modules Print
and Eval, whose definitions are given in Figure 6. A new product line CPE =df

Core + Print + Eval combines these three submodules.
The original product line CALC relates to the new one by CALC v CPE.
Finally we can form a common restructuring of CPE and TPL. This SPL is

presented in Figure 7 and corresponds to the EPL matrix of [7]. We use two sets
of feature names, F =df {core, print, eval} and G =df {base, plus, times}.
We use lower-case names here, since these are not module names but will serve
as indices for a matrix EPLmat, where every entry EPLmatij (i ∈ F, j ∈ G)

14

TPL:

Base: Plus: Times:

@0 abstract class Exp {
String print();
int eval();

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
String print()

{ return v; }
int eval()

{ return v; }
}

@+
@*

@+ class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)

{l=L; r=R;}
String print()

{ return l.print() ?+?
r.print(); }

int eval()
{ return l.eval() +

r.eval(); }
}

@* class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)
{l=L; r=R;}

String print()
{ return l.print() ?*?

r.print();}
int eval()

{ return l.eval() *
r.eval(); }

}

Fig. 5. The module TPL

is a submodule. Then setting EPL =df

∑
i∈F

∑
j∈G

EPLmatij we obtain our finest

restructuring of the original program CALC. As a consequence we have

CPE v EPL ∧ TPL v EPL .

If we sum the columns of EPLmat we obtain the constituent modules of OPL, while
the row sums give the constituent modules of TPL. Hence the small modules in
EPLmat can be considered as the elementary features in this product line. Of
course, by transitivity of v, the original code base is an element of this product
line too, i.e., CALC v EPL; but EPL offers many more products.

6 Related Work

Ideas similar to those of SDA can be found in [9], where elements of UML
models could be tagged with feature predicates. Given a set of selected features,
an element is removed from a model if its predicate is false.

Derivatives [21] were the first identified building blocks of feature modules.
Unfortunately, the mathematics of derivatives was incomplete, as composition of
derivatives was not associative. This made it impossible to algebraically calculate
the results of feature splitting (replacing T with R × S if T is split into features
R and S) and feature merging (replacing R × S with T). CIDE [18] showed a
simple and elegant way to visualize features and their interactions, resulting in
the coloring algebra, which does support splitting and merging.

Other algebras for feature-based composition, such as [1, 22], focus on the
internal structure of modules. The algebra presented in [1] is (to our knowledge)
the first that dealt with feature replication. It uses the algebraic law of distant
idempotence (a form of idempotence where adjacency of identical features is not
required). Feature composition is not commutative and there is no operation of
subtraction on feature modules (called feature structure trees there). An algebra

15

CPE:

Core: Print: Eval:

@0 abstract class Exp {
@1
@2

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
@3
@4

}

class Plus extends Exp {
Exp l,r;
Plus(Exp L, Exp R)

{l=L; r=R;}
@5
@6

}

class Times extends Exp {
Exp l,r;
Times(Exp L, Exp R)

{l=L; r=R;}
@7
@8

}

@1 String print();

@3 String print()
{ return v; }

@5 String print()
{ return l.print()

?+? r.print(); }

@7 String print()
{ return l.print()

?*? r.print(); }

@2 int eval();

@4 int eval()
{ return v; }

@6 int eval()
{ return l.eval()

+ r.eval(); }

@8 int eval()
{ return l.eval()

* r.eval(); }

Fig. 6. The module CPE

that also captures replicas is presented in [16]. However, this algebra only works
at a semantic level and cannot cope with real source code, as SDA does.

The Choice Calculus (CC) [25] offers an interesting and alternative approach
to our work. Among the goals of CC are to integrate classical and virtual modu-
larity, but to do so in the context of a formal programming language. Large-scale
fragments can be placed in modules of their own, while small-scale fragments
(suitable for annotations) can be embedded into other modules. As in coloring
and ifdef preprocessing, variation points are implicit. The key difference be-
tween our work and CC is that the issues of classical and virtual modularity are
not limited to a fixed set of programming languages.

Delta Oriented Programming (DOP) [24] is another interesting language-
based approach within our field. Delta modules are qualified to be composed
into a product when the corresponding where clause is satisfied. Such a clause
is a propositional formula over features, namely the conjunction of the feature
formulas that arise in coloring. Disjunction allows a single module to be reused
in different contexts (rather than requiring a module to be replicated for each
context). Negation seems to offer a more general way for defining alternatives.
Understanding this connection will be the subject of future work. Delta modules
also have after clauses, which specify a partial order in which to compose them.
We express the composition order of modules explicitly with our overriding op-
erator −. .

16

EPLmat

core print eval

b
a
s
e @0 abstract class Exp {

@1
@2

}

class Int extends Exp {
int v;
Int(int a) { v=a; }
@3
@4

}
@*
@+

@1 String print();
eval print core

@3 String print()
{ return v; }

@2 int eval();

@4 int eval()
{ return v; }

p
l
u
s @+ class Plus extends Exp {

Exp l,r;
Plus(Exp L, Exp R)

{l=L; r=R;}
@5
@6

}

@5 String print()
{ return l.print()

?+? r.print(); }

@6 int eval()
{ return l.eval()

+ r.eval(); }

t
i
m
e
s @* class Times extends Exp {

Exp l,r;
Times(Exp L, Exp R)

{l=L; r=R;}
@7
@8

}

@7 String print()
{ return l.print()

?*? r.print(); }

@8 int eval()
{ return l.eval()

* r.eval(); }

Fig. 7. The matrix EPLmat

A project close in spirit and ideas is Kästner’s CIDE [18, 19, 2]. It started out
with a tool for software product line development (esp. analyzing and decompos-
ing legacy code), following the paradigm of virtual separation of concerns. For
this it offers the possibility of distinguishing fragments within the original code
by different background colors. CIDE is also a compiler (and an IDE), closely
related to conditional compilation with preprocessors. Additionally it analyzes
the deep structure of the code and hence guarantees syntactic correctness as well
as type correctness of all generated products. Hence CIDE already provides, at
the tool level, some of the functionality that our algebra treats at the abstract
level.

7 Conclusions and Outlook

We have presented a structured document algebra not only in concept, but also
at work on some essential phenomena of large-scale software construction. We
hope to have convinced the reader that SDA is both concise and precise, and
comes with a number of useful laws. These can be used to construct and reason
about structured modules in an algebraic fashion.

17

The main aim is to provide a formal basis for governing variability in large
interconnected collections of documents, in particular ones that define SPLs.
SDA can be used to implement tools which relieve developers from managing
variability manually. In particular, it provides a basis for precise reasoning about
complex and error-prone operations such as subtraction, overriding, and various
refactorings. Currently, work on a pilot implementation is under way.

The algebra has interesting connections to other structures, such as the
pointer algebras presented in [13, 23] and to the concept of the demonic join
or compatible union [3, 11].

While so far SDA is presented along a concrete mathematical model, an
abstraction to more general concepts like monoids, semirings and modules in
the linear algebra sense is under way.

Finally, so far SDA has a very syntactic flavor, since the nature of fragments
is left open. However, it is possible to work with fragments that have a semantic
character, such as functions from valuations of VPs in some semantic model to a
semantic value. We have sketched this in an Appendix; the elaboration of these
ideas will be the subject of future investigations.

Acknowledgments We are grateful to the anonymous referees for helpful com-
ments and suggestions. We gratefully acknowledge support for this work by NSF
grants CCF 0724979 and OCI-1148125, as well as by DFG grant MO 690/7-2.
NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre
of Excellence Program.

References

1. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebraic foundation for auto-
matic feature-based program synthesis. SCP 75(11), 1022–1047 (2010)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer (2013)

3. Backhouse, R., van der Woude, J.: Demonic operators and monotype factors. Math-
ematical Structures in Computer Science 3(4), 417–433 (1993)

4. Batory, D.: Program refactorings, program synthesis, and model-driven design. In:
Krishnamurthi, S., Odersky, M. (eds.) Compiler Construction. LNCS, vol. 4420,
pp. 156–171. Springer (2007)

5. Batory, D., Höfner, P., Kim, J.: Feature interactions, products, and composition.
In: Generative Programming and Component Engineering (GPCE’11). pp. 13–22.
ACM (2011)

6. Batory, D., Höfner, P., Möller, B., Zelend, A.: Features, modularity, and variation
points. In: Feature-Oriented Software Development. pp. 9–16. ACM (2013)

7. Batory, D., Shepherd, C.: Product lines of product lines, Department of Computer
Science, University of Texas at Austin, submitted (2013)

8. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the scope of change
in Java. SIGPLAN Not. 40(10), 177–189 (2005)

18

9. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) Generative Pro-
gramming and Component Engineering (GPCE’05). LNCS, vol. 3676, pp. 422–437.
Springer (2005)

10. Delaware, B., Cook, W.R., Batory, D.S.: Product lines of theorems. In: Lopes, C.V.,
Fisher, K. (eds.) Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011. vol. 10,
pp. 595–608. ACM (2011)

11. Desharnais, J., Belkhiter, N., Sghaier, S.B.M., Tchier, F., Jaoua, A., Mili, A., Za-
guia, N.: Embedding a demonic semilattice in a relational algebra. Theor. Comput.
Sci. 149(2), 333–360 (1995)

12. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, P.: Traits: A mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

13. Ehm, T.: The Kleene Algebra of Nested Pointer Structures: Theory and Appli-
cations. Ph.D. thesis, Fakultät für Angewandte Informatik, Universität Augsburg
(2003)

14. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley (2004)

15. Heidenreich, F.: Towards systematic ensuring well-formedness of software product
lines. In: Feature-Oriented Software Development. ACM (2009)

16. Höfner, P., Khedri, R., Möller, B.: Feature algebra. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) Formal Methods (FM’06). LNCS, vol. 4085, pp. 300–315.
Springer (2006)

17. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (foda) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Carnegie Mellon
Software Engineering Institute, Carnegie Mellon University (1990)

18. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Schäfer, W., Dwyer, M., Gruhn, V. (eds.) Conference on Software Engineering
(ICSE 2008). ACM (2008)

19. Kästner, C.: Virtual separation of concerns: toward preprocessors 2.0. Ph.D. thesis,
Otto von Guericke University Magdeburg (2010)

20. Kuhlemann, M., Batory, D., Apel, S.: Refactoring feature modules. In: Edwards,
S., Kulczycki, G. (eds.) Formal Foundations of Reuse and Domain Engineering.
LNCS, vol. 5791, pp. 106–115. Springer (2009)

21. Liu, J., Batory, D.S., Lengauer, C.: Feature oriented refactoring of legacy appli-
cations. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28,
2006. pp. 112–121. ACM (2006)

22. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A disciplined approach to aspect
composition. In: Partial Evaluation and Semantics-based Program Manipulation
(PEPM 06). ACM (2006)

23. Möller, B.: Towards pointer algebra. SCP 21(1), 57–90 (1993)
24. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-

gramming of software product lines. In: Bosch, J., Lee, J. (eds.) Software Product
Lines: Going Beyond. LNCS, vol. 6287, pp. 77–91. Springer (2010)

25. Walkingshaw, E., Erwig, M.: A calculus for modeling and implementing varia-
tion. In: Generative Programming and Component Engineering. pp. 132–140. ACM
(2012)

26. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics (B). pp. 675–788 (1990)

19

Appendix: Sketch of a Semantic Model of SDA

For historical reasons, in particular in honour of Martin Wirsing, we have chosen
an approach based on the notions of algebraic specification [26]. Other variants
are conceivable, too.

Basic Definitions. Assume a signature Σ = (s, F) with a sort s and a set F of
operators f : sn → s. (For simplicity we restrict ourselves to the one-sorted case;
the generalisation to many sorts is straightforward.) The number n is called the
arity of f. An operator of arity 0 is called a constant operator. We also assume a
set V of variation points such that V is disjoint from the set of constant operators
of Σ (in logic the elements of V would be called variables). The set T(Σ, V) of
terms over Σ and V is defined as usual. If VP(t) = ∅ then t is called closed or
a ground term. For describing SDA modules we assume a signature with two
special constant symbols 0, .

A Σ-algebra is a pair A = (sA, FA) where sA is a nonempty carrier set and
FA = {fA | f ∈ F} is a set of operations fA : (sA)n → sA associated with the
f : sn → s ∈ F. The set T(Σ, V) can be made into a Σ-algebra in the usual
way. A valuation of V in a Σ-algebra A (also called an environment) is a partial
function e : V sA. The set of all environments is denoted by EA.
Syntactic Modules. A syntactic fragment simply is an element of T(Σ, V). By
this, all VPs are fragments, too. A syntactic module is an environment m : V
T(Σ, V) from ET(Σ,V). The function single fill(t, m) is defined inductively as
syntactic substitution:

1. If t = v ∈ V is a VP then

single fill(t, m) =df

{
e(v) if v ∈ dom(e) ,
v otherwise .

2. It t = f(t1, . . . , tn) then

single fill(t, m) =df f(single fill(t1, m), . . . , single fill(tn, m)) .

For a constant operator f hence single fill(t, m) = f.

Term Evaluation. For a Σ-algebra A we define inductively the evaluation [[]] :
T(Σ, V) → (EA sA) that assigns to every term a value using an environment,
if possible.

– For VP v we set

[[v]](e) =df

{
e(v) if v ∈ dom(e) ,
undefined otherwise .

– For other terms we set

[[f(t1, . . . , tn)]](e) =df{
fA(u1, . . . , un) if all [[ti]](e) are defined and ui = [[ti]](e) ,
undefined otherwise .

20

Hence for a constant symbol f we have [[f]](e) = fA for all e.
This definition entails what is called the Coincidence Lemma in logic; the

proof is a straightforward induction.

Lemma 7.1 If two environments e, e′ agree on the VPs of a term t i.e., if
e|VP(t) = e′|VP(t), then [[t]](e) = [[t]](e′).

Semantic Modules. The idea is now to make the mapping [[t]] : EA sA

somehow into a semantic fragment corresponding to the syntactic object t and
to define a semantic module as a partial function from VPs to semantic frag-
ments. However, this is not entirely straightforward, since we need to have VP
information in some way to still be able to talk about cycle-freeness of modules.
The solution proposed here is to enrich a semantic fragment by a set of VPs it
“administers”. A semantic fragment over a set V of VPs and a Σ-algebra A is a
pair (W, g) where W ⊆ V and g : EA sA satisfies the coincidence property on W:

∀ e, e′ : e|W = e′|W ⇒ g(e) = g(e′) .

We set VP(W, g) =df W and ev(W, g) =df g. The dependence relation for semantic
modules uses this definition of VP.

Every VP v can be made into the fragment ({v}, λe . 0A).
A semantic module is a partial function from V to the set of semantic frag-

ments. We can translate every syntactic module m into a semantic one called m̂

by setting m̂(v) =df (VP(m(v)), [[m(v)]]). If m is cycle-free then so is m̂.

The Single Fill Function for Semantic Modules. To make SDA work for
semantic modules we have to define the single fill function suitably:

single fill((W, g), m) =df ((W− dom(m)) ∪ Z, λe . g(e′)) ,

where Z =df

⋃
v∈dom(m)

VP(m(v)) and

e′(v) =df

{
m(v)(e) if v ∈ dom(m) ,
e(v) otherwise .

21

