
HAL Id: hal-01227623
https://inria.hal.science/hal-01227623

Submitted on 11 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Evolution of Jolie
Ivan Lanese, Fabrizio Montesi, Gianluigi Zavattaro

To cite this version:
Ivan Lanese, Fabrizio Montesi, Gianluigi Zavattaro. The Evolution of Jolie: From Orchestrations to
Adaptable Choreographies. Essays Dedicated to Martin Wirsing on the Occasion of His Retirement
from the Chair of Programming and Software Engineering, Mar 2015, Munich, Germany. pp.506-521,
�10.1007/978-3-319-15545-6_29�. �hal-01227623�

https://inria.hal.science/hal-01227623
https://hal.archives-ouvertes.fr

The Evolution of Jolie

From Orchestrations to Adaptable Choreographies

Ivan Lanese1, Fabrizio Montesi2, and Gianluigi Zavattaro1

1 Dep. of Computer Science and Engineering, INRIA FoCUS Team - Univ. Bologna
Mura A. Zamboni 7, 40127 Bologna - Italy

{lanese,zavattar}@cs.unibo.it
2 Dep. of Mathematics and Computer Science, University of Southern Denmark

Campusvej 55, 5230 Odense - Denmark
fmontesi@imada.sdu.dk

Abstract. Jolie is an orchestration language conceived during Sensoria,
an FP7 European project led by Martin Wirsing in the time frame 2005–
2010. Jolie was designed having in mind both the novel –at project time–
concepts related to Service-Oriented Computing and the traditional ap-
proach to the modelling of concurrency typical of process calculi. The
foundational work done around Jolie during Sensoria has subsequently
produced many concrete results. In this paper we focus on two distinct
advancements, one aiming at the development of dynamically adaptable
orchestrated systems and one focusing on global choreographic specifi-
cations. These works, more recently, contributed to the realisation of a
framework for programming dynamically evolvable distributed Service-
Oriented applications that are correct-by-construction.

1 Introduction

Sensoria (Software Engineering for Service-Oriented Overlay Computers)3 is a
research project funded by the European Commission under the 7-th Frame-
work Programme in the time frame 2005–2010. Supervised by Martin Wirs-
ing, the project has defined a novel approach for the engineering of advanced
Service-Oriented applications. In fact, at project time, Service-Oriented Comput-
ing (SOC) was emerging as a novel and promising technology but, as frequently
happens, the success of a promising technology requires the establishment of a
mature methodology for the development of applications based on such technol-
ogy. Easy-to-use tools are also needed to make the development methodology
popular and largely diffused.

The success of Sensoria is demonstrated by the realisation of an integrated
set of theoretical and concrete tools. In particular, UML-like visual languages
have been developed for the high-level modelling of Service-Oriented applications
(see, e.g., [18,7]), several process calculi have been designed to formally repre-
sent the operational aspects of such applications (see, e.g., [4,30,29,5]), analysis

3 http://www.sensoria-ist.eu

http://www.sensoria-ist.eu

techniques have been developed to perform both qualitative and quantitative
analysis on these formal models of the applications (see, e.g., [19,37,13]), and
also runtime support for application deployment has been realised by providing
some of the proposed calculi with an execution environment (see, e.g., [34,31]).

Among the implementations of process calculi, Jolie [34] was conceived as
a fully fledged Service-Oriented programming language that, on the one hand,
is based on a formally defined semantics and, on the other hand, turns out to
be easy to integrate with state-of-the-art technologies (in particular those based
on the Java platform). This marked technological flavour of the language is
witnessed by the birth of the spin-off company italianaSoftware s.r.l. 4 whose
mission is indeed the exploitation in industrial environments of Jolie and its
related tools.

Beyond the initial development of Jolie within Sensoria, many advancements
took place even after Sensoria ended. For instance, in [22] Jolie is extended with
primitives for fault handling and compensations; in [15] linguistic primitives are
proposed for easy realisation of software architectures including advanced con-
nectors like proxies, wrappers, and load balancers; and in [21] Jolie is studied as
a language for workflow management by showing how to implement the popular
van der Aalst’s workflow patterns [38].

In this paper, we narrate some of the extensions of Jolie in order to demon-
strate how our experience in the development of an orchestration language during
Sensoria provided us with valuable insights in related research lines.

We start by presenting two independent frameworks based on Jolie. The first
one is JoRBA [27], a framework for the programming of service-oriented appli-
cations that can dynamically adapt to their execution context. JoRBA uses the
code mobility mechanisms offered by Jolie to adapt the behaviour of services at
runtime; the need for adaptation is decided by special rules given by program-
mers in a declarative way. The second one is Chor [11], a choreographic language
allowing for the programming of distributed systems from a global viewpoint.
Chor is equipped with a compiler that generates executable Jolie programs,
which are guaranteed to be correct by construction from the originating global
program. We finally present AIOCJ [16], a choreography language that combines
the global approach of Chor to distributed programming with the adaptability
features of JoRBA. The Jolie programs compiled by AIOCJ are guaranteed to be
correct not only as far as the initial code is concerned, but also when the updates
specified in AIOCJ are dynamically applied to the application endpoints.

Paper structure. In Section 2 we recall the basics of the Jolie language. In Sec-
tion 3 we discuss the importance of dynamic adaptation for modern applications
and present JoRBA, an extension of Jolie that supports rule-based dynamic
program updates. In Section 4 we discuss Chor, the Jolie based approach to the
correct-by-construction realisation of communication-centred distributed appli-
cations. Finally, in Section 5 we present how in AIOCJ we have been able to
combine the rule-based dynamic adaptation mechanisms explored with JoRBA

4 http://www.italianasoftware.com

2

http://www.italianasoftware.com

to the correct-by-construction approach characterising Chor. Related work is
discussed in Section 6. We report some conclusive remarks in Section 7.

2 Service-Oriented Programming with Jolie

Jolie programs contain two parts related, respectively, to the behaviour of a ser-
vice and to its deployment. Here, we describe in more details the basic primitives
for programming the behavioural part of Jolie, while we simply mention that the
deployment part is used to instantiate networking and lower-level communica-
tion aspects like the definition of the ports and of the communication protocols
to be used.

Jolie combines message-passing and imperative programming style. Scopes,
indicated by curly brackets {...}, are used to represent blocks and procedures.
Procedures are labelled with the keyword define; the name of a procedure is
unique within a service and the main procedure is the entry point of execution
for each service. Traditional sequential programming constructs like conditions,
loops, and sequence are standard. In addition, Jolie includes a parallel operator |
that executes the left and right activities concurrently. Concerning communica-
tion, Jolie supports two kinds of message-passing operations, namely One-Ways
(OWs) and Request-Responses (RRs). On the sender’s side, the former operation
sends a message and immediately passes the thread of control to the subsequent
activity in the process, while the latter sends a request and keeps the thread of
control until it receives a response. On the receiver’s side, OWs receive a message
and store it into a defined variable, whilst RRs receive a message, execute some
internal code, and finally send the content of a second variable as response.

Jolie provides also an input-guarded choice [η1]{B1} . . . [ηn]{Bn}, where ηi,
i ∈ {1, . . . , n}, is an input statement and Bi is the behaviour of the related
branch. When a message on ηi is received, ηi is executed and all other branches
are deactivated. Afterwards, Bi is executed. A static check enforces all the input
choices to have different operations to avoid ambiguity.

Figure 1 reports a Jolie program taken from [21] including two services A and
B. A sends in parallel the content of variables a and b through OW operations
op1 and op2, respectively, at (@) B. When B receives a message on one of the
corresponding OW operations, it stores the content of the message in the cor-
responding variable. After the completion of the scope at Lines 2-5, A proceeds
with the subsequent RR operation op3, which sends the content of variable e

and stores its response in h. The scope linked to op3, in Lines 6-8 of service B,
is the activity executed before sending the response to A; as this activity assigns
"Hello, world" to the return variable g, this string is returned to A, and thus A
assigns it to its return variable h. The command at Line 8 of the service A sends
the content of h to the println operation of the Console; in this way "Hello,

world" is printed.
An interesting feature of Jolie is that it provides dynamic embedding. Dy-

namic embedding is a mechanism allowing to take the code of a Jolie service
and dynamically run the service inside the current application. This mechanism

3

1 // s e r v i c e A
2 {

3 op1@B(a)

4 | op2@B(b)

5 };

6 op3@B(e)(h);

7 println@Console(h)()

1 // s e r v i c e B
2 {

3 op1(c)

4 | op2(d)

5 };

6 op3(f)(g){

7 g = "Hello , world"

8 }

Fig. 1. An example of composition and communication between services.

is used quite extensively when programming adaptive applications in Jolie, since
it allows one to dynamically load new code to deal with unexpected needs.

3 Managing Dynamic Adaptation with JoRBA

Modern software applications change their behaviour, reconfigure their structure
and evolve over time reacting to changes in the operating conditions, so to always
meet users’ expectations. This is fundamental since those applications live in
distributed and mobile devices, such as mobile phones, PDAs, laptops, etc., thus
their environment may change frequently. Also, user goals and needs may change
dynamically, and applications should adapt accordingly, without intervention
from technicians. We aim at dynamic adaptation, where the application is able
to face unexpected adaptation needs. Dynamic adaptation is challenging since
information on the update to be performed is not known when the application
is designed, deployed, or even started.

JoRBA (Jolie Rule-Based Adaptation framework) [27] is a Jolie-based frame-
work for programming adaptable applications, which is based on the separation
between the application behaviour and the adaptation specification. An adapt-
able application should provide some adaptation hooks, i.e., information on part
of its structure and its behaviour. The adaptation logic should be developed sep-
arately, for instance as a set of adaptation rules, by some adaptation engineer,
and can be created/changed after the application has been deployed without af-
fecting the running application. Adaptation should be enacted by an adaptation
middleware, including an adaptation manager and some, possibly distributed,
adaptation servers. The latter are services that act as repositories of adapta-
tion rules. Running adaptation servers register themselves on the adaptation
manager. The running application may interact with the adaptation manager
to look for applicable adaptation rules. Whether a rule is applicable or not may
depend on environment conditions (e.g., date, workload), including user prefer-
ences, and on properties of the current implementation (e.g., performance, code
version, cost). The adaptation manager checks the available rules and returns
one of them which can be applied, if it exists. The effect of an adaptation rule
is to replace an activity with new code that answers a given adaptation need.

4

Activity Functional Parameters Non-functional
Parameters

Activity Name Number Source Destination Time Cost

Take Train IC2356 Bologna Train Station Munich Train Station 7 h 41 m 80 euros

Take Bus 13 Munich Train Station LMU 30 m 1 euro

Take Taxi 25 Munich Train Station LMU 10 m 15 euros

Go To Meeting - Bob’s House LMU 9 h 100 euros

Table 1. List of possible (Travelling) domain activities.

We describe now on a sample scenario the approach used in JoRBA to deal
with dynamic adaptation.

Travelling Scenario Consider Bob travelling from Bologna to LMU (Martin
Wirsing’s university) for a Sensoria meeting. He may have on his mobile phone an
application instructing him about what to do, taking care of the related tasks.
A set of possible tasks are in Table 1. For instance, the activity Take Train
connects to the information system of Bologna train station to buy the train
ticket. It also instructs Bob about how to take the train, and which one to take.

Assume that such an application has been developed for adaptation. This
means that its adaptation interface specifies that some of the activities are adapt-
able. Each adaptable activity has a few parameters, e.g., Number, specifying the
code of the train, bus or taxi to be taken, Source specifying the desired leav-
ing place and Destination specifying the desired arrival place, all visible from
the adaptation interface. Also, a few non-functional parameters for the activi-
ties may be specified as Time and Cost. We show now a couple of examples of
adaptation.

Example 1. When Bob arrives to Bologna train station, its Travelling applica-
tion connects to the adaptation server of the train station. Assume that a new
“Italo”(Italian high speed train) connection has been activated from Bologna to
Munich providing a connection with Time=4 h 23 m and Cost=92 euros. This
is reflected by the existence of an adaptation rule specifying that all the applica-
tions providing an activity Take Train for a train for which the new connection
is possible may be adapted. Adaptation may depend on Bob’s preferences for
comparing the old activity and the new one, or may be forced if, for instance, the
old connection is no more available. If adaptation has to be performed, the new
code for the activity is sent by the adaptation server to the application, where
it becomes the new definition of activity Take Train. Note that the new code
can be quite different from the old one, e.g., if the new trains are booked using
a different communication protocol. Thus Bob can immediately exploit the new
high speed connection, which was not expected when the application has been
created.

5

Example 2. Suppose that the train from Bologna to Munich is one hour late.
Bob mobile phone may have an adaptation server taking care of adapting all
Bob’s applications to changing environment conditions. The adaptation server
will be notified about the train being late, and it may include an adaptation rule
specifying that if Bob is late on his travel, he can take a taxi instead of arriving
to LMU by bus. The adaptation rule thus replaces the activity Take Bus of the
travelling application with a new activity Take Taxi. Again, this can be done
even if different protocols and servers are used to buy bus tickets and to reserve
a taxi.

A Rule-based Approach to Dynamic Adaptation Instead of presenting
the syntax of JoRBA, we discuss its approach to dynamic adaptation which is
general enough to be applied to applications developed using any other language,
provided that (i) the application exposes the desired adaptation interface and
(ii) the language is able to support the code mobility mechanism necessary for
performing adaptation. At the end of this section we briefly show that Jolie
supports both these features.

Thus we want to build an adaptable application using some language L and
following the approach above to dynamic adaptation. The application must ex-
pose a set of adaptable domain activities (or, simply, activities) {Ai}i∈I , together
with some additional information. Activities Ai are the ones that may require
to be updated to adapt the application to changes in the operating conditions.
While it is necessary to guess where adaptation may be possible, it is not neces-
sary to know at the application development time which actual conditions will
trigger the adaptation, and which kind of adaptation should be performed.

The adaptable application will interact with an adaptation middleware pro-
viding the adaptation rules. The environment has full control over the set of
rules, and may change them at any time, regardless of the state of the running
application. Each such rule includes a description of the activity to be adapted,
an applicability condition specifying when the rule is applicable, the new code of
the activity, the set of variables required by the activity, and some information
on the non-functional properties of the activity.

At runtime, the rule is matched against the application activity to find out
whether adaptation is possible/required. In particular:

– the description of the activity to be adapted in the rule should be compatible
with the description of the activity in the application;

– the applicability condition should evaluate to true; the applicability condi-
tion may refer to both variables of the environment (retrieved by the adap-
tation manager) and variables published by the adaptation interface of the
application;

– the non-functional properties guaranteed by the new code provided by the
adaptation rule should be better than the ones guaranteed by the old imple-
mentation, according to some user specified policy;

– the variables required by the new code should be a subset of the variables
provided by the application for the activity.

6

If all these conditions are satisfied then adaptation can be performed, i.e.
the new code of the activity should be sent by the adaptation manager to the
application, and installed by the application replacing the old one. Since the
update may also influence the state, we also allow the adaptation rule to specify
a state update for the adaptable application.

More precisely, the following steps are executed:

1. the adaptation server sends the new code to the application, which replaces
the old code of the activity;

2. the adaptation interface of the application is updated, with the new non-
functional properties, e.g., Time=4 h 23 m and Cost=92 euros, replacing
the old ones;

3. the state of the application is updated, e.g., by setting variable Number to
IT82, the number of the “Italo” train.

The first step is the most tricky, since the new code needs to be sent from
the adaptation server to the application and integrated with the rest of the
application. For instance, it should be able to exploit the public variables of the
application.

JoRBA is a proof-of-concept implementation of our adaptation mechanism
based upon the Jolie language. Indeed, both the adaptation middleware, includ-
ing the distributed adaptation servers, and the adaptable application are built
as Jolie services. Thus, interactions between them are obtained using Jolie OWs
and RRs communication primitives. The code inside adaptable activities is ex-
ternalized from the main body of the application as a separate service. In this
way adaptation is realized by disabling the service implementing the adaptable
activity and replacing it with the new code coming from the adaptation man-
ager, which is launched using Jolie dynamic embedding. Since both the main
part of the application, the old service and the new one should share part of the
state, this is externalized as a separate service accessible from all of them.

4 Correct-by-construction Development with Chor

In the context of Service-Oriented Computing and, more in general, for the
development of distributed communication-centred applications, the top-down
approach based on global specifications that are automatically projected to end-
point code has recently emerged as a popular approach for the realisation of
correct-by-construction applications [10,25,40,28,12]. Global specifications are
expressed using so-called choreography languages: the message flow among the
partners in the application is expressed from a global viewpoint as it happens,
e.g., in Message Sequence Charts [23] or when security protocols are specified by
using actions like, e.g., Alice → Bob : {M}k meaning that Alice sends to Bob the
message M encrypted with the key k. These global specifications are guaranteed
to be correct, in particular deadlock- and race-free, because only successful and
completed communications among two interacting partners can be expressed.
In other terms, it is not possible to specify an endpoint that remains blocked

7

Chor IDE

Code
Editing/

Verification

...
Jolie

Endpoint

Jolie
Endpoint

Jolie EPP
(automatic)

Execution

Execution
Deployment Programming

(Optional)

Deployment Programming
(Optional)

Fig. 2. Chor development methodology, from [11].

waiting indefinitely for a never arriving message. The actual communication be-
haviour of each single partner is in turn obtained by projection from the global
specification: the obtained projected code is guaranteed to adhere to the global
specification, thus correctness is preserved.

This popular approach has been also adapted to Jolie. In this case, the chore-
ographic language is Chor [11]. Chor offers a programming language, based on
choreographies, and an Integrated Development Environment (IDE) developed
as an Eclipse plugin for the writing of programs. In the development methodol-
ogy suggested with Chor, depicted in Figure 2, developers can first use the IDE to
write protocol specifications and choreographies. The programmer is supported
by on-the-fly verification which takes care of checking (i) the syntactic correct-
ness of program terms and (ii) the type compliance of the choreography w.r.t.
the protocol specifications, using a (behavioural) typing discipline.

Once the global program is completed, developers can automatically project
it to an endpoint implementation. Endpoint implementations are given in Jolie.
Nevertheless, Chor is designed to be extended to multiple endpoint languages:
potentially, each process in a choreography could be implemented with a different
endpoint technology.

Each Jolie endpoint program comes with its own deployment information,
given as a term separated from the code implementing the behaviour of the
projected process. This part can be optionally customised by the programmer
to adapt to a specific communication technology. Finally, the Jolie endpoint
programs can be executed; as expected, they will implement the originating
choreography.

In order to give an idea of how global specifications can be expressed in Chor,
we present a simple example.

Example 3 (Chor program example).

1 program simple;

2
3 protocol SimpleProtocol { C -> S: hi(string) }

4
5 public a: SimpleProtocol

6
7 main

8 {

8

9 client[C] start server[S] : a(k);

10 ask@client("[client] Message?", msg);

11 client.msg -> server.x : hi(k);

12 show@server("[server] " + x)

13 }

Program simple above starts by declaring a protocol SimpleProtocol, in which
role C (for client) sends a string to a role S (for server) through operation hi.
In the choreography of the program, process client and a fresh service process
server start a session k by synchronising on the public channel a.5 Process
client then asks the user for an input message and stores it in its local variable
msg, which is then sent to process server through operation hi on session k,
implementing protocol SimpleProtocol. Finally, process server displays the
received message on screen.

As mentioned above, Chor has been equipped with an automatic endpoint
projection (EPP) that generates Jolie code; the following example shows (part
of) the result of the endpoint projection of the simple choreography presented
above.

Example 4 (Endpoint Projection in Chor). We give an example of EPP by re-
porting a snippet of the code generated for process server from Example 3:

1 main

2 {

3 _start ();

4 csets.tid = new;

5 _myRef.binding << global.inputPorts.MyInputPort;

6 _myRef.tid = csets.tid;

7 _start_S@a(_myRef)(_sessionDescriptor.k);

8 k_C << _sessionDescriptor.k.C.binding;

9 hi(x);

10 showMessageDialog@SwingUI("[server] " + x)()

11 }

The Jolie code above for process server waits to be started by receiving an input
on operation _start. This starts the generation of the session k (Lines 4–8, that
we do not comment in detail). Finally, in Lines 9–10, the server receives the
message on operation hi from the client and displays it on screen as indicated
by the choreography.

5 Correct-by-construction Adaptive Applications

The JoRBA approach to adaptation and the use of choreographies to ensure that
applications are deadlock- and race-free by construction can be combined. We

5 Session keys are necessary to keep track of the protocols: see, e.g., the presence of
the session key k in Line 11 indicating that this interaction between client and
server is part of the protocol started at Line 9.

9

describe below AIOCJ [16]6, a framework to program adaptive choreographies.
AIOCJ combines an Eclipse plugin to edit adaptable applications and generate
code for each participant using a projection similar to the one of Chor, with an
adaptation middleware similar to the one of JoRBA managing adaptation. The
main point is that adaptation should be coordinated, so to ensure that no error
occurs because of inconsistent updates.

We consider applications composed by processes deployed as services on dif-
ferent localities, including local state and computational resources. Each process
has a specific duty in the choreography. As for JoRBA, adaptation is performed
by interacting with an adaptation middleware storing adaptation rules. The main
difference is that now a rule requires to update many participants of the chore-
ography in a coordinated way. The parts of the choreography to be updated are
syntactically delimited by adaptation scopes.

The language for programming AIOCJ applications relies on a set of roles
that identify the processes in the choreography. Let us introduce the syntax of
the language using an example where Bob invites Alice to see a film (Listing 1.1).

The code starts with some deployment information (Lines 1-9) that we dis-
cuss later on. The description of the behaviour starts at Line 11. The program is
made by a loop where Bob first checks when Alice is available and then invites
her to the cinema. Before starting the loop, Bob initialises the variable end to the
boolean value false (Line 12). The variable is used to control the exit from the
loop. Note the annotation @bob meaning that end is a local variable of Bob. The
first instructions of the while loop are enclosed in an adaptation scope (Lines
14-18), meaning that this part of the program may be adapted in the future. The
first operation within the adaptation scope is the call to the primitive function
getInput that asks to Bob a day where he is free and stores this date into the
local variable free_day. At Line 16 the content of free_day is sent to Alice via
operation proposal. Alice stores it in its local variable bob_free_day. Then, at
Line 17, Alice calls the external function isFreeDay that checks whether she is
available on bob_free_day. If she is available (Line 19) then Bob sends to her
the invitation to go to the cinema via the operation proposal (Line 21). Al-
ice, reading from the input, accepts or refuses the invitation (Line 25). If Alice
accepts the invitation then Bob first sets the variable end to true to end the
loop. Then, he sends to the cinema the booking request via operation book. The
cinema generates the tickets using the external function getTicket and sends
them to Alice and Bob via operation notify. The two notifications are done
in parallel using the parallel operator | (until now we composed statements us-
ing the sequential operator ;). Lines 20-32 are enclosed in a second adaptation
scope with property N.scope_name = "event selection". If the agreement is
not reached, Bob decides, reading from the input, if he wants to stop inviting
Alice. If so, the program exits setting the variable end to true.

We remark the different possible meanings of annotations such as @bob and
@alice. When prefixed by a variable, they identify the owner of the variable.
Prefixed by the boolean guard of conditionals and loops, they identify the role

6 http://www.cs.unibo.it/projects/jolie/aiocj.html

10

http://www.cs.unibo.it/projects/jolie/aiocj.html

1 include isFreeDay from "calendar.org:80" with http
2 include getTicket from "cinema.org:8000" with soap
3
4 preamble {
5 starter: bob
6 location@bob = "socket:// localhost:8000"
7 location@alice = "socket://alice.com:8000"
8 location@cinema = "socket:// cinema.org:8001"
9 }

10
11 aioc{
12 end@bob = false;
13 while(! end)@bob{
14 scope @bob {
15 free_day@bob = getInput("Insert your free day");
16 proposal: bob(free_day) -> alice(bob_free_day);
17 is_free@alice = isFreeDay(bob_free_day);
18 } prop { N.scope_name = "matching day" };
19 if(is_free)@alice {
20 scope @bob {
21 proposal: bob("cinema") -> alice(event);
22 agreement@alice = getInput("Bob proposes " + event +
23 ", do you agree?[y/n]");
24 if(agreement == "y")@alice{
25 end@bob = true;
26 book: bob(bob_free_day) -> cinema(book_day);
27 ticket@cinema = getTicket(book_day);
28 { notify: cinema(ticket) -> bob(ticket)
29 | notify: cinema(ticket) -> alice(ticket)
30 }
31 }
32 } prop { N.scope_name = "event selection" }
33 };
34 if(!end)@bob {
35 _r@bob = getInput("Alice refused. Try another date?[y/n]");
36 if(_r != "y")@bob{ end@bob = true }
37 }
38 }
39 }

Listing 1.1. Appointment program.

that evaluates the guard. Prefixed by the keyword scope, they identify the pro-
cess coordinating the adaptation of that scope. An adaptation scope, besides the
code, may also include some properties describing the current implementation.
These can be specified using the keyword prop and are prefixed by N. For in-
stance, each adaptation scope of the example includes the property scope_name,
that can be used to find out its functionality.

AIOCJ can interact with external services, seen as functions. This allows
both to interact with real services and to have easy access to libraries from
other languages. To do that, one must specify the address and protocol used to
interact with each service. For instance, the external function isFreeDay used
in Line 17 is associated to the service deployed at the domain “calendar.org”,
reachable though port 80, and that uses http as serialisation protocol (Line 1).
External functions are declared with the keyword include. To preserve deadlock
freedom, external services must be non-blocking. After function declaration, in
a preamble section, it is possible to declare the locations where processes are

11

deployed. The keyword starter is mandatory and defines which process must
be started first. The starter makes sure all other processes are ready before the
execution of the choreography begins.

Now suppose that Bob, during summer, prefers to invite Alice to a picnic
rather than to the cinema, provided that the weather forecasts are good. This
can be obtained by adding the following adaptation rule to one of the adaptation
servers. This may even be done while the application is running, e.g., while Bob
is sending an invitation. In this case, if Bob first try is unsuccessful, in the second
try he will propose a picnic.

1 rule {
2 include getWeather from "socket:// localhost:8002"
3 on { N.scope_name == "event selection" and E.month > 5 and E.month < 10 }
4 do {
5 forecasts@bob = getWeather(free_day);
6 if(forecasts == "Clear")@bob{
7 eventProposal: bob("picnic") -> alice(event)
8 } else { eventProposal: bob("cinema") -> alice(event) };
9 agreement@alice = getInput("Bob proposes " + event +

10 ", do you agree?[y/n]");
11 if(agreement == "y")@alice {
12 end@bob = true |
13 if(event == "cinema")@alice {
14 //cinema t i cke t s purchase procedure
15 }
16 }
17 }
18 }

Listing 1.2. Event selection adaptation rule.

A rule specifies its applicability condition and the new code to execute. In
general, the applicability condition may depend only on properties of the adap-
tation scope, environment variables, and variables belonging to the coordinator
of the adaptation scope. In this case, the condition, introduced by the keyword
on (Line 3), makes the rule applicable to adaptation scopes having the property
scope_name equal to the string "event selection" and only during summer.
This last check relies on an environment variable month that contains the current
month. Environment variables are prefixed by E.

The new code to execute if the rule is applied is defined using the keyword do

(Line 4). The forecasts can be retrieved calling an external function getWeather

(Line 5) that queries a weather forecasts service. This function is declared in
Line 2. If the weather is clear, Bob proposes to Alice a picnic, otherwise he
proposes the cinema. Booking (as in Listing 1.1, Lines 26-29) is needed only if
Alice accepts the cinema proposal.

6 Related Work

Choreography-like methods for programming distributed systems have been ap-
plied for a long time, for example in MSC [26], security protocols [6,9,3] and
automata theory [20]. Differently from Chor, these works were not intended as
fully-fledged programming languages. For example, they do not deal with con-
crete data or different layers of abstraction (protocols and choreographies).

12

The development of Chor was partially inspired by the language WS-CDL [39]
and the choreography fragment of BPMN [8]. Differently from those, Chor comes
with a formal model defining its semantics and typing discipline. This model
introduced a precise understanding of multiparty sessions and typical aspects
of concurrency, such as asynchrony and parallelism, to choreographies [11]. The
typing discipline is based on multiparty session types [25] (choreography-like pro-
tocols), bringing their benefits to choreographies; for example, Chor programs
are statically guaranteed to follow their associated protocols (session fidelity,
initially introduced in [24]). Remarkably, the development of Chor proved that
the mixing of choreographies with multiparty session types yields more than
just the sum of the parts. For example, it naturally supports a simple proce-
dure for automatically inferring the protocols implemented by a choreography
(type inference); and, it guarantees deadlock-freedom for a system even in the
presence of arbitrary interleavings of session behaviours, without requiring ad-
ditional machinery on top of types as is needed when dealing with processes
instead of choreographies [2]. The theoretical model of Chor has been recently
extended for supporting the reuse of external services in [35]. We refer the in-
terested reader to [33] for a detailed explanation of these aspects and for an
evaluation of Chor w.r.t. some concrete scenarios. Exploring a similar direction,
Scribble is a choreography-like language for specifying communication protocols,
based on multiparty session types [40]. Differently from Chor, Scribble protocols
are not compiled to executable programs but to local abstract behaviours that
are used to verify or monitor the concrete behaviour of endpoints in a distributed
system (see, e.g., [36]).

Like choreographies, also adaptation is a lively research topic, as shown by the
survey [32]. However, most of the approaches propose mechanisms for adaptation
without any guarantee about the properties of the application after adaptation,
as for JoRBA.

A few approaches try to apply multiparty session types to adaptation, ob-
taining some formal guarantee on the behaviour of the system. In this sense,
they are different from Chor and AIOCJ, which are fully-fledged languages. For
instance, [1] deals with dynamic software updates of systems which are concur-
rent, but not distributed. Furthermore, dynamic software updates are applied on
demand, while enactment of adaptation depends on the environment and on the
state of the running application. Another related approach is [14], which deals
with monitoring of self-adaptive systems. There, all the possible behaviours are
available since the very beginning, both at the level of types and of processes,
and a fixed adaptation function is used to switch between them. This difference
derives from the distinction between self-adaptive applications, as they discuss,
and applications updated from the outside, as in our case. We also recall [17],
which uses types to ensure no session is spoiled because of adaptation, and that
needed services are not removed. However, [17] allows updates only when no
session is active, while AIOCJ changes the behaviour of running interactions.

13

7 Conclusions

The aim of the European project Sensoria was to devise a methodology for the
development of Service-Oriented applications, and realise the corresponding the-
oretical and practical tools. Most of the research effort of our research group in
Bologna has been dedicated to the investigation of appropriate models and lan-
guages for specifying and programming such applications. The Service-Oriented
programming language Jolie has been one of our main achievements. In this
paper we have discussed how the activity initiated during the Sensoria project
produced results far beyond our initial aims. In particular, we are still nowadays
exploiting Jolie in the realisation of a framework for programming adaptable
communication-centred applications that are correct-by-construction. Correct-
ness is guaranteed because the updates are expressed from a global view-point,
and then automatically projected and injected in the endpoints code. For in-
stance, if in an application it is necessary to update a security protocol because
of a detected flaw, the interacting partners need to be modified in order to replace
the old protocol with a new one. Applying these dynamic unexpected updates is
a critical task for modern applications. Our approach consists of describing the
updates at the global level, generate the new endpoint code by projecting such
updates on the affected partners, and then inject the new code to the endpoints
in a coordinated manner.

A final remark is dedicated to Martin Wirsing, the coordinator of the Sen-
soria project. He did not limit his activity to the (hard) work of amalgamating
the several heterogeneous partners of the Sensoria Integrated Project, but he
continuously solicited the participants to conduct research that were innovative
–in order to give to the project a long-term vision– as well as close to actual ap-
plication needs –in order to avoid losing effort on abstract useless research. We
consider the specific experience reported in this paper a concrete and relevant
result of this enlightened Martin’s approach to project coordination.

Acknowledgements

Montesi was supported by the Danish Council for Independent Research (Tech-
nology and Production), grant n. DFF–4005-00304.

References

1. G. Anderson and J. Rathke. Dynamic software update for message passing pro-
grams. In R. Jhala and A. Igarashi, editors, APLAS, volume 7705 of Lecture Notes
in Computer Science, pages 207–222. Springer, 2012.

2. L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global progress in dynamically interleaved multiparty sessions. In
CONCUR, volume 5201 of Lecture Notes in Computer Science, pages 418–433.
Springer, 2008.

14

3. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer. Crypto-
graphic protocol synthesis and verification for multiparty sessions. In CSF, pages
124–140. IEEE Computer Society, 2009.

4. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, D. Sangiorgi, V. T. Vasconcelos, and G. Zavattaro. SCC:
A service centered calculus. In M. Bravetti, M. Núñez, and G. Zavattaro, editors,
WS-FM, volume 4184 of Lecture Notes in Computer Science, pages 38–57. Springer,
2006.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for struc-
tured service programming. In G. Barthe and F. S. de Boer, editors, FMOODS,
volume 5051 of Lecture Notes in Computer Science, pages 19–38. Springer, 2008.

6. S. Briais and U. Nestmann. A formal semantics for protocol narrations. Theor.
Comput. Sci., 389(3):484–511, 2007.

7. R. Bruni, M. M. Hölzl, N. Koch, A. Lluch-Lafuente, P. Mayer, U. Montanari,
A. Schroeder, and M. Wirsing. A service-oriented UML profile with formal support.
In L. Baresi, C.-H. Chi, and J. Suzuki, editors, ICSOC/ServiceWave, volume 5900
of Lecture Notes in Computer Science, pages 455–469. Springer, 2009.

8. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/.
9. C. Caleiro, L. Viganò, and D. A. Basin. On the semantics of Alice&Bob specifica-

tions of security protocols. Theor. Comput. Sci., 367(1-2):88–122, 2006.
10. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.
11. M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty asyn-

chronous global programming. In R. Giacobazzi and R. Cousot, editors, POPL,
pages 263–274. ACM, 2013.

12. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-
party session. Logical Methods in Computer Science, 8(1), 2012.

13. A. Clark, S. Gilmore, and M. Tribastone. Quantitative analysis of web services
using SRMC. In M. Bernardo, L. Padovani, and G. Zavattaro, editors, SFM, volume
5569 of Lecture Notes in Computer Science, pages 296–339. Springer, 2009.

14. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive monitors for
multiparty sessions. In PDP, pages 688–696. IEEE Computer Society, 2014.

15. M. Dalla Preda, M. Gabbrielli, C. Guidi, J. Mauro, and F. Montesi. Interface-
based service composition with aggregation. In F. D. Paoli, E. Pimentel, and
G. Zavattaro, editors, ESOCC, volume 7592 of Lecture Notes in Computer Science,
pages 48–63. Springer, 2012.

16. M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, and M. Gabbrielli. AIOCJ: A
choreographic framework for safe adaptive distributed applications. In B. Combe-
male, D. J. Pearce, O. Barais, and J. J. Vinju, editors, SLE, volume 8706 of Lecture
Notes in Computer Science, pages 161–170. Springer, 2014.

17. C. Di Giusto and J. A. Pérez. Disciplined structured communications with consis-
tent runtime adaptation. In S. Y. Shin and J. C. Maldonado, editors, SAC, pages
1913–1918. ACM, 2013.

18. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service component
architecture. In M. Bravetti, M. Núñez, and G. Zavattaro, editors, WS-FM, volume
4184 of Lecture Notes in Computer Science, pages 193–213. Springer, 2006.

19. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In L. J. Osterweil, H. D.
Rombach, and M. L. Soffa, editors, ICSE, pages 771–774. ACM, 2006.

20. X. Fu, T. Bultan, and J. Su. Realizability of conversation protocols with message
contents. International Journal on Web Service Res., 2(4):68–93, 2005.

15

http://www.omg.org/spec/BPMN/2.0/

21. M. Gabbrielli, S. Giallorenzo, and F. Montesi. Service-oriented architectures:
From design to production exploiting workflow patterns. In S. Omatu, H. Bersini,
J. M. C. Rodŕıguez, S. Rodŕıguez, P. Pawlewski, and E. Bucciarelli, editors, DCAI,
volume 290 of Advances in Intelligent Systems and Computing, pages 131–139.
Springer, 2014.

22. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. Dynamic error handling in
service oriented applications. Fundam. Inform., 95(1):73–102, 2009.

23. D. Harel and P. Thiagarajan. Message sequence charts. In UML for real, pages 77
– 105. Kluwer Academic Publishers, 2003.

24. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disci-
plines for structured communication-based programming. In ESOP, volume 1381
of Lecture Notes in Computer Science, pages 22–138. Springer, 1998.

25. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

26. International Telecommunication Union. Recommendation Z.120: Message se-
quence chart, 1996.

27. I. Lanese, A. Bucchiarone, and F. Montesi. A framework for rule-based dynamic
adaptation. In M. Wirsing, M. Hofmann, and A. Rauschmayer, editors, TGC,
volume 6084 of Lecture Notes in Computer Science, pages 284–300. Springer, 2010.

28. I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between
interaction- and process-oriented choreographies. In SEFM, pages 323–332. IEEE
Computer Society, 2008.

29. I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara. Disciplining orchestration
and conversation in service-oriented computing. In SEFM, pages 305–314. IEEE
Computer Society, 2007.

30. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web
services. In R. De Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer
Science, pages 33–47. Springer, 2007.

31. A. Lapadula, R. Pugliese, and F. Tiezzi. Using formal methods to develop WS-
BPEL applications. Sci. Comput. Program., 77(3):189–213, 2012.

32. L. A. F. Leite, G. A. Oliva, G. M. Nogueira, M. A. Gerosa, F. Kon, and D. S. Milo-
jicic. A systematic literature review of service choreography adaptation. Service
Oriented Computing and Applications, 7(3):199–216, 2013.

33. F. Montesi. Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen, 2013. http://www.fabriziomontesi.com/files/m13_phdthesis.pdf.

34. F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE. In Proc.
of ECOWS, pages 13–22. IEEE Computer Society, 2007.

35. F. Montesi and N. Yoshida. Compositional choreographies. In P. R. D’Argenio
and H. C. Melgratti, editors, CONCUR, volume 8052 of Lecture Notes in Computer
Science, pages 425–439. Springer, 2013.

36. R. Neykova, N. Yoshida, and R. Hu. SPY: local verification of global protocols. In
A. Legay and S. Bensalem, editors, RV, volume 8174 of Lecture Notes in Computer
Science, pages 358–363. Springer, 2013.

37. M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-based
model-checking approach for the analysis of communication protocols for service-
oriented applications. In S. Leue and P. Merino, editors, FMICS, volume 4916 of
Lecture Notes in Computer Science, pages 133–148. Springer, 2007.

38. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

39. W3C WS-CDL Working Group. Web services choreography description language
version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, 2004.

16

http://www.fabriziomontesi.com/files/m13_phdthesis.pdf

40. N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol language. In
M. Abadi and A. Lluch-Lafuente, editors, TGC, volume 8358 of Lecture Notes in
Computer Science, pages 22–41. Springer, 2013.

17

	The Evolution of Jolie
	Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro

