LibReplay: Deterministic Replay for Bug
Hunting in Sensor Networks

Olaf Landsiedel, Elad Michael Schiller, Salvatore Tomaselli

Chalmers University of Technology, Sweden
{olafl, elad}@chalmers.se and tiposchi@tiscali.it

Abstract Bug hunting in sensor networks is challenging: Bugs are often
prompted by a particular, complex concatenation of events. Moreover,
dynamic interactions between nodes and with the environment make it
time-consuming to track and reproduce a bug. We introduce LibReplay
to ease bug hunting in sensor networks: it provides (1) lightweight and
flexible logging and (2) deterministic replay. LibReplay logs function calls
to and from the application or another code of interest. It enables de-
terministic replay of execution traces in a controlled environment such
as a full-system simulator. This allows the user to benefit from well-
established debugging tools such as stepping through code, breakpoints,
or watchpoints. We show that the lightweight architecture of LibReplay
provides the benefits of replay debugging at an efficiency that is compa-
rable to traditional logging tools, which commonly do not allow replay
debugging.

Keywords: Cyber Physical Systems, Internet of Things, Wireless Sen-
sor Networks, Debugging, Replay, Tracing, Logging, Simulation

1 Introduction

Bug hunting in sensor networks is challenging: (1) sensor networks are dis-
tributed and deeply embedded into a non-deterministic environment. (2) The
non-determinism of both the wireless network and the physical environment
makes it time-consuming to track and reproduce bugs. (3) Bugs are often prompted
by a particular, complex concatenation of events. Source-level debugging capa-
bilities as common in sequential programming, i.e., local and non-distributed
applications, would significantly ease the debugging process. For example, step-
ping through code, breakpoints, and watchpoints are well-established tools to
debug sequential code. However, the distributed and embedded nature prevents
us from pausing program execution on a node to examine its state.

Large-scale distributed systems on the Internet solve this issue by employ-
ing logging and replay capabilities [BI8[9]. These log all interaction between the
code of interest and the system itself, e.g., function calls to and from a part of
an application that is suspected to malfunction. Next, they replay the execu-
tion of the code of interest accordingly to the logged function calls and their
parameters. As a result, the local replay can be debugged using well-established
debugging tools such as GDB and allows for stepping through code, breakpoints,

2 O. Landsiedel, E. M. Schiller, S. Tomaselli

4% %k .
F-mw(d

N\ %5
é = “via serial or flash

Deployed sensor network

Sorting & Validation
Full System Simulator

1. Log 2. Processing 3. Replay

Figure 1. LibReplay in a nutshell: (1) Distributed logging via serial or flash, (2) sorting
and validation of logs, and (3) replay in a full-system simulator.

and watchpoints. While this technique is well-known in large-scale distributed
systems, we see limited application in the area of sensor networks due to the
resource limitations of sensor nodes.

This paper closes this gap and provides LibReplay, a lightweight and deter-
ministic solutions for distributed logging and source-level replay (see Figure [1).
It allows debugging of sensor network applications and protocols with source-
level debuggers, such as GDB.We achieve this by replaying execution traces in
a full-system simulator, such as Cooja [I0], MspSim [4], Avrora [I6], or QEMU
[1]. This paper makes three contributions:

— Lightweight, Distributed Logging: we introduce a system architecture
for distributed, lightweight logging that is customizable to code regions of
interest. It employs a two-phase logging to reflect resource constraints and
to minimize the side effects of logging on program execution.

— Deterministic Replaying: From the logs we replay all input events to the
code of interest. Using full-system simulators we enable deterministic, high
fidelity replay. Utilizing the debugging capabilities of these platforms, one
can now step through source-code and employ breakpoints and watchpoints.

— Implementation and Performance Evaluation: We demonstrate a work-
ing implementation of LibReplay with an efficiency that is on par with tradi-
tional logging tools, which commonly do not provide replay capabilities. We
evaluate LibReplay’s performance with respect to MCU and memory before
showing that its overhead is similar to today’s logging approaches, which
cannot provide the same functionality.

Next, we discuss the limitations of traditional debugging tools and outline
the differences of LibReplay to the state of the art (Section. We then introduce
LibReplay in detail (Section|3)) and compare the performance of LibReplay with
the state of the art (Section before addressing future directions and concluding

(Section [)).

2 Limitations of the State of the Art

Logging and tracing are two common approaches for hunting bugs in sensor net-
works. Logging tools [2J6ITT] record execution details. Commonly, they store the

LibReplay: Deterministic Replay for Bug Hunting in Sensor Networks 3

log in the flash memory for off-line collection or feed them to the host system via
the serial port. In practice, bug hunting with such logging tools often follows an
iterative approach: (a) adding or refining logging statements, (b) re-executing
the system until the bug is triggered, and (c) analyzing the log and spotting bug
appearances. The developers have to repeat these steps until they understand
the bug causes, try to fix them and then check whether all bugs were removed
by again repeating these steps. Moreover, the non-deterministic and dynamic
nature of the wireless network and interactions with the environment make it
time consuming to reproduce a bug sufficiently often for this repetitive approach.
In contrast, LibReplay logs function calls and their parameters to and from the
code of interest, such as a malfunctioning routing protocol. As a result, LibRe-
play collects sufficient information to replay program execution deterministically
allowing one to employ source-level debuggers for bug hunting. In our experi-
ence, this limits the need for repeated testing, and in most cases a single logging
run is sufficient to fix the bug in replay debugging, because analysis and bug
spotting is mainly carried out off-line using an iterative debugger that replays
the log.

Tracing tools [T2ITATHIT7IR] follow a different approach: They trace the
program execution by logging function calls. For example, a tracer logs each
function and its parameters that a packet takes on its path through the protocol
stack from the application to the radio driver. A key challenge is that tracing
program execution leads to large traces when compared to traditional logging
[13]. Some approaches [I2JI5] address this challenge with additional hardware
on the nodes. For example, Minerva [I2] connects a dedicated debugging-board
to the JTAG adapter of the sensor node. Controlling multiple debugging-boards
over Ethernet, Minerva can examine network-wide state. LibReplay, in contrast,
merely logs function calls and their parameters to and from the code of interest,
limiting its intrusiveness while not requiring additional hardware.

3 LibReplay: Design and System Architecture

We start the discussion of LibReplay by illustrating its basic idea before intro-
ducing LibReplay in detail.

3.1 Basic Idea: Flexible Logging and Deterministic Replay

With LibReplay, we log function calls to and from a user-specified code-region
of interest, such as a malfunctioning routing protocol. In the replay, we feed
the calls back to the code of interest in the same order as they were logged
on the real system (see Figure . Thus, in the replay every event happens in
the same order as on the real system and with the same function parameters.
Using cycle-accurate simulation of the entire system, each event will also take
the same number of cycles as on the real system. Thus, a complete log that
includes all functions to the code of interest generates a complete replay with
all local states equaling to the ones of the real-system. We note that due to

4 O. Landsiedel, E. M. Schiller, S. Tomaselli

Application Application Application
(code of interest) (code of interest) (code of interest)
l I v 4
" . Serial .
Tiny0S TinyOs s [Flash
(a) Unmodified. (b) Logging. (c) Replay.

Figure 2. We log function calls to and from the code of interest, such as a malfunction-
ing routing protocol. For replay, we feed the logs back to the code of interest. Replay
in a full-system simulator, such as Cooja, provides us with well-established debugging
tools such as stepping through code, breakpoints and watchpoints.

the run-to-completion semantics, e.g., tasks in TinyOS, of many OSs for Cyber-
Physical Systems (CPS) and Internet of Things (IoT) we do not have to log the
OS scheduler itself.

3.2 Lightweight and Flexible Logging

The first building block of LibReplay is its lightweight, flexible logging-architecture.
It has three design goals: (1) to reduce the overhead of logging to limit potential
side-effects on program execution, (2) to provide distributed logging of events
across multiple nodes, and (3) to ease integration into user-defined applications
and components.

Deferred logging to limit side-effects on applications: Whenever a function
to or from the code-region of interest is called, LibReplay logs the function, its
parameters, the return value, and a logical timestamp, i.e., an event sequence-
number. To limit run-time overhead, LibReplay employs a two-phase approach
to logging: As a first step, any log data is merely buffered in RAM and the
execution can continue with only minimal delay. As second step, a deferred,
background process — only scheduled if no other process is to be scheduled —
handles the storage itself: it moves the log buffers to flash or the serial port for
storage.

Distributed logging of events across multiple nodes: When testing and debug-
ging distributed systems, we experienced it as essential that we can trace events
and messages across multiple nodes. For example, we often needed to trace how a
single message travels through the network and which state changes it triggered
along its path, such as timeouts and re-transmissions. To trace events across mul-
tiple nodes, LibReplay adds a logical timestamp to each outgoing radio message,
which is send by the code of interest. This allows to create a globally valid order
of the events for replay. Optionally, LibReplay can also re-use sequence numbers
and source addresses that most protocols already provide to identify messages
and their order uniquely. This avoids overhead, as no additional timestamps need
to be added to messages.

Easy to integrate into user-defined applications and components: When de-
signing LibReplay, we put a special focus on its ease and flexibility of use. For

LibReplay: Deterministic Replay for Bug Hunting in Sensor Networks 5

Listing 1.1. Without logging Listing 1.2. With logging
[...] [...]
components new ReceiveLogC() as Log;
App.Receive -> AMReceiverC; App.Receive -> Log;
Log.Receive -> AMReceiverC;
[...] [...]

Table 1. LibReplay logging example: Without (left) and with (right) logging of the
Receive interface. Adding logging to applications requires merely few changes to the
wiring of TinyOS applications. Common logging components, such as the ReceiveLogC
component used in this example to log the Receive interface, are provided by LibRe-

play.

example, LibReplay can be easily integrated into own applications and tailored
by adding own logging interfaces. LibReplay places a logging component between
each interface of the code of interest and the OS, see Table[I] LibReplay provides
logging components for common interfaces of TinyOS.

3.3 Processing the Logs: Globally-Ordered Replay

Once events are collected from the individual nodes, we utilize the logical times-
tamps to construct a globally-ordered replay. Events such as radio events have
(or can have) a counterpart on the other nodes, such as a transmit and receive
event. This guides LibReplay to obtain a global order of events [7].

3.4 Deterministic Replay

For replay, we replace each logging component with its counterpart replay-
component. Similar to the logging components, we have one replay component
per interface and LibReplay provides these for the common interfaces in TinyOS.
Thus, we replay the code of interest and feed it the events we previously logged.

Compared to the logging components, the data flow is now reversed and
replay components feed events to the application (see Figure . Bug hunting
can now utilize the advanced debugging capabilities of modern system simulators
such as monitoring of individual variables and stepping through code fragments.
Note that when performing such tasks on the deployed systems directly, they
cause high overhead and significant side effects. Additionally, we use the recorded
output to detect deviations between the log and the replay, which can indicate
subtle system bugs such as buffer overflows, etc. Note that the main replay-target
of LibReplay are full-system simulators, as these can replay multiple nodes,
and we can analyze their interaction. However, LibReplay can also replay the
execution on a real node and we can connect and debug via JTAG, for example.

3.5 Discussion: Generic Design

In TinyOS, modules are the natural integration points for logging. They en-
capsulate local state, and state changes are only triggered via their interfaces.

6 O. Landsiedel, E. M. Schiller, S. Tomaselli

— 4.0 4.5

[-y Collection|

E 35 1 L 4.0 (C

> 3.0 {1 =35¢ 1 Dissem

c © 3,04 i PG

g 25 st 1 &25 %X ROM ination

H | »—x Storage|| QO 2.5t 1 Base-

'>" 2.0 + + Logging|| 2 2.0} + + RAM[Station EEE ROM App. 1

o 15¢ 1 2 15} — Packet- =0 ROM Log

§ 1.0 S 100 PEE LA Parrot| EEE RAM App.]

S 0.5¢ Cpe-+=" Jos|, -+ 1 RadioCount: [RAM Log ||

—oolet=+-7"7 . . ool | Toleds .~ . . —————
0 10 20 30 40 50 60 70 80 0 100 200 300 400 500 600 0 5 10 1520 25 30 35 40 45

Size of Logged Data [Bytes] LibReplay Buffer Size [Bytes] Application Size [kB]

(a) MCU load when a log- (b) The RAM footprint of (C) The overall memory footprint of
ging a function call: Logging LibReplay mainly depends on LibReplay is small when compared
is completed within 1ms. The the size of the logging buffers. to the application itself (default set-
low-priority background task ROM remains constant inde- ting, 300 bytes buffer).

handles the heavy lifting. pendent of buffer size.

Figure 3. MCU and memory overhead of LibReplay.

Nonetheless, the design of LibReplay is generic and is not bound to TinyOS. For
example, instead of interfaces we can log traditional function calls to and from
a block of code. This, for example, matches the design of other common OS in
CPS and IoT such as Contiki [3] or FreeRTOS.

4 Evaluation

After introducing LibReplay and its architecture, we evaluate its performance.
We begin with a set of micro benchmarks to determine MCU and memory ef-
ficiency. Next, we compare LibReplay to the state of art and show that its
overhead is similar to today’s approaches to logging while these commonly do
not log sufficient information for providing replay capabilities. We implemented
LibReplay in TinyOS 2.1.2 and evaluate using TelosB nodes.

4.1 MCU and Memory Efficiency of LibReplay

In LibReplay, logging consists of two steps: the fast logging itself to an in-memory
buffer and a second low-priority background process that handles the heavy lift-
ing to external storage. As a result, the logging itself has only minimal impact
on the program execution (see Figure . The RAM footprint of LibReplay
strongly depends on the buffer size chosen (see Figure . ROM is stable in-
dependent of the buffer size chosen. For the following, we use the default value
of 300 bytes for the buffer. Our experience shows that this is sufficient for most
application scenarios, and it is similar to the default setting in the state of the
art. Nonetheless, when compared to the overall memory footprint of the appli-
cation, the footprint of LibReplay stays small (see Figure , leaving sufficient
space for complex applications.

4.2 LibReplay and Traditional Approaches to Logging

We compare the efficiency of LibReplay to traditional logging approaches: printf,
TinyLTS [I1], and the customized logging layer of the Collection Tree Protocol

LibReplay: Deterministic Replay for Bug Hunting in Sensor Networks 7

Unmodified I ROM|| | Forw._
B RAM = E%rw.
LibRepla . Leaf ||
Leaf
CTP custom /3 g6
TinyLT: |
Printf| 1
0 10 20 30 40 50 0.0 05 1.0 1.5 2.0 25 3.0 35

Application Size [kB] MCU Load [%]
(a) The memory footprint of LibReplay (b) Average MCU load in a CTP network
is similar to traditional logging systems. of 25 nodes. We distinguish leaf nodes and
The footprint of TinyLTS is taken from forwarders. For LibReplay we also disin-
its publication [I1]], as the source code is guish between logging and the background
not available to us. (BG) process.

Figure 4. The memory footprint of LibReplay and its MCU load are similar to tradi-
tional logging approaches.The benchmark application is CTP routing (TestNetwork),
we use the default buffer size of all loggers.

(CTP) [6]. Our results show that both the memory footprint and the MCU
load of logging with LibReplay is comparable to these traditional approaches to
logging (see Figure@. We note that these, in contrast to LibReplay, commonly
do not log sufficient information to enable replay debugging.

5 Conclusion

We introduced LibReplay, a lightweight architecture for flexible logging and
deterministic replay in sensor networks. LibReplay enables (1) event logging
with only a small intrusion of the system, and (2) deterministic event replay
in controlled environments such as system simulators. As a result, we can ex-
ploit the debugging capabilities of modern system simulators. Overall, LibRe-
play simplifies bug hunting in deployed sensor networks and provides a de-
bugging experience similar to debugging (local and non-distributed) sequen-
tial programs. We discuss the architecture of LibReplay and our performance
evaluations show that the efficiency of LibReplay is similar to the state of the
art, which commonly does not log sufficient information to provide replay ca-
pabilities. We have made the source code of LibReplay publicly available at
https://github.com/olafland/LibReplay.

Acknowledgments

This work was partially supported by the EC, through project FP7-STREP-
288195, KARYON (Kernel-based ARchitecture for safetY-critical cONtrol), and
by the Swedish Energy Agency under the program Energy, IT and Design.

https://github.com/olafland/LibReplay

8

O. Landsiedel, E. M. Schiller, S. Tomaselli

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: ATEC: Proc. of
the Annual Conf. on USENIX Annual Technical Conference (2005)

Dong, W., et al.: Dynamic Logging with Dylog for Networked Embedded Sys-
tems. In: SECON: Proc. of the IEEE Int. Conf. on Sensing, Communication, and
Networking (2014)

Dunkels, A., Gronvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Oper-
ating System for Tiny Networked Sensors. In: LCN: Proc. of the IEEE Conf. on
Local Computer Networks (2004)

Eriksson, J., et al.: Towards Interoperability Testing for Wireless Sensor Networks
with COOJA/MSPSim. In: EWSN: Proc. of the European Conf. on Wireless Sensor
Networks (2009)

Geels, D., et al.: Replay Debugging for Distributed Applications. In: ATEC:
Proc. of the Annual Conf. on USENIX Annual Technical Conference (2006)
Gnawali, O., et al.: Collection Tree Protocol. In: SenSys: Proc. of the ACM Conf. on
Embedded Networked Sensor Systems (2009)

Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7) (1978)

Narayanasamy, S., et al.: BugNet: Continuously Recording Program Execution for
Deterministic Replay Debugging. In: ISCA: Proc. of the Annual Int. Symposium
on Computer Architecture (2005)

Netzer, R.H.B., Miller, B.P.: Optimal Tracing and Replay for Debugging Message-
passing Parallel Programs. In: Supercomputing: Proc. of the ACM/IEEE Conf. on
Supercomputing (1992)

Osterlind, F., et al.: Cross-Level Sensor Network Simulation with COOJA. In:
LCN: Proc. of the IEEE Conf. on Local Computer Networks (2006)

Sauter, R., et al.: TinyLTS: Efficient Network-Wide Logging and Tracing System
for TinyOS. In: INFOCOM: Proc. of the IEEE Int. Conf. on Computer Commu-
nications (2011)

Sommer, P., Kusy, B.: Minerva: Distributed Tracing and Debugging in Wireless
Sensor Networks. In: SenSys: Proc. of the ACM Conf. on Embedded Networked
Sensor Systems (2013)

Sundaram, V., Eugster, P., Zhang, X.: Prius: Generic Hybrid Trace Compression
for Wireless Sensor Networks. In: SenSys: Proc. of the ACM Conf. on Embedded
Networked Sensor Systems (2012)

Sundaram, V., et al.: Diagnostic Tracing for Wireless Sensor Networks. ACM
Trans. Sen. Netw. 9(4) (2013)

Tancreti, M., et al.: Aveksha: A Hardware-software Approach for Non-intrusive
Tracing and Profiling of Wireless Embedded Systems. In: SenSys: Proc. of the
ACM Conf. on Embedded Networked Sensor Systems (2011)

Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: Scalable Sensor Network Simulation
with Precise Timing. In: IPSN: Proc. of the ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks (2005)

Wan, L., Cao, Q.: Towards Instruction Level Record and Replay of Sensor Network
Applications. In: MASCOTS: Proc. of the IEEE Int. Symp. on Modeling, Analysis
Simulation of Computer and Telecommunication Systems (2013)

Wang, M.o.: Dependence-based Multi-level Tracing and Replay for Wireless Sensor
Networks Debugging. In: LCTES: Proc. of the SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems (2011)

	LibReplay: Deterministic Replay for Bug Hunting in Sensor Networks

