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Abstract. We investigate the length ℓ(n, k) of a shortest preset distin-
guishing sequence (PDS) in the worst case for a k-element subset of
an n-state Mealy automaton. It was mentioned by Sokolovskii [18] that
this problem is closely related to the problem of finding the maximal
subsemigroup diameter ℓ(Tn) for the full transformation semigroup Tn

of an n-element set. We prove that ℓ(Tn) = 2n exp{
√

n

2
lnn(1 + o(1))}

as n → ∞ and, using approach of Sokolovskii, find the asymptotics of
log

2
ℓ(n, k) as n, k → ∞ and k/n → a ∈ (0, 1).
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1 Introduction

Finite state machines are widely used models for systems in a variety of areas,
including sequential circuits [8] and communication protocols [10]. The study
of finite automata testing is motivated by applications in the verification of
these systems. One of the basic tasks in the verification of finite automata is
to identify the state of the automaton under investigation. Once the state is
known, the behavior of the automaton becomes predictable and it is possible to
force the automaton into the desirable mode of operation. Suppose we have a
finite deterministic Mealy automaton A whose transition and output functions
are available and we know that its initial state q0 is in some subset S of its set of
states Q. The state-identification problem is to find an input sequence called a
preset distinguishing sequence (PDS) for S in A that produces different outputs
for different states from S. Before we give a formal definition of a PDS and
state the results of the paper we need to fix notations and recall some standard
definitions from automata theory.

A finite deterministic Mealy automaton (an automaton for short) is a quintu-
ple A = (A,Q,B, δ, λ), where: A, Q, B are finite nonempty sets called the input
alphabet, the set of states, and the output alphabet, respectively; δ : Q ×A → Q
and λ : Q × A → B are total functions called the transition function and the
output function, respectively.

http://arxiv.org/abs/1412.0034v1
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If we omit in the definition of automaton the output alphabet B and the
output function λ we obtain an object A = (A,Q, δ) called finite semiautomaton.
If the output function δ is partial then the semiautomaton is also called partial.

Let Σ be an arbitrary alphabet. By Σ∗ we denote the set of all words over
the alphabet Σ. Denote by |α| the length of a word α ∈ Σ∗. Denote by ε the
empty word, i.e., |ε| = 0.

As usual, we extend functions δ and λ to the set Q×A∗ in the following way:
δ(q, ε) = q, δ(q, αa) = δ(δ(q, α), a), λ(q, ε) = ε, λ(q, αa) = λ(q, α)λ(δ(q, α), a),
where q ∈ Q, a ∈ A,α ∈ A∗. Moreover, if S ⊆ Q is a subset of states, then we
let δ(S, α) = {δ(q, α) | q ∈ S}.

We say that two states q1, q2 ∈ Q of an automaton A are distinguishable by
an input word α ∈ A∗ if λ(q1, α) 6= λ(q2, α). If there are no such words we say
that the states q1, q2 are indistinguishable or equivalent. An automaton is called
reduced or minimal if it does not have equivalent states.

Definition. Let S be a subset of states of an automaton A. We say that an
input word α is a preset distinguishing sequence (PDS) for S in A if α pairwise
distinguishes the states in the set S, i.e., λ(q1, α) 6= λ(q2, α) for all q1, q2 ∈ S,
q1 6= q2.

Denote by ℓ(A, S) the length of a shortest PDS for S in A, or 0 if such a PDS
does not exist. It is a well known fact [12] that there are reduced automata that
do not have a PDS for some k-element subsets of states when k ≥ 3. Moreover it
can be easily verified that the reduced automaton on Fig. 1 does not have a PDS
for any 3 element subset of states.

q1

q2

qi

qn

· · · · ·
·

0/0

0/0

0/0 0/0

0/0

0/0

1/0 1/0

1/0

1/1

Fig. 1. The reduced automaton A that does not have a PDS for any 3-element state
subset

Consider the function

ℓ(n, k) = max
A∈An,|S|=k

ℓ(A, S),
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where An is the class of all n-state automata. This function can be interpreted
as the length of a shortest PDS in the worst case for a k-element subset of states
in an n-state automaton.

The function ℓ(n, k) was studied by many authors. In his seminal paper [12]
Moore proves that ℓ(n, 2) = n − 1. Gill [4] gives the upper bound ℓ(n, k) ≤
(k − 1)nk. Sokolovskii finds the lower bounds in [17]:

ℓ(n, k) ≥
(
n− 1

k − 1

)

if 1 ≤ k ≤ n/2, (1)

ℓ(n, k) ≥
(

n− 2

⌊(n− 2)/2⌋

)

if n/2 < k < n. (2)

In [14] Rystsov shows that log3 ℓ(n, n) ∼ n/6 as n → ∞. The result is proved
reducing the problem of estimating ℓ(n, n) to the problem of estimating the
function T (n) that is equal to the length of a shortest irreducible word in the
worst case for a partial n-state semiautomaton. An irreducible word for a partial
semiautomaton A = (A,Q, δ) is a word α ∈ A∗ such that its action is defined on
all states and for any word β ∈ A∗ such that its action is defined on the set δ(Q,α)
we have |δ(Q,α)| = |δ(Q,αβ)|. In [14] it is proved that log3 T (n) ∼ n/3 as n →
∞. It is interesting to note that T (n) coincides with the function d3(n) studied
by several authors [11,3] which is equal to the length of a shortest carefully
synchronizing word1 in the worst case for a partial n-state semiautomaton. This
is due to the fact that every carefully synchronizing word is also irreducible and
the worst case irreducible word is always carefully synchronizing2. Thus we have
log3 d3(n) ∼ n/3 which was conjectured in [3].

In the paper [18] Sokolovskii investigate the relationship between the function
ℓ(n, k) and the maximum of a subsemigroup diameter in the full transformation
semigroup of an n-element set.

Definition. Let Ωn be an n-element set. The full transformation semigroup of
Ωn (also called the symmetric semigroup of Ωn) is the set Tn of all transforma-
tions of Ωn.

The set Tn contains the proper subset Sn of all bijections on the set Ωn

called the symmetric group on Ωn. We see that Tn is a monoid and Sn is a
group with function composition as the multiplication operation. In this paper,
by the composition fg of transformations f, g ∈ Tn we mean the left composition
x 7→ g(f(x)).

Consider B ⊆ Tn. By 〈B〉 denote the closure of the set B, i.e., the set
{f1 . . . fℓ | f1, . . . , fℓ ∈ B}. Let f ∈ 〈B〉 and ℓ be the minimum natural number
such that f = f1 . . . fℓ for some f1, . . . , fℓ ∈ B. Then ℓ is called the complexity of

1 A word α is a carefully synchronizing for a partial semiautomaton A = (A,Q, δ) if
the action of α is defined on all states and |δ(Q,α)| = 1.

2 If α is a shortest irreducible word for a partial semiautomaton A = (A,Q, δ) and
|δ(Q,α)| > 1 then we can always add a new input symbol a to A and obtain A

′ =
(A∪{a},Q, δ′) such that αa is a shortest irreducible word for A′ and |δ′(Q,αa)| = 1.
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the function f over the basis B and is denoted by ℓB(f). We should also mention
that the same function was considered in the paper [16] under the name depth.

For any subset C ⊆ Tn we define the following function:

ℓ(C) = max
B⊆C,f∈〈B〉

ℓB(f). (3)

The function ℓ(C) can be interpreted as the worst-case complexity of the
functions from C. In the paper [18] Sokolovskii shows that:

(
n− 1
⌊
n−1
2

⌋

)

< ℓ(Tn) < n
n
2 (1+o(1))),

e
√
n lnn(1+o(1)) < ℓ(Sn) < n!

1
2 (1+o(1)),

as n → ∞. It is worth mentioning that the lower bound for ℓ(Sn) follows from
the asymptotic estimate of the maximum order of the permutations from Sn

called Landau’s function [9]. The stronger result for ℓ(Sn) follows from [1]. The
author considers only closed sets C (i.e., 〈C〉 = C), which are subgroups of Sn.
For any subgroup G of Sn the directed diameter diam+(G) of the group G is
defined as follows:

diam+(G) = max
f∈G,〈B〉=G

ℓB(f).

It is easily shown that ℓ(Sn) = maxG diam+(G), where G ranges over all
subgroups of Sn. From the results of [1] it follows that

ℓ(Sn) = e
√
n lnn(1+o(1)) as n → ∞. (4)

We are now ready to state the first of the two main results of this paper.

Theorem 1. We have ℓ(Tn) = 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

As we mentioned before, Sokolovskii discovered (see [18]) the relationship
between functions ℓ(Tn) and ℓ(n, k). He proved in particular that

ℓ(n, k) ≤ (k − 1)ℓ(Tn). (5)

The binary entropy function denoted by H2(x) is defined as follows:

H2(x) = −x log2 x− (1 − x) log2(1− x), where x ∈ (0, 1).

Combining inequalities (1), (2), and (5) with theorem 1 the second main
result of the paper can be proved.

Theorem 2. We have log2 ℓ(n, k) ∼ ϕ(a)n as n → ∞ and k/n → a ∈ (0, 1),
where ϕ(a) = H2(a) if a < 1/2 and ϕ(a) = 1 if a ≥ 1/2 (see Fig. 2).
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Fig. 2. Function ϕ(a)

2 Proofs of the Main Results

Before we proceed to the formal proofs of the main results, let us give some

definitions and state some useful lemmas first. Consider the set T
(k)
n of all bijec-

tions f : D → D′ such that D,D′ ⊆ Ωn and |D| = |D′| = k. Suppose B ⊆ Tn,

f ∈ T
(k)
n , f : D → D′, and there is a map g ∈ 〈B〉 such that f = g|D. Then we

denote by ℓB(f) the minimum of ℓB(g) over all such maps g, or 0 if there are no
such maps. The value ℓB(f) is also called the complexity of f over B. Consider
the following function:

ℓ(T(k)
n ) = max

B⊆Tn,f∈T
(k)
n

ℓB(f).

If f(D) = D′, then we say that f transforms D into D′ and write D
f−→ D′.

For any set of maps B ⊆ Tn the k-graph over B is the directed graph G (loops
and multiple edges are permitted3) with the set of vertices

V (G) = {D | D ⊆ Ωn, |D| = k},

the set of arcs

E(G) = {f ∈ T(k)
n | f = g|D for some g ∈ B and D ∈ V (G)},

and every arc f goes from the vertex D to the vertex D′ whenever D
f−→ D′.

A walk from the vertex D to the vertex D′ in the k-graph G is a sequence of
vertices and arcs w = D0, f1, D1, . . . , fℓ, Dℓ such that D0 = D, Dℓ = D′ and the
arc fi goes from the vertex Di−1 to the vertex Di for i = 1, . . . , ℓ, or, in terms
of maps,

D0
f1−→ D1

f2−→ · · · fℓ−→ Dℓ.

We often omit vertices in walks and write simply w = f1, . . . , fℓ. The number ℓ
is called the length of the walk w and is denoted by ℓ(w). By a subwalk of w we
mean a subsequence fi, fi+1, . . . , fj, 1 ≤ i < j ≤ ℓ.

3 Sometimes such graphs are called pseudographs.
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For any walk w = f1, . . . , fℓ from D to D′ consider the map [w] : D → D′,
where [w] = f1 . . . fℓ (the composition of the maps f1, . . . , fℓ). Two walks w and
w′ are called equivalent if [w] = [w′]. For a closed walk w, which starts and
ends in the same vertex D, the map [w] is a permutation of D. For any closed
walk w, by definition, put

wk = w, . . . ,w
︸ ︷︷ ︸

k

, k ∈ N.

It is readily seen that wk is also a closed walk and [wk] = [w]k.
The next lemma is an immediate consequence of the previous definitions.

Lemma 3. Given a basis B ⊆ Tn and a map f ∈ T
(k)
n such that f : D → D′ is

a restriction of some map from 〈B〉. Consider the k-graph G over B. Then ℓB(f)
is the length of a shortest walk w in G from D to D′ such that [w] = f .

We say that a vertex D is reachable from a vertex D′ in a k-graph G if
there is a walk in G from D to D′. Vertices D and D′ are called mutually
reachable if D is reachable from D′ and D′ is reachable from D. A k-graph is
called strongly connected if all its vertices are mutually reachable. Obviously,
mutual reachability is an equivalence relation on vertices and it partitions the
set of vertices V (G) into equivalence classes V (G) = V1 ∪ . . . ∪ Vr. Subgraphs
G1, . . . , Gr induced by V1, . . . , Vr are called strongly connected components of G.
Evidently, every strongly connected component is strongly connected.

Lemma 4. For any walk w in a strongly connected k-graph G over B ⊆ Tn

there is an equivalent walk w′ such that ℓ(w′) < 2|V (G)| · (ℓ(Sk) + 1)− 1.

Proof. Given a walk w = D0, f1, D1, . . . , fℓ, Dℓ in the k-graph G. For any ver-
tex D in G we define a walk wD, equivalent to w, called a D-saturation of
w, as follows. For every vertex Di, 0 ≤ i ≤ ℓ, we consider two paths4: pDi→D

from Di to D and pD→Di
from D to Di. Connecting them, we obtain the closed

walk ci = pDi→D,pD→Di
. Since G is strongly connected, it follows that these

two paths exist and ℓ(pD→Di
), ℓ(pD→Di

) are bounded by |V (G)| − 1. For every
closed walk ci we consider the permutation πi = [ci] of the set Di. Let mi be
the order of ci, i.e., the smallest positive integer m such that πm

i = eDi
(where

eM denotes the identity map on M). Finally, by definition, put

wD = cm0
0 , f1, c

m1
1 , . . . , fℓ, c

mℓ

ℓ . (6)

It now follows that

[wD] = πm0

0 f1π
m1

1 . . . fℓπ
mℓ

ℓ = eD0f1eD1f2 . . . fℓeDℓ
= f1f2 . . . fℓ = [w],

and we see that the D-saturation wD is equivalent to the walk w.
Consider all the occurrences of the vertex D in the walk wD. These oc-

currences partition wD into subwalks, i.e., wD = w0,w1, . . . ,ws,ws+1, where

4 A path is a walk in which all vertices and edges are distinct.
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w0 is the subwalk from the begin to the first occurrence of D, ws+1 is the
subwalk from the last occurrence of D to the end, and the closed subwalks
w1, . . . ,ws connect successive occurrences of D. Using (6) and recalling that
ci = pDi→D,pD→Di

, where ℓ(pD→Di
) and ℓ(pD→Di

) are bounded by |V (G)|−1,
we have ℓ(w0) ≤ |V (G)| − 1, ℓ(ws+1) ≤ |V (G)| − 1, and ℓ(wi) ≤ 2|V (G)| − 1
for i = 1, . . . , s. Let π1 = [w1], . . . , πs = [ws]. Consider the set B = {π1, . . . , πs}
and the permutation π = π1 . . . πs ∈ 〈B〉. Now note that π, π1, . . . , πs are permu-
tations of the same k-element set D. Thus, taking into account (3), we obtain
π = πi1 . . . πir , where r ≤ ℓ(Sk).

Finally, let w′ = w0,wi1 , . . . ,wir ,ws+1. Then we get

[w′] = [w0]πi1 . . . πir [ws+1] = [w0]π1 . . . πr [ws+1] = [wD] = [w],

i.e., w′ is equivalent to w. Moreover, we have

ℓ(w′) ≤ 2(|V (G)| − 1) + (2|V (G)| − 1) · ℓ(Sk) < 2|V (G)| · (ℓ(Sk) + 1)− 1.

The lemma is proved. ⊓⊔

In the previous lemma we deal with strongly connected k-graphs only. More
general case is considered in the next lemma.

Lemma 5. For any walk w in a k-graph G over B ⊆ Tn there is an equivalent
walk w′ such that ℓ(w′) < 2|V (G)| · (ℓ(Sk) + 1).

Proof. Consider an arbitrary walk w in G. It is readily seen that this walk
can be represented as w = w1, f1,w2, . . . , fs−1ws, where every subwalk wi be-
longs completely to one strong component Gi of G and all the components
G1, . . . , Gs are different. On the other hand, from Lemma 4 it follows that
for any walk wi, 1 ≤ i ≤ s, there exists an equivalent walk w′

i such that
ℓ(w′

i) < 2|V (Gi)| · (ℓ(Sk) + 1)− 1. Then we let w′ = w′
1, f1,w

′
2, . . . , fs−1,w

′
s

and obtain that [w′] = [w]. Moreover, we have

ℓ(w′) =
s∑

i=1

ℓ(w′
i)+ s− 1 <

(
s∑

i=1

2|V (Gi)|
)

· (ℓ(Sk) + 1) ≤ 2|V (G)| · (ℓ(Sk)+1).

This proves the lemma. ⊓⊔

Consider an arbitrary basis B ⊆ Tn. It is clear that for the k-graph G over
B we have |V (G)| =

(
n
k

)
. Therefore from Lemmas 3 and 5 it follows that

ℓ(T(k)
n ) < 2

(
n

k

)

(ℓ(Sk) + 1). (7)

Combining this fact with equality (4), we obtain the following

Lemma 6. We have ℓ(T
(k)
n ) <

(
n
k

)
e
√
k ln k(1+o(1)) as n, k → ∞.
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Consider a basis B ⊆ Tn and a map f ∈ 〈B〉. Let f = f1 . . . fℓ be a shortest
representation of f over B, i.e., ℓ = ℓB(f). Thus we have

D0
f1−→ D1

f2−→ · · · fℓ−→ Dℓ,

where Di = Ωnf1 . . . fi. Suppose ki = |Di| for i = 0, . . . , ℓ; then we obtain

k0 = . . . = ki1 = r0 > ki1+1 = . . . = ki2 = r1 > . . . > kis+1 = . . . = kℓ = rs.

Therefore we get f = g0fi1g1 . . . gs−1fisgs, where gi ∈ T
(ri)
n , 0 ≤ i ≤ s. Thus it

is easily shown that ℓB(f) = s+ ℓB(g0) + · · ·+ ℓB(gs). It is clear that s ≤ n− 1.
Therefore, we have

ℓB(f) ≤ n− 1 + ℓ(T(r0)
n ) + · · ·+ ℓ(T(rs)

n ) < n max
0≤i≤s

{

ℓ(T(ri)
n ) + 1

}

.

Finally, we obtain

ℓ(Tn) < n max
1≤k≤n

{

ℓ(T(k)
n ) + 1

}

. (8)

Lemma 7. We have ℓ(Tn) ≤ 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

Proof. Using (4), (7), and (8), we obtain ln ℓ(Tn) ≤ lnn+ ℓ(n), where

ℓ(n) = max
1≤k≤n

{

ln

(
n

k

)

+ ϕ(k)

}

,

and ϕ(k) is a function such that ϕ(k) ∼
√
k ln k as k → ∞.

Recall that the function ln
(
n
k

)
achieves its maximum value at the point

kn = ⌈n/2⌉ when n is fixed. Suppose ln
(
n
k

)
+ ϕ(k) achieves its maximum value

at k′n = kn+hn, i.e., ℓ(n) = ln
(
n
k′

n

)
+ϕ(k′n). We claim that hn/n → 0 as n → ∞.

Indeed, in the converse case, we can take ε ∈ (0, 1/2) such that |hn/n| ≥ ε holds
for an infinite sequence of indexes n. Further, since we have |hn/n| ∈ [ε, 1/2]
for this sequence; then it has an infinite subsequence n1, n2, . . . , ni, . . . such that
hni

/ni → a ∈ [−1/2,−ε]∪ [ε, 1/2] as i → ∞. On the other hand, it is well known
that

ln
(
n
m

)

n
→ H(p) (9)

as n,m → ∞ and m/n → p ∈ [0, 1], where5

H(p) = −p ln p− (1− p) ln(1− p)

is the entropy function. Since ϕ(kni
) = o(ni), ϕ(k

′
ni
) = o(ni), k

′
ni
/ni → 1/2 + a,

and kni
/ni → 1/2 as i → ∞, we obtain:

lim
i→∞

ln
(
ni

k′

ni

)
+ ϕ(k′ni

)

ni
= H

(
1

2
+ a

)

≥ lim
i→∞

ln
(
ni

kni

)
+ ϕ(kni

)

ni
= H

(
1

2

)

.
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Fig. 3. Entropy function H(p)

The latter contradicts the fact that the function H(p) achieves its maximum
value at the point 1/2 only (see Fig. 3). This contradiction proves that hn/n → 0
as n → ∞.

Further, since the function ln
(
n
k

)
+ ϕ(kn) achieves its maximum value at

k = k′n and the function ln
(
n
k

)
at k = kn when n is fixed; then we obtain

0 ≤ ln

(
n

k′n

)

+ ϕ(k′n)−
(

ln

(
n

kn

)

+ ϕ(kn)

)

≤ ϕ(k′n)− ϕ(kn). (10)

Since hn/n → 0, we see that kn ∼ k′n and
√
kn ln kn ∼

√
k′n ln k

′
n as n → ∞.

From ϕ(kn) ∼
√
kn ln kn and ϕ(k′n) ∼

√
k′n ln k

′
n it follows that ϕ(kn) ∼ ϕ(k′n).

Hence ϕ(k′n)− ϕ(kn) = o(
√
kn ln kn) = o(

√
n lnn) as n → ∞.

Thus, recalling that
(

n
⌈n/2⌉

)
∼
√

2
πn · 2n as n → ∞, from (10) it follows that

ln

(
n

k′n

)

+ϕ(k′n) = ln

(
n

kn

)

+ϕ(kn)+o(
√
n lnn) = n ln 2+

√
n

2
lnn+o(

√
n lnn).

Therefore

ℓ(n) = n ln 2 +

√
n

2
lnn · (1 + o(1))

and recalling that ln ℓ(Tn) ≤ lnn+ ℓ(n), we obtain

ℓ(Tn) ≤ neℓ(n) = 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

This completes the proof. ⊓⊔
Each semiautomaton A = (A,Q, δ) induces the transformation semigroup

T(A) acting on the set of states Q in the following way. For every word α ∈ A∗,
let Tα : Q → Q be the map q 7→ δ(q, α). Then by definition, put

T(A) = {Tα | α ∈ A∗}.
5 Here we assume that 0 · ln 0 = 0.
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It is obvious that T(A) = 〈B〉, where B = {Ta | a ∈ A}. Moreover, if
f ∈ T(A), then ℓB(f) is equal to the length of a shortest word α ∈ A∗ such that
f = Tα.

In Lemma 7 we obtain an upper bound on the function ℓ(Tn). The next
lemma shows that this bound is in some sense exact.

Lemma 8. We have ℓ(Tn) ≥ 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

Proof. For each n and k < n consider a semiautomaton A = (A,Q, δ) such that
Q = {1, . . . , n}, A = {1, . . . ,m}, where m =

(
n−1
k

)
; and the transition function

δ is defined as follows. First we take in some order all k-element subsets of the
set {1, . . . , n− 1} ⊆ Q:

D1 = {q(1)1 , . . . , q
(1)
k }, . . . , Dm = {q(m)

1 , . . . , q
(m)
k }.

Further, we choose a permutation π ∈ Sk of the maximum order, and define

the transition function such that δ(q
(i)
j , i) = q

(i+1)
j and δ(q

(m)
j ,m) = q

(1)
π(j) for

i = 1, . . . ,m− 1; j = 1, . . . , k. Moreover, we let δ(q, i) = n whenever q /∈ Di for
i = 1, . . . ,m.

It is not hard to see that we have

D1
1−−→ D2

2−−→ · · · m−1−−−→ Dm
m−−→ D1. (11)

Furthermore, we claim that we have δ(D1, α) = D1 iff α = (12 . . .m)s, s ≥ 0.
Indeed, if α = (12 . . .m)s; then from (11) we obtain δ(D1, α) = D1. Suppose we
have δ(D1, α) = D1 for some word α = a1 . . . aℓ ∈ A∗. Consider the sequence
D′

1, . . . , D
′
ℓ, where D′

1 = D′
ℓ = D1 and D′

i+1 = δ(D′
i, ai) for i = 1, . . . , ℓ− 1. Let

us show that

a1 = 1, a2 = 2, . . . , am = m, am+1 = 1, am+2 = 2, . . . , aℓ = m. (12)

Assume the converse, and let i be the smallest index such that condition (12)
does not hold for ai. Then it is readily seen that

D′
1 = D1, D

′
2 = D2, . . . , D

′
i = Di and n ∈ D′

i+1 6= Di+1.

Further, since δ(n, a) = n for all a ∈ A; then we get n ∈ δ(D′
i, ai+1 . . . aℓ) = D′

ℓ,
and hence n ∈ D1 ⊆ {1, . . . , n−1}. This contradiction proves condition (12) and
we obtain α = (12 . . .m)s for some s ≥ 0.

Let rk be the order of the previously defined permutation π ∈ Sk. Hence rk
is Landau’s function [9], i.e., the maximum order of an element of Sk, and we

get rk = e
√
k ln k(1+o(1)) as k → ∞. Consider the map f : q 7→ δ(q, (12 . . .m)rk−1).

Since f(D1) = D1; then for each word α ∈ A∗ such that f = Tα we have
α = (12 . . .m)s, and it is not hard to see that f |D1 = πs. Therefore we have
s ≥ rk − 1 and ℓB(f) ≥ |α| = ms ≥

(
n−1
k

)
(rk − 1), where B = {Ta | a ∈ A}.

Finally, if we let k = ⌊n/2⌋, then we obtain the inequality

ℓB(f) ≥
(
n− 1

k

)

(rk − 1) = 2ne
√

n
2 lnn(1+o(1)) as n → ∞.

This completes the proof of the lemma. ⊓⊔
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Now we can prove the first of the two main results of this paper.

Proof (of Theorem 1). The result follows from Lemmas 7 and 8. ⊓⊔
Before we give the proof of Theorem 2, we introduce the following definitions

and notions.
A partition of a set S is a set π = {B1, . . . , Bm} of pairwise disjoint non-empty

subsets Bi ⊆ S (called blocks) such that ∪iBi = S. We say that a partition π′ is
a refinement of a partition π and write π′ ≤ π if every element of π′ is a subset
of some element of π. It is easily shown that the set of all partitions of S is a
partially ordered set with respect to the relation “≤”. It has the least element
(called discrete partition), which contains |S| singleton blocks, and the greatest
element (called trivial partition), which contains one |S|-element block.

Given a finite automaton A = (A,Q,B, δ, λ) and a subset of states S ⊆ Q,
the initial state uncertainty (with respect to A and S) after applying input word
α is a partition πα of S such that two states q, q′ ∈ S are in the same block
iff λ(q, α) = λ(q′, α). Informally speaking, the initial state uncertainty describes
what we know about the initial state q0 ∈ S of the automaton A after applying
the input word α. From the definition of a PDS for S in A it follows that an input
word α is a PDS iff the partition πα is discrete. Moreover, it is easy to prove
that for every α, β ∈ A∗ the partition παβ is a refinement of πα.

Proof (of Theorem 2). Given an n-state automaton A and a k-element subset S
of its states. Let α = a1 . . . aℓ be a minimum length PDS for the subset S. For
each i ∈ {0, 1, . . . , ℓ} we consider the two values ki = |δ(S, a1 . . . ai)| and ri =
|πa1...ai

|. It is clear that k0 ≥ k1 ≥ · · · ≥ kl and r0 ≤ r1 ≤ · · · ≤ rl. Let i1, . . . , im
be the increasing sequence of all indexes i ∈ {1, . . . , ℓ} such that ki−1 > ki or
ri−1 < ri. Since α is a minimum length PDS, then rℓ−1 < rℓ and im = ℓ. Let also
i0 = 0. Hence the word α can be represented as α = α1ai1 . . . αmaim . Moreover,
it is readily seen that m ≤ 2(n− 1).

Further, for each j ∈ {1, . . . ,m} there exists an input word α′
j such that

Tαj
|Sj−1 = Tα′

j
|Sj−1 and |α′

j | ≤ ℓ(T
(pj)
n ), where Sj = δ(S, a1 . . . aij ), pj = kij−1 =

kij−1+1 = · · · = kij−1. We claim that the word α′ = α′
1ai1 . . . α

′
maim is also a

PDS for S. Indeed, in the converse case, there exist two states q1, q2 ∈ S such
that λ(q1, α

′) = λ(q2, α
′). Since α is a PDS, we obtain λ(q1, α) 6= λ(q2, α). Let j

be the minimum index such that

λ(q1, α1ai1 . . . αjaij ) 6= λ(q2, α1ai1 . . . αjaij ).

Then from rij > rij−1 = · · · = rij−1 and the minimality of the index j it follows
that

λ(q1, α1ai1 . . . αj) = λ(q2, α1ai1 . . . αj).

Therefore for the states q′1 = δ(q1, α1ai1 . . . αj), q
′
2 = δ(q2, α1ai1 . . . αj) we get

λ(q′1, aij ) 6= λ(q′2, aij ). At the same time since Tα1ai1 ...αj
|S = Tα′

1ai1 ...α
′

j
|S , we

have q′1 = δ(q1, α
′
1a1 . . . α

′
j), q

′
2 = δ(q2, α

′
1a1 . . . α

′
j) and we finally obtain

λ(q1, α
′
1a1 . . . α

′
jaij ) 6= λ(q2, α

′
1a1 . . . α

′
jaij ).
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Therefore the word α′ distinguishes the states q1, q2 and hence is a PDS for S.

Moreover, we have |α′| ≤ m+ |α′
1|+ · · ·+ |α′

m| ≤ m+ ℓ(T
(p1)
n ) + · · ·+ ℓ(T

(pm)
n )

and therefore
ℓ(n, k) < m max

1≤p≤k

{

ℓ(T(p)
n ) + 1

}

.

Since the function ℓ(Sk) is increasing; then from k ≤ n, m ≤ 2(n − 1),
asymptotic equality (4), and inequality (7) it follows that

ℓ(n, k) <

(
n

k

)

e
√
n lnn(1+o(1)) if k ≤ n

2
; (13)

ℓ(n, k) < 2ne
√
n lnn(1+o(1)) if k >

n

2
. (14)

To conclude the proof, it remains to use inequalities (1) and (2) with asymp-
totic equality (9). ⊓⊔

3 Remarks and Related Work

Despite the fact that the length of a shortest PDS is exponential in the worst
case in the class of all Mealy automata there are a number of natural automata
classes where it is much smaller. For example, for the class of linear automata
it is only logarithmic [2] and for the class of automata with finite memory it
is linear [15] in the number of states. Moreover, if in a reduced automaton A

for each input symbol a and for each pair of different states q, q′ such that
δ(q, a) = δ(q′, a) we always have λ(q, a) 6= λ(q′, a) then every preset homing
sequence (PHS) for A is also a PDS for A [15]. Hence using the classical result of
Hibbard [6] for PHSs it immediately follows that for any such n-state automaton
a PDS always exists, can be efficiently computed, and the length of a shortest

PDS is upper bounded by n(n−1)
2 . Moreover, this upper bound is tight [7,6]. The

class of such automata was investigated by the author in [13] under the name
multiply reduced automata. It is interesting to note that exactly the same class
was considered in a recent paper [5] under the name DMFSM where an O(n3)
upper bound on the PDS length was obtained and an O(n2) upper bound was
only conjectured.
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5. Güniçen, C., İnan, K., Türker, U.C., Yenigün, H.: The relation between preset dis-
tinguishing sequences and synchronizing sequences. Formal Aspects of Computing
pp. 1–15 (2014), http://dx.doi.org/10.1007/s00165-014-0297-8

6. Hibbard, T.N.: Least upper bounds on minimal terminal state experiments for two
classes of sequential machines. J. ACM 8(4), 601–612 (1961)

7. Karacuba, A.A.: Solution to a problem in the theory of finite automatons. Uspehi
Mat. Nauk 15(3 (93)), 157–159 (1960)

8. Kohavi, Z.: Switching and finite automata theory. McGraw-Hill (1970)
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