Skip to main content

Quantum-Inspired Shuffled Frog Leaping Algorithm for Spectrum Sensing in Cooperative Cognitive Radio Network

  • Conference paper
  • First Online:
Book cover Human Centered Computing (HCC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8944))

Included in the following conference series:

  • 3976 Accesses

Abstract

Cognitive radio technology has been proposed to improve spectrum efficiency by having the cognitive radios act as secondary users to opportunistically access under-utilized frequency bands. Spectrum sensing, as a key enabling functionality in cognitive radio networks, needs to reliably detect signals from licensed primary radios to avoid harmful interference. In this paper, we propose a Quantum-inspired frog leaping algorithm (QSFLA) based on frog leaping algorithm and we evaluate the performance of the QSFLA through some classical benchmark functions. Simulation results for cognitive radio system are provided to show that the designed spectrum sensing algorithm is superior to some previous spectrum sensing algorithm in probability of detection, convergence rate and accurate convergence value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Communications Magazine 42, 74–80 (2004)

    Article  Google Scholar 

  2. Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions Information Theory 49, 2415–2425 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Nabar, R.U., Bolcskei, H., Kneubuhler, F.W.: Fading relay channels: perfor-mance limits and space-time signal design. IEEE Journal on Selected Areas in Communications 22, 1099–1109 (2004)

    Article  Google Scholar 

  4. Stefanov, A., Erkip, E.: Cooperative space-time coding for wireless networks. In: Proceedings of the Information Theory Workshop 2003, pp. 50–53. IEEE (2003)

    Google Scholar 

  5. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wire-less networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory 50, 3062–3080 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xiaowen, G., Chandrashekhar, T.P.S., Junshan, Z., Poor, H.V.: Opportunistic cooperative networking: to relay or not to relay? IEEE Journal on Selected Areas in Commu-nications 30, 307–314 (2012)

    Article  Google Scholar 

  7. Bletsas, A., Khisti, A., Win, M.Z.: Opportunistic cooperative diversity with feedback and cheap radios. IEEE Transactions on Wireless Communications 7, 1823–1827 (2008)

    Article  Google Scholar 

  8. Annavajjala, R., Cosman, P.C., Milstein, L.B.: Statistical channel knowledge-based optimum power allocation for relaying protocols in the high SNR regime. IEEE Journal on Selected Areas in Communications 25, 292–305 (2007)

    Article  Google Scholar 

  9. Lin, X., Tiankui, Z., Yutao, Z., Cuthbert, L.: Two-hop subchannel scheduling and power allocation for fairness in OFDMA relay networks. In: Fifth International Conference on Wireless and Mobile Communications. ICWMC ‘09, pp. 267–271 (2009)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm al-gorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  11. Zhijin, Z., Zhen, P., Shilian, Z., Junna, S.: Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Transactions on Wireless Communications 8, 4421–4425 (2009)

    Article  Google Scholar 

  12. Hongyuan, G., Jinlong, C., Ming, D.: A simple quantum-inspired particle swarm optimization and its application. Information Technology Journal 10(12), 2315–2321 (2011)

    Article  Google Scholar 

  13. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Evolutionary for Design, Optimization and Control with Application to an Industrial Problems (EUROGEN2001), pp. 95–100 (2001)

    Google Scholar 

  17. Hee-jin, J., Cheol, M.: Capacity of multiuser diversity with cooperative relaying in wireless networks. IEEE Communications Letters 12, 752–754 (2008)

    Article  Google Scholar 

  18. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wire-less networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12), 3062–3080 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhijin, Z., Zhen, P., Shilian, Z., Junna, S.: Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Transactions on Wireless Communications 8, 4421–4425 (2009)

    Article  Google Scholar 

  20. Elhossini, A., Areibi, S., Dony, R.: Strength pareto particle swarm optimization and hybrid ea-pso for multi-objective optimization. Evolutionary Computation 18, 127–156 (2010)

    Article  Google Scholar 

  21. Naka, S., Genji, T., Yura, T., Fukuyama, Y.: Practical distribution state estima-tion using hybrid particle swarm optimization. In: Power Engineering Society Win-ter Meeting, vol. 2, pp. 815–820. IEEE (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cheng, C. et al. (2015). Quantum-Inspired Shuffled Frog Leaping Algorithm for Spectrum Sensing in Cooperative Cognitive Radio Network. In: Zu, Q., Hu, B., Gu, N., Seng, S. (eds) Human Centered Computing. HCC 2014. Lecture Notes in Computer Science(), vol 8944. Springer, Cham. https://doi.org/10.1007/978-3-319-15554-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15554-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15553-1

  • Online ISBN: 978-3-319-15554-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics