
ar
X

iv
:1

40
6.

54
80

v2
  [

cs
.D

S]
  2

5 
A

pr
 2

01
6

Average-case Optimal Approximate Circular

String Matching

Carl Barton1, Costas S. Iliopoulos1,2, and Solon P. Pissis1⋆

1 Department of Informatics, King’s College London, The Strand, London, UK
{carl.barton,costas.iliopoulos,solon.pissis}@kcl.ac.uk

2 Department of Mathematics & Statistics, University of Western Australia, 35
Stirling Highway, Perth, Australia

Abstract. Approximate string matching is the problem of finding all
factors of a text t of length n that are at a distance at most k from
a pattern x of length m. Approximate circular string matching is the
problem of finding all factors of t that are at a distance at most k from x
or from any of its rotations. In this article, we present a new algorithm for
approximate circular string matching under the edit distance model with
optimal average-case search time O(n(k + logm)/m). Optimal average-
case search time can also be achieved by the algorithms for multiple
approximate string matching (Fredriksson and Navarro, 2004) using x
and its rotations as the set of multiple patterns. Here we reduce the
preprocessing time and space requirements compared to that approach.

Keywords: algorithms on automata and words, average-case complex-
ity, average-case optimal, approximate string matching

1 Introduction

In order to provide an overview of our results and algorithms, we begin with a
few definitions, generally following [4]. We think of a string x of length n as an
array x[0 . . n− 1], where every x[i], 0 ≤ i < n, is a letter drawn from some fixed
alphabet Σ of size σ = O(1). By a q-gram we refer to any string x ∈ Σq. The
empty string of length 0 is denoted by ε. A string x is a factor of a string y if
there exist two strings u and v, such that y = uxv. Consider the strings x, y, u,
and v, such that y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a
suffix of y. Let x be a non-empty string of length n and y be a string. We say that
there exists an occurrence of x in y, or, more simply, that x occurs in y, when
x is a factor of y. Every occurrence of x can be characterised by a position in y.
Thus we say that x occurs at the starting position i in y when y[i . . i+n−1] = x.
Given a string x of length m and a string y of length n ≥ m, the edit distance,
denoted by δE(x, y), is defined as the minimum total cost of operations required
to transform one string into the other. For simplicity, we only count the number
of edit operations, considering the cost of each to be 1 [15]. The allowed edit
operations are as follows:
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– Insertion: insert a letter in y, not present in x; (ε, b), b 6= ε
– Deletion: delete a letter in y, present in x; (a, ε), a 6= ε
– Substitution: replace a letter in y with a letter in x; (a, b), a 6= b, and a, b 6= ε.

We write x ≡E
k y if the edit distance between x and y is at most k. Equivalently,

if x ≡E
k y, we say that x and y have at most k differences. We refer to the

standard dynamic programming matrix of x and y as the matrix defined by
D[i, 0] = i, 0 ≤ i ≤ m, D[0, j] = j, 0 ≤ j ≤ n

D[i, j] = min







D[i− 1, j − 1] + (1 if x[i − 1] 6= y[j − 1])
D[i− 1, j] + 1
D[i, j − 1] + 1

, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Similarly we refer to the standard dynamic programming algorithm as the algo-
rithm to compute the edit distance between x and y through the above recurrence
in time O(mn). Given a non-negative integer threshold k for the edit distance,
this can be computed in time O(mk) [17]. We say that there exists an occurrence

of x in y with at most k differences, or, more simply, that x occurs in y with at
most k differences, when u ≡E

k x and u is a factor of y.
A circular string of length n can be viewed as a traditional linear string which

has the left- and right-most symbols wrapped around and stuck together in some
way. Under this notion, the same circular string can be seen as n different linear
strings, which would all be considered equivalent. Given a string x of length n,
we denote by xi = x[i . . n − 1]x[0 . . i − 1], 0 < i < n, the i-th rotation of x
and x0 = x. Consider, for instance, the string x = x0 = abababbc; this string
has the following rotations: x1 = bababbca, x2 = ababbcab, x3 = babbcaba,
x4 = abbcabab, x5 = bbcababa, x6 = bcababab, x7 = cabababb.

This type of structure occurs in the DNA of viruses, bacteria, eukaryotic
cells, and archaea. In [9], it was noted that, due to this, algorithms on circular
strings may be important in the analysis of organisms with such structure. For
instance, circular strings have been studied before in the context of sequence
alignment. In [14,5], algorithms for multiple circular sequence alignment were
presented. Here we consider the problem of finding occurrences of a pattern x
of length m with circular structure in a text t of length n with linear structure.
This is the problem of circular string matching.

The problem of exact circular string matching has been considered in [16],
where an O(n)-time algorithm was presented. The approach presented in [16]
consists of preprocessing x by constructing a suffix automaton of the string xx,
by noting that every rotation of x is a factor of xx. Then, by feeding t into
the automaton, the lengths of the longest factors of xx occurring in t can be
found by the links followed in the automaton in time O(n). In [6], an average-
case optimal algorithm for exact circular string matching was presented and it
was also shown that the average-case lower bound for single string matching
of Ω(n logσ m/m) also holds for circular string matching. Very recently, in [3],
the authors presented two fast average-case algorithms based on word-level par-
allelism. The first algorithm requires average-case time O(n logσ m/w), where
w is the number of bits in the computer word. The second one is based on a



Average-Case Optimal Approximate Circular String Matching III

mixture of word-level parallelism and q-grams. The authors showed that with
the addition of q-grams, and by setting q = Θ(logσ m), an average-case optimal
time of O(n logσ m/m) is achieved. Indexing circular patterns [12] based on the
construction of suffix tree—have also been considered.

The aforementioned algorithms for the exact case have the disadvantage that
they cannot be applied in a biological context since single nucleotide polymor-
phisms and errors introduced by wet-lab sequencing platforms might have oc-
curred in the sequences; also it is not clear whether they could easily be adapted
to deal with the approximate case. For the rest of the article, we assume that
each position in the text t is uniformly randomly drawn from Σ, and consider
the following problem.

ApproximateCircularStringMatching

Input: a pattern x of length m, a text t of length n > m, and an integer
threshold k < m
Output: all factors u of t such that u ≡E

k xi, 0 ≤ i < m

Similar to the exact case [6], it can be shown that the average-case lower
bound for single approximate string matching of Ω(n(k + logσ m)/m) [2] also
holds for approximate circular string matching under the edit distance model.
Recently, we have presented average-case O(n)-time algorithms for approximate
circular string matching which are also very efficient in practice [1]. In [10], an
algorithm with O(nk logm

m ) average-case search time was presented. To achieve
average-case optimality, one could use the algorithms for multiple approximate
string matching, presented in [8], for matching the r = m rotations of x with
O(n(k + logσ rm)/m) average-case search time, only if k/m < 1/2 − O(1/

√
σ)

and r = O(min(n1/3/m2, σo(m))). Therefore the focus of this article is on a
more direct algorithm which also improves on the preprocessing time and space
complexity.

Our Contribution. In this article, we present a new average-case opti-
mal algorithm for approximate circular string matching, under the edit distance
model, that reduces the preprocessing time and space requirements compared
to previous algorithms with optimal average-case search time. These savings are
around O(m2) or more in all cases.

2 Algorithm

In this section, we present our algorithm for approximate circular string matching
under the edit distance model. The presented algorithm consists of two distinct
schemes: the searching scheme, which determines if the currently considered text
window potentially has a valid occurrence; in case the window may contain a
valid occurrence, we are required to check the window for valid occurrences of
the pattern or any of its rotations; this is done through the verification scheme.

Intuitively, the algorithm considers a sliding window of length m − k of the
text, and reads q-grams backwards from the end of the window until it is likely
to have found enough differences to skip the entire window. That is, we wish to
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make the probability of a verification being triggered sufficiently unlikely whilst
also ensuring we can shift the window a reasonable amount.

The rest of this section is structured as follows. We first present an efficient
incremental string comparison technique which forms the basis of the verification
scheme. We then present the searching scheme of our algorithm which requires a
preprocessing step. In fact, this preprocessing step is similar to the verification
scheme. Finally, we show how plugging these schemes together results in a new
average-case optimal algorithm for approximate circular string matching.

2.1 Verification scheme

The verification scheme of our algorithm is based on incremental string com-
parison techniques. First we give an introduction to these techniques; and then
explain how we use them in the verification scheme. The incremental string com-
parison problem was introduced in the pioneering work of Landau et al [13]. The
authors considered the following problem: given the edit distance between two
strings A and B, how can the edit distance between A and bB or Bb be efficiently
derived, where b is an additional letter. Given a threshold on the number of dif-
ferences k, they solve this problem and allow prepending and appending of letters
in time O(k) per operation. Later the authors of [11] considered a generalisation
of this problem with the aim of computing all maximal gapped palindromes in
a string. The problem considered is a generalisation of the incremental string
comparison problem considered in [13] as it considers how to efficiently derive
the edit distance when prefixes are deleted and letters are prepended to A or B.
The solution proposed in [11] also has a time complexity of O(k) per operation.
The solution for the generalised incremental string comparison problem forms
the basis of our verification step. The technique lends itself more naturally to
circular string matching due to the increased flexibility it provides. We begin by
recalling some of the main results from [11] required for our algorithm.

The main idea in both [13] and [11] is the efficient computation of the so-called
h-waves. In the standard dynamic programming matrix for two strings x and y,
we say that a cell D[i, j] is on the diagonal d iff j − i = d. For each diagonal, we
may have a lowest cell with value h; if D[i, j] = h and D[i+1, j+1] = h+1 then
D[i, j] is this cell for diagonal j− i. The h-wave, for all 0 ≤ h ≤ k, is the position
of all these cells across all diagonals, that is, a list Hh of length O(k), where
each entry is a pair (i, j) such that D[i, j] = h and D[i+ 1, j + 1] = h+ 1. Note
that the i-th wave can only contain entries on diagonal zero and the i diagonals
either side of it, so for 0 ≤ i ≤ k every wave has size O(k). Both incremental
string comparison techniques show some bounds on the possible values of the
cells on h-waves and how to efficiently compute them. These h-waves define the
entire dynamic programming matrix due to the monotonicity properties of the
matrix. For any diagonal d, if we know the position of the lowest cell on d with
value h and h+ 1, then we also know the value of every cell between these two
cells: it must be h+ 1. So given the h-waves of the matrix, for all 0 ≤ h ≤ k, we
have all the information that is in the standard dynamic programming matrix.
The key result from our perspective is the following.
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Let cat(u′, u) denote the string obtained by concatenating u′ and u, where
u, u′ ∈ Σ+. Let del(α, u) denote the string obtained by deleting the prefix of
length α of u. Let D

′ denote the standard dynamic programming matrix for
strings cat(A′,A) and del(t2,B), where |A′| = t1.

Theorem 1 ([11]). The 0-wave, 1-wave, . . . , and k-wave of matrix D
′ can be

computed in time O((t1 + t2)k).

If a window of the text triggers a verification then we have a window of
length m− k such that there exist some q-grams of the window that occur in x
or its rotations with at most k differences in total. When we verify a window,
we check for occurrences of pattern x starting at every position in the window.
For each position, we may have a factor of length at most m + k representing
an occurrence, meaning we must consider a factor w of the text of length 2m
which we refer to as a block. This ensures we avoid missing any occurrences at
the m− k starting positions as (m− k) + (m+ k) = 2m.

For each possible starting position i, 0 ≤ i < m− k, we compute the 0-wave,
1-wave, . . . , and k-wave for x and w′ = w[i . . 2m − 1], the suffix of w starting
at position i. To check if we have an occurrence, we must check the k-wave Hk.
We iterate through each entry in the k-wave Hk; and if Hk has missing entries or
contains entries on the last row of the matrix, then x occurs in w with at most
k differences.

Similarly we can check for the occurrences of the rotations of x using the
incremental string comparison techniques. We are now ready to outline the ver-
ification scheme, denoted by function VER. Given the pattern x of length m, an
integer threshold k < m, and a block w of length 2m of the text t, function VER

finds all factors u of w such that u ≡E
k xi, 0 ≤ i < m. If any diagonal has no

entry on the k-wave then that diagonal reached the last row of the matrix with
less than k differences; this means x occurs in w with less than k differences.

Function VER(x,m, k, w, 2m)

Compute the edit distance between x and w′ = w[0 . . 2m− 1]
with at most k differences using the standard dynamic
programming algorithm;

Check for any occurrences using D, and if found, report an
occurrence at position 0;

foreach i ∈ {1, m− k − 1} do

foreach j ∈ {1,m} do

Construct rotation xj of x by removing the first letter of
xj−1 and appending it to the end of xj−1;

Compute the edit distance between xj and
w′ = w[i . . 2m− 1] using the incremental string
comparison techniques;

Check for any occurrences using Hk, and if found,
report an occurrence at the current position i being
checked;



VI C. Barton, C. S. Iliopoulos, and S. P. Pissis

Lemma 2. Given the pattern x of length m, an integer threshold k < m, and

string w of length 2m, function VER requires time O(m2k).

Proof. Computing the edit distance between x and w[0 . . 2m− 1] with at most
k differences takes time O(mk) using the standard dynamic programming algo-
rithm. By Theorem 1, computing the edit distance between all the rotations of
the pattern and w[i . . 2m−1] for a single position in w requiresO(mk); and there
are O(m) positions in w. In total, the time is O(mk+m2k), that is O(m2k). ⊓⊔

2.2 Searching scheme

The searching scheme of the presented algorithm requires the preprocessing and
indexing of the pattern x. We first present the preprocessing required and then
present the searching technique itself.

Preprocessing. We build a q-gram index in a similar way as that proposed by
Chang and Marr in [2]. Intuitively, we wish to determine the minimum possible
edit distance between every q-gram and any factor of x or its rotations. Equiv-
alently we find the minimum possible edit distance between every q-gram and
any prefix of a factor of length 2q of x and the suffixes of length 1 to 2q of x
or its rotations. An index like this allows us to lower bound the edit distance
between a window of the text and x or its rotations without computing the edit
distance between them. To build this index, we generate every string of length q
on Σ, and find the minimum edit distance between it and all prefixes of factors
of length 2q of x or its rotations. This information can easily be stored by gen-
erating a numerical representation of the q-gram and storing the minimum edit
distance in an array at this location. If we know the numerical representation,
we can then look up any entry in constant time.

We determine the edit distance using the preprocessing scheme, denoted by
function PRE, which is similar to the verification scheme (function VER).

Given the string x′ = x[0 . .m − 1]x[0 . .m − 2] of length 2m − 1, function
PRE finds the minimum edit distance between every q-gram on Σ, generated in
increasing order, and any factor u of length 2q of x′ and its suffixes of length 1
to 2q.

Lemma 3. Given the string x′ = x[0 . .m− 1]x[0 . .m− 2] of length 2m− 1 on

Σ, σ = |Σ|, and q < m, function PRE requires time O(σqmq) and space O(σq).

Proof. The time required for initialising array M is O(σq). The time required
for computing the edit distance between x′[0 . . 2q − 1] and s is O(q2) using the
standard dynamic programming algorithm. By Theorem 1, computing the edit
distance between all 2q-grams of x′ and s requires time O(mq). There exist
O(σq) possible q-grams on Σ and so, in total, the time complexity is O(σqmq).
Keeping array M in memory requires space O(σq). ⊓⊔
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Function PRE(x′, 2m− 1, q, σ)

M[0 . . σq − 1]← 0;

j ← 0;

foreach s ∈ Σq do

Compute the edit distance between u = x′[0 . . 2q − 1] and s using
the standard dynamic programming algorithm. Set Emin equal to
the minimum edit distance between s and any prefix of u using D;

foreach i ∈ {1, 2m− q − 1} do

u← x′[i . .min {i+ 2q − 1, 2m− 2}];

Compute the edit distance E′ between u and s using the
incremental string comparison techniques. Set E′ equal to the
minimum edit distance between s and any prefix of u using Hq ;

if E′ < Emin then Emin ← E′

M[j]← Emin;

j ← j + 1;

return M;

Searching. In the search phase we wish to read backwards enough q-grams from
a window of size m that the probability we must verify the window is small and
the amount we can shift the window by is sufficiently large. We now recall some
important lemmas from [2] that we will use in the analysis of our algorithm.

Lemma 4 ([2]). The probability that two q-grams on Σ, one being uniformly

random, have a common subsequence of length (1− c)q is at most aσ−dq

q , where

a = (1 + o(1))/(2πc(1− c)) and d = 1− c+ 2c logσ c+ 2(1− c) logσ(1− c). The
probability decreases exponentially for d > 0, which holds if c < 1− e√

σ
.

Lemma 5 ([2]). If s is a q-gram occurring with less than cq differences in a

given string u, |u| ≥ q, s has a common subsequence of length q − cq with some

q-gram of u.

By Lemmas 4 and 5, we know that the probability of a random q-gram occurring
in a string of length m with less than cq differences is no more than maσ−dq/q
as we have m − q + 1 q-grams in the string. For circular string matching this
is not sufficient. To ensure that we have the q-grams of all possible rotations
of pattern x, we instead consider the string x′ = x[0 . .m − 1]x[0 . .m − 2] and
extract the q-grams from x′. We may have up to 2m− q q-grams, but to simplify
the analysis we assume we have 2m and so the probability becomes 2maσ−dq/q.

In the case when we read k/(cq) q-grams, we know that with probability at
most (k/(cq))2maσ−dq/q we have found less than k differences. This does not
permit us to discard the window if all q-grams occur with at most cq differences.
To fix this, we instead read 1 + k/(cq) q-grams. If any q-gram occurs with less
than cq differences, we will need to verify the window; but if they all occur
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with at least cq differences, we must exceed the threshold k and can shift the
window. When shifting the window we have the case that we shift after verifying
the window and the case that the differences exceed k so we do not verify the
window. If we have verified the window, we can shift past the last position we
checked for an occurrence: we can shift by m−k positions. If we have not verified
the window, as we read a fixed number of q-grams, we know the minimum-length
shift we can make is one position past this point. The length of this shift is at least
m−k−(q+k/c) positions. This means we will have at most n

m−k−(q+k/c) = O( n
m )

windows. The previous statement is only true assuming m−q > k+k/c, as then
the denominator is positive. From there we see that we also have the condition
that q + k + k/c can be at most ǫm, where ǫ < 1, so the denominator will be
O(m). This puts a slightly stricter condition on c, that is, c > k

ǫm−q−k .

We can see that, for each window, we verify with probability at most (1 +
k/(cq))2maσ−dq/q, where a = (1+ o(1))/(2πc(1− c)) and d = 1− c+2c logσ c+
2(1− c) logσ(1− c). So the probability that a verification is triggered is

(1 + k/(cq))2maσ−dq

q
.

Because by Lemma 2, verification takes time O(m2k), then per window, the
expected cost is

(1 + k/(cq))2maσ−dqO(m2k)

q
= O(

(q + k)m3kaσ−dq

q2
).

We wish to ensure that the probability of verifying a window is small enough that
the average work done is no more than the work we must do if we skip a window
without verification. When we do not verify a window, we read 1 + k/(cq) q-
grams and shift the window. This means that we read q+k/c = O(q+k) letters.
So a sufficient condition is the following:

(q + k)m3kaσ−dq

q2
= O(q + k).

Or equivalently the below expression, where f is the constant of proportionality:

(q + k)m3kaσ−dq

q2
≤ f(q + k).

By rearranging and setting f = σ we get the condition on the value of q below:

q ≥ 3 logσ m+ logσ k + logσ a− 2 logσ q

d
.

From the condition on q we can see that it is sufficient to pick q = Θ(logσ km),
so asymptotically on m we get the following:

q ≥ 3 logσ m+ logσ k −O(logσ logσ km)

d
.
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Therefore, for sufficiently largem, the below condition is sufficient for optimality,
where d = 1− c+ 2c logσ c+ 2(1− c) logσ(1− c):

q =
3 logσ m+ logσ k

d
.

For this analysis to hold we must be able to read the required number of q-
grams to ensure the probability of verifying a window is small enough to negate
the work of doing it. Note that the above probability is the probability that
at least one of q-grams match with less than cq differences. To ensure we have
enough unread random q-grams in the window for Lemma 5 to hold in the above
analysis the window must be of size m − k ≥ 2q + 2k/c. Now we consider the
case where 2q+2k/c > m− k ≥ 2q+ k/c. If we have just verified a window then
we have enough new random q-grams and our analysis holds. If we have just
shifted then we know that all the q-grams we previously read matched with at
least cq differences and we have between 1 and k/qc q-grams and the probability
that one of these matches with less than cq difference is less than in the analysis
above so it holds.

The condition m− k ≥ 2q+ k/c implies a condition on c, it must be the case
that c ≥ k

m−k−2q . This condition on c is weaker than our previous condition on

c, so to determine the error ratio k
m , we use the stronger condition. Additionally,

from Lemma 4, we know that c < 1− e√
σ
. So we must pick a value for c subject to

k
ǫm−k−q ≤ c < 1− e√

σ
. This inequality implies a limit on the error ratio for which

our algorithm is optimal. Clearly it must be the case that k
ǫm−k−q < 1− e√

σ
for

ǫ < 1. Rearranging the inequality implies the following sufficient condition on
our error ratio:

2k

m
< ǫ− q

m
− ǫe√

σ
+

qe

m
√
σ
+

ke

m
√
σ
.

From here we can factorise and divide everything by 2 to get the following:

k

m
<

ǫ

2
− q

2m
− e

2
√
σ
(ǫ− q

m
− k

m
).

So asymptotically on m we have:

k

m
<

ǫ

2
−O(

1√
σ
).

Note that this technique can work for any ratio which satisfies k
m < 1

2 −O( 1√
σ
).

For any ratio below this, pick a large enough value for ǫ such that asymptotically
on m the algorithm will work in the claimed search time. By choosing a suitable
value for c and q ≥ 3 logσ m+logσ k

d we obtain the following result.

Theorem 6. The problem ApproximateCircularStringMatching can be

solved in optimal average-case search time O(n(k + logσ m)/m).
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3 Comparison with Existing Algorithms

To the best of our knowledge, the only other algorithms to achieve optimal
average-case search time for approximate circular string matching are the algo-
rithms presented in [8] for multiple approximate string matching. In the analysis
of the algorithms in [8] it is assumed that all patterns are random. In [7] the
authors re-analyse their algorithms for the problem of circular string matching
with the same preprocessing and space costs. In this section, we analyse these
results and compare them with our own. We refer to the algorithm presented in
Section 2 as BIP. Due to the constant c in the value of q from Lemma 4, the
exact preprocessing and space costs for these algorithms depend on the chosen
value for c. It is however possible to determine the minimum savings we make
based on the value of q used in all algorithms.

Applying the algorithms in [8] to approximate circular string matching re-
quires a reduction to multiple approximate string matching for matching the m
rotations of x. The first algorithm in [8] has the following time complexity:

O(n(k + logσ rm)/m).

By setting r = m this matches our search time and the result is valid when
k/m < 1/2−O(1/

√
σ), r = O(min(n1/3/m2, σo(m))), and we have O(σq) space

available, where q is subject to the constraint:

q ≥ 4 logσ m+ 2 logσ r

d
.

Again by setting r = m this becomes q ≥ 6 logσ m
d and the preprocessing time

is O(σqm2). We will refer to this algorithm as FN1. The second algorithm, pre-
sented in [8], has the same preprocessing cost and requires space O(σqm). We
will refer to this algorithm as FN2. The important difference between FN1 and
FN2 comes in the condition on q which is slightly lower for FN2:

q ≥ 3 logσ m+ logσ r + logσ(m+ log2 r)

d
.

Again, setting r = m this becomes:

q ≥ 4 logσ m+ logσ(m+ log2 m)

d
.

To simplify the comparison between these approaches, we will ignore the
factor of log2 m, and simply say that the value of q for algorithm FN2 is greater

than or equal to 5 logσ m
d . This is lower than the sufficient requirement, so any

saving we make using this value must be at least as good or better in reality.
First let us consider FN1. The preprocessing requirement of BIP is O(σqmq),

so before any savings made due to the value of q for BIP, we have reduced the
preprocessing cost by a factor of O(mq ). Given the condition on q for BIP, it is

clear that even in the worst case, when k = O(m), BIP will make a saving of
at least 2 logσ m on the value of q. This corresponds to an additional saving of
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O(m2) in preprocessing time bringing the total to O(m
3

q ) and O(m2) in space.
In the case of FN2, we make a saving of at least logσ m on the value of q. This

corresponds to a total saving of O(m
2

q ) in preprocessing time and O(m2) in
space. It should be noted that this is a pessimistic analysis of the savings as we
have assumed k = O(m) and d = 1, although it must hold that d < 1. Note that
the standard dynamic programming algorithm can be used with runtime O(m3)
for verification and O(σqmq2) for preprocessing. The speed-ups mentioned in
the previous section remain significant as we assumed that k = O(m). We still
achieve a preprocessing speed up of at least O(m2) and O(m) against FN1 and
FN2, respectively. Table 1 corresponds to this analysis.

Table 1. Comparison of average-case optimal approximate circular string matching
algorithms

Algorithm Error Ratio (k/m) Space Preprocessing Time Condition on q

FN1
1
2
−O( 1√

σ
) O(σq) O(σqm2) 6 logσ m

d

FN2
1
2
−O( 1√

σ
) O(σqm) O(σqm2) 4 logσ m+logσ(m+log2 m)

d

BIP
1
2
−O( 1√

σ
) O(σq) O(σqmq) 3 logσ m+logσ k

d

4 Final Remarks

In this article, we presented a new average-case optimal algorithm for approxi-
mate circular string matching. To the best of our knowledge, this algorithm is
the first average-case optimal algorithm specifically designed for this problem.
Other average-case optimal algorithms exist but with higher preprocessing and
space requirements than the presented algorithm. Additionally the considered
problem is solved in a more direct fashion, that is, with no reduction to multiple
approximate string matching by taking greater advantage of the similarity of the
rotations of the pattern.
Our immediate target is twofold:

– first, we plan on tackling the problem of multiple approximate circular string
matching. We will try to generalise the approach we have taken here to see
if it leads to an average-case optimal algorithm in this case.

– second, we plan on implementing the presented algorithm. We will then
compare the respective implementation to other average- and worst-case
approaches.
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