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Abstract. Given a word w and a Parikh vector P , an abelian run of
period P in w is a maximal occurrence of a substring of w having abelian
period P . We give an algorithm that finds all the abelian runs of period
P in a word of length n in time O(n× |P|) and space O(σ + |P|).
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1 Introduction

Computing maximal (non-extendable) repetitions in a string is a classical topic
in the area of string algorithms (see for example [7] and references therein).
Detecting maximal repetitions of substrings, also called runs, gives information
on the repetitive regions of a string, and is used in many applications, for example
in the analysis of genomic sequences.

Kolpakov and Kucherov [5] gave a linear time algorithm for computing all the
runs in a word and conjectured that any word of length n contains less than n
runs. Bannai et al. [1] recently proved this conjecture using the notion of Lyndon
root of a run.

Here we deal with a generalization of this problem to the commutative set-
ting. Recall that an abelian power is a concatenation of two or more words that
have the same Parikh vector, i.e., that have the same number of occurrences
of each letter of the alphabet. For example, aababa is an abelian square, since
aab and aba both have 2 a’s and 1 b. When an abelian power occurs within
a string, one can search for its “maximal” occurrence by extending it to the
left and to the right character by character without violating the condition on
the number of occurrences of each letter. Following the approach of Constan-
tinescu and Ilie [2], we say that a Parikh vector P is an abelian period for a
word w over a finite ordered alphabet Σ = {a1, a2, . . . , aσ} if w can be written
as w = u0u1 · · ·uk−1uk for some k > 2 where for 0 < i < k all the ui’s have
the same Parikh vector P and the Parikh vectors of u0 and uk are contained
in P . Note that the factorization above is not necessarily unique. For example,

⋆ Final version to be published in the Proceedings of LATA 2015.

http://arxiv.org/abs/1501.01429v1


2 G. Fici, T. Lecroq, A. Lefebvre, and É. Prieur-Gaston

a ·bba ·bba ·ε and ε ·abb ·abb ·a (ε denotes the empty word) are two factorizations
of the word abbabba both corresponding to the abelian period (1, 2). Moreover,
the same word can have different abelian periods.

In this paper we define an abelian run of period P in a word w as an occur-
rence of a substring v of w such that v has abelian period P and this occurrence
cannot be extended to the left nor to the right by one letter into a substring
having the same abelian period P .

For example, let w = ababaaa. Then the prefix ab ·ab ·a = w[1. . 5] has abelian
period (1, 1) but it is not an abelian run since the prefix a · ba · ba · a = w[1. . 6]
has also abelian period (1, 1). This latter, instead, is an abelian run of period
(1, 1) in w.

Looking for abelian runs in a string can be useful to detect those regions
in a string in which there is some kind of non-exact repetitiveness, for example
regions in which there are several consecutive occurrences of a substring or its
reverse.

Matsuda et al. [6] recently presented an offline algorithm for computing all
abelian runs of a word of length n in O(n2) time. Notice that, however, the
definition of abelian run in [6] is slightly different from the one we consider here.
We will comment on this in Section 3.

We present an online algorithm that, given a word w of length n over an
alphabet of cardinality σ, and a Parikh vector P , returns all the abelian runs of
period P in w in time O(n× |P|) and space O(σ + |P|).

2 Definitions and Notation

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and let Σ∗

be the set of finite words over Σ. We let |w| denote the length of the word w.
Given a word w = w[0. . n− 1] of length n > 0, we write w[i] for the (i + 1)-th
symbol of w and, for 0 6 i 6 j < n, we write w[i. . j] for the substring of w from
the (i+1)-th symbol to the (j+1)-th symbol, both included. We let |w|a denote
the number of occurrences of the symbol a ∈ Σ in the word w.

The Parikh vector of w, denoted by Pw, counts the occurrences of each letter
of Σ in w, that is, Pw = (|w|a1

, . . . , |w|aσ
). Notice that two words have the same

Parikh vector if and only if one word is a permutation (i.e., an anagram) of the
other.

Given the Parikh vector Pw of a word w, we let Pw[i] denote its i-th compo-
nent and |Pw| its norm, defined as the sum of its components. Thus, for w ∈ Σ∗

and 1 6 i 6 σ, we have Pw[i] = |w|ai
and |Pw| =

∑σ

i=1 Pw[i] = |w|.

Finally, given two Parikh vectors P ,Q, we write P ⊂ Q if P [i] 6 Q[i] for
every 1 6 i 6 σ and |P| < |Q|.

Definition 1 (Abelian period [2]). A Parikh vector P is an abelian period
for a word w if w = u0u1 · · ·uk−1uk, for some k > 2, where Pu0

⊂ Pu1
= · · · =

Puk−1
⊃ Puk

, and Pu1
= P.
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Note that since the Parikh vector of u0 and uk cannot be included in P it
implies that |u0|, |uk| < |P|. We call u0 and uk respectively the head and the
tail of the abelian period. Note that in [2] the abelian period is characterized by
|u0| and |P| thus we will sometimes use the notation (h, p) for an abelian period
of norm p and head length h of a word w. Notice that the length t of the tail is
uniquely determined by h, p and n = |w|, namely t = (n− h) mod p.

Definition 2 (Abelian repetition). A substring w[i. . j] is an abelian repeti-
tion with period length p if i− j + 1 is a multiple of p, i− j + 1 ≥ 2p and there
exists a Parikh vector P of norm p such that Pw[i+kp..i+(k+1)p−1] = P for every
0 ≤ k ≤ p/(i− j + 1).

An abelian repetition w[i. . j] with period length p such that i − j + 1 = 2p
is called an abelian square. An abelian repetition w[i. . j] of period length p of a
string w is maximal if:

1. Pw[ip..i1] 6= Pw[i..i+p1] or ip < 0;
2. Pw[jp+1..j] 6= Pw[j+1..j+p] or j + p ≥ n.

We now give the definition of an abelian run. Let v = w[b. . e], 0 ≤ b ≤ e ≤
|w| − 1, be an occurrence of a substring in w and suppose that v has an abelian
period P , with head length h and tail length t. Then we denote this occurrence
by the tuple (b, h, t, e).

Definition 3. Let w be a word. An occurrence (b, h, t, e) of a substring of w
starting at position b, ending at position e, and having abelian period P with head
length h and tail length t is called left-maximal (resp. right maximal) if there
does not exist an occurrence of a substring (b− 1, h′, t′, e) (resp. (b, h′, t′, e+1))
with the same abelian period P. An occurrence (b, h, t, e) is called maximal if it
is both left-maximal and right-maximal.

This definition leads to the one of abelian run.

Definition 4. An abelian run is a maximal occurrence (b, h, t, e) of a substring
with abelian period P of norm p such that (e− b− h− t+ 1) ≥ 2p (see Fig. 1).

b e

h tP P P

e− b− h− t+ 1

Fig. 1. The tuple (b, h, t, e) denotes an occurrence of a substring starting at position b,
ending at position e, and having abelian period P with head length h and tail length
t.
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The next result limits the number of abelian runs starting at each position
in a word.

Lemma 5. Let w be a word. Given a Parikh vector P, there is at most one
abelian run with abelian period P starting at each position of w.

Proof. If two abelian runs start at the same position, the one with the shortest
head cannot be maximal. ⊓⊔

Corollary 6. Let w be a word. Given a Parikh vector P, for every position i in
w there are at most |P| abelian runs with period P overlapping at i.

The next lemma shows that a left-maximal abelian substring at the right of
another left-maximal abelian substring starting at position i in a word w cannot
begin at a position smaller than i.

Lemma 7. If (b1, h1, 0, e1) and (b2, h2, 0, e2) are two left-maximal occurrences
of substrings with the same abelian period P of a word v such that e1 < e2 and
b1 > e1 − 2× |P|+ 1 and b2 > e2 − 2× |P|+ 1, then b1 ≤ b2.

Proof. If b2 < b1 then since e2 > e1, w[b1. . b1 + h1 − 1] is a substring of
w[b2. . b2 + h2 − 1]. Thus Pw[b1..b1+h1−1] ⊂ Pw[b2..b2+h2−1] ⊂ P which implies
that Pw[b1−1..b1+h1−1] ⊂ P meaning that (b1, h1, 0, e1) is not left-maximal: a
contradiction. ⊓⊔

We recall the following proposition, which shows that if we can extend the
abelian period with the longest tail of a word w when adding a symbol a, then
we can extend all the other abelian periods with shorter tail.

Proposition 8 ([4]). Suppose that a word w has s abelian periods (h1, p1) <
(h2, p2) < · · · < (hs, ps) such that (|w|−hi) mod pi = t > 0 for every 1 ≤ i ≤ s.
If for a letter a ∈ Σ, (h1, p1) is an abelian period of wa, then (h2, p2), . . . , (hs, ps)
are also abelian periods of wa.

We want to give an algorithm that, given a string w and a Parikh vector P ,
returns all the abelian runs of w having abelian period P .

3 Previous Work

In [6], the authors presented an algorithm that computes all the abelian runs
of a string w of length n in O(n2) time and space complexity. They consider
that a substring w[i− h. . j + t] is an abelian run if w[i. . j] is a maximal abelian
repetition with period length p and h, t ≥ 0 are the largest integers satisfying
Pw[i−h..i−1] ⊂ Pw[i..i+p−1] and Pw[j+1..j+t] ⊂ Pw[i..i+p−1]. Their algorithm works
as follows. First, it computes all the abelian squares using the algorithm of [3].
For each 0 ≤ i ≤ n− 1, it computes a set Li of integers such that

Li = {j | Pw[i−j..i] = Pw[i+1..i+j+1], 0 ≤ j ≤ min{i+ 1, n− i}}.
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The Li’s are stored in a two-dimensional boolean array L of size ⌊n/2⌋× (n−1):
L[j, i] = 1 if j ∈ Li and L[j, i] = 0 otherwise. An example of array L is given in
Figure 2. All entries in L are initially unmarked. Then, for each 1 ≤ j ≤ ⌊n/2⌋×
all maximal abelian repetitions of period length j are computed in O(n). The
j-th row of L is scanned in increasing order of the column index. When an
unmarked entry L[j, i] = 1 is found then the largest non-negative integer k such
that L[j, i + pj + 1] = 1, for 1 ≤ p ≤ k, is computed. This gives a maximal
abelian repetition with period length j starting at position i− j + 1 and ending
at position i + (k + 1)j. Meanwhile all entries L[j, i + pj + 1], for −1 ≤ p ≤ k,
are marked. Thus all abelian repetitions are computed in O(n2) time. It remains
to compute the length of their heads and tails. This cannot be done naively
otherwise it would lead to a O(n3) time complexity overall. Instead, for each
0 ≤ i ≤ n−1, let Ti be the set of positive integers such that for each j ∈ Ti there
exists a maximal abelian repetition of period j and starting at position i− j+1.
Elements of Ti are processed in increasing order. Let jk denote the k-th smallest
element of Ti. Let hk denote the length of the head of the abelian run computed
from the abelian repetition of period jk. Then hk can be computed from hk−1,
jk−1 and jk as follows. Two cases can arise:

1. If k = 0 or jk−1 + hk−1 ≤ jk, then hk can be computed by comparing the
Parikh vector Pw[i−jk−p..i−jk] for increasing values of P from 0 up to hk +1,
with the Parikh vector Pw[i−jk+1..i].

2. If jk−1 + hk−1 > jk, then
Pw[i−jk−1−hk..i−jk] can be computed from Pw[i−jk−1−hk−1+1..i−jk−1]. Then,
hk is computed by comparing the Parikh vector Pw[i−jk−1−hk−1+1−p..i−jk]

for increasing values of p from 0 up to hk + jk − hk−1 − jk−1 + 1.

This can be done in O(n) time. The lengths of the tails can be computed simi-
larly. Overall, all the runs can be computed in time and space O(n2).

a b a a b a b a a b b b

0 1 2 3 4 5 6 7 8 9 10 11

1 0 0 1 0 0 0 0 1 0 1 1 0

2 0 0 0 0 1 1 0 1 0 0 0 0

3 0 0 1 0 1 1 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. An example of array L for w = abaababaabbb. L4,6 = 1 which means that
Pw[3..6] = Pw[7..10].

This previous method works offline: it needs to know the whole string before
reporting any abelian run. We will now give what we call an online method
meaning that we will be able to report the abelian runs ending at position i− 1



6 G. Fici, T. Lecroq, A. Lefebvre, and É. Prieur-Gaston

of a string w when processing position i. However, this method is restricted to
a given Parikh vector.

4 A Method for Computing Abelian Runs of a Word

with a Given Parikh Vector

4.1 Algorithm

Positions of w are processed in increasing order. Assume that when processing
position i we know all the, at most |P|, abelian substrings ending at position i−1.
At each position i we checked if Pw[i−|P|+1..i] = P then all abelian substrings
ending at position i − 1 can be extended and thus become abelian substrings
ending at position i. Otherwise, if Pw[i−|P|+1..i] 6= P then abelian substrings
ending at positions i−1 are processed in decreasing order of tail length. When an
abelian substring cannot be extended it is considered as an abelian run candidate.
As soon as an abelian substring ending at position i−1 can be extended then all
the others (with smaller tail length) can be extended: they all become abelian
substrings ending at position i. At most one candidate (with the smallest starting
position) can be output at each position.

4.2 Implementation

The algorithm Runs(P , w) given below computes all the abelian runs with
Parikh vector P in the word w. It uses:

– function Find(P , w), which returns the ending position of the first occur-
rence of Parikh vector P in w or |w| + 1 if such an occurrence does not
exist;

– function FindHead(w, i,P), which returns the leftmost position j < i such
that Pw[j..i−1] ⊂ P or i is such a substring does not exist;

– function Min(B) that returns the smallest element of the integer array B.

Positions of w are processed in increasing order (Lines 4–21). We will now
describe the situation when processing position i of w:

– array B stores the starting positions of abelian substrings ending at position
i− 1 for the different |P| tail lengths (B is considered as a circular array);

– t0 is the index in B of the possible abelian substring with a tail of length 0
ending at position i.

All the values of the array B are initially set to |w|. Then, when processing
position i of w, for 0 ≤ k < |P| and k 6= t0, if B[k] = b < |w| then w[b. . i−1] is an
abelian substring with Parikh vector P with tail length ((t0−k+ |P|) mod |P|)−
1. Otherwise, if B[k] = |w| then it means that there is no abelian substring in w
ending at position i− 1 with tail length ((t0 − k + |P|) mod |P|)− 1.

The algorithm Runs(P , w) uses two other functions:
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– function GetTail(tail, t0, p), which returns (t0 − tail + p) mod p which is
the length of the tail for the abelian substring ending at position i − 1 and
starting in B[tail];

– function GetRun(B, tail, t0, e, p), which returns the abelian substring
(B[tail], h, t, e).

If Pw[i−|P|+1..i] = P (Line 6) then all abelian substrings ending at position
i − 1 can be extended (see Fig. 3). Either this occurrence does not extend a
previous occurrence at position i − |P| (Line 7): the starting position has to be
stored in B (Line 8) or this occurrence extends a previous occurrence at position
i− |P| and the starting position is already stored in the array B.

i

|P| |P| |P|

· · ·

Fig. 3. If Pw[i−|P|+1..i] = P then Pw[j..i] ⊂ P for i− |P|+ 1 < j < i.

If Pw[i−|P|+1..i] 6= P (Lines 9-21) then abelian substrings ending at position
i − 1 are processed in decreasing order of tail length. To do that, the circular
array B is processed in increasing order of index starting from t0 (Lines 11-19).

Let tail be the current index in array B. At first, tail is set to t0 (Line 10).
In this case there is no need to check if there is an abelian substring with tail
length 0 ending at position i (since it has been detected in Line 6) and thus
(B[t0], h, |P|− 1, i− 1) is considered as an abelian substring candidate (Line 15)
and array B is updated (Line 16) since (B[t0], h, 0, i) is not an abelian substring.

When tail 6= t0, let t =getTail(tail, t0, |P|). If Pw[i−t+1..i] 6⊂ P and thus
(B[tail], h, t, i− 1) is considered as an abelian substring candidate (Line 15) and
array B is updated (Line 16) since (B[tail], h, t+1, i) is not an abelian substring.
If Pw[i−t+1..i] ⊂ P then, for tail ≤ k ≤ (t0 − 1 + |P|) mod |P|, ∃h′

k, t
′
k such that

(B[k], h′
k, t

′
k, i) is an abelian substring. It comes directly from Prop. 8.

At each iteration of the loop in Lines 11-19 b is either equal to |w| or to
the position of the leftmost abelian run ending at position i − 1. Thus a new
candidate is found if its starting position is smaller than b (Lines 14-15). It comes
directly from Lemma 7.

Example

Let us see the behaviour of the algorithm on Σ = {a, b}, w = abaababaabbb

and P = (2, 2):
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Algorithm 1: GetTail(tail, t0, p)

1 return (t0 − tail + p) mod p

Algorithm 2: GetRun(B, tail, t0, e, p)

1 b← B[tail]
2 if tail = t0 then

3 t← p− 1
4 t← GetTail(tail, t0, p)− 1
5 h← (e− t− b+ 1) mod p

6 return (b, h, t, e)

Algorithm 3: Runs(P , w)

1 j ← Find(P , w)

2 (B, t0)← (|w||P|, 0)
3 B[t0]← FindHead(w, j − |P|+ 1,P)
4 for i← j + 1 to |w| do
5 t0 ← (t0 + 1) mod |P|
6 if i < |w| and Pw[i−|P|+1..i] = P then

7 if B[t0] = |w| then
8 B[t0]← FindHead(w, i− |P|+ 1,P)

9 else

10 (b, tail)← (|w|, t0)
11 repeat

12 if B[tail] 6= |w| then
13 if tail = t0 or i = |w| or Pw[i−GetTail(tail,t0,|P|)+1..i] 6⊂ P then

14 if B[tail] 6 b then

15 (b, h, t, e)← GetRun(B, tail, t0, i− 1, |P|)

16 B[tail]← |w|

17 else break

18 tail← (tail + 1) mod |P|

19 until tail = t0
20 if min(B) > b and e− t− h− b+ 1 > |P| then
21 Output(b, h, t, e)
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j = 4, B = (12, 12, 12, 12), t0 = 0
B[0] = 0, B = (0, 12, 12, 12)
i = 5

t0 = 1
Pw[2..5] 6= P
(b, tail) = (12, 1)
tail = 3, 2, 1, 0

i = 6
t0 = 2
Pw[3..6] = P
B[2] = 0, B = (0, 12, 0, 12)

i = 7
t0 = 3
Pw[4..7] = P
B[3] = 1, B = (0, 12, 0, 1)

i = 8
t0 = 0
Pw[5..8] 6= P
(b, tail) = (12, 0)
(b, h, t, e) = (0, 1, 3, 7)
B[0] = 12, B = (12, 12, 0, 1)
tail = 1
tail = 2

i = 9
t0 = 1
Pw[6..9] = P
B[1] = 3, B = (12, 3, 0, 1)

i = 10
t0 = 2
Pw[7..10] = P
B[2] 6= 12

i = 11
t0 = 3
Pw[8..11] 6= P
(b, tail) = (12, 3)
(b, h, t, e) = (1, 3, 3, 10)
B[3] = 12, B = (12, 3, 0, 12)
tail = 0
tail = 1

i = 12
t0 = 0
i ≥ 12
(b, tail) = (12, 0)
tail = 1
(b, h, t, e) = (3, 3, 2, 11)
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B[1] = 12, B = (12, 12, 0, 12)
tail = 2
(b, h, t, e) = (0, 3, 1, 11)
B[1] = 12, B = (12, 12, 12, 12)
tail = 3
tail = 0
Output((0, 3, 1, 11)

4.3 Correctness and Complexity

Theorem 9. The algorithm Run(P , w) computes all the abelian runs with Pa-
rikh vector P in a string w of length n in time O(n× |P|) and additional space
O(σ + |P|).

Proof. The correctness of the algorithm comes from Corollary 6, Lemma 7 and
Prop. 8. The loop in lines 4-21 iterates at most n times. The loop in lines 11-
19 iterates at most |P| times. The instructions in lines 6, 8 and 13 regarding
the comparison of Parikh vectors can be performed in O(n) time overall, inde-
pendently from the alphabet size, by maintaining the Parikh vector of a sliding
window of length |P| on w and a counter r of the number of differences be-
tween this Parikh vector and P . At each sliding step, from w[i − |P|. . i − 1] to
w[i− |P|+ 1. . i] the counters of the characters w[i− |P|] and w[i] are updated,
compared to their counterpart in P and r is updated accordingly. The additional
space comes from the Parikh vector and from the array B, which has |P| ele-
ments. ⊓⊔

5 Conclusions

We gave an algorithm that, given a word w of length n and a Parikh vector
P , returns all the abelian runs of period P in w in time O(n × |P|) and space
O(σ + |P|). The algorithm works in an online manner. To the best of our
knowledge, this is the first algorithm solving the problem of searching for all the
abelian runs having a given period.

We believe that further combinatorial results on the structure of the abelian
runs in a word could lead to new algorithms.

One of the reviewers of this submission pointed out that our algorithm can
be modified in order to achieve time complexity O(n). Due to the limited time
we had for preparing the final version of this paper, we did not include such
improvement here. We will provide the details in a forthcoming full version of
the paper. By the way, we warmly thank the reviewer for his comments.
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