Skip to main content

Fusion of Granular Computing and \(k\)–NN Classifiers for Medical Data Support System

  • Conference paper
  • First Online:
Book cover Intelligent Information and Database Systems (ACIIDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9012))

Included in the following conference series:

Abstract

The medical data and its classification should be particularly treated. The data can not be modified or altered, because this could lead to overestimation or false decisions. Some classifiers, using random factors, can generate false, higher overall accuracy of diagnosis. Medical support systems should be trustworthy and reliable even at the cost of system complexity. In this paper fusion of two classifiers has been proposed, where k–NN classifier and classifier based on a justified granulation paradigm were employed. Additionally, proposed solution allows to visualize obtained classification results. Accuracy of the proposed solution has been compared with various classifiers. All methods presented in this work were tested on real medical data coming from three medical datasets. Finally, some remarks for further research have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, K.R., Koprowski, R., Skufca, J.D.: Machine learning, medical diagnosis, and biomedical engineering research - commentary. BioMedical Engineering OnLine 13, 94 (2014)

    Article  Google Scholar 

  2. Song, M., Wang, Y.: Human centricity and information granularity in the agenda of theories and applications of soft computing. Applied Soft Computing (2014). doi:10.1016/j.asoc.2014.04.040

  3. Aha, D., Kibler, D., Albert, M.: Instance-Based Learning Algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  4. Zhang, Y., Zhang, L., Xu, C.: The Property of Different Granule and Granular Methods Based on Quotient Space. Information Granularity, Big Data, and Computational Intelligence Studies in Big Data 8, 171–190 (2015)

    Article  Google Scholar 

  5. Huang, B., Zhuang, Y., Li, H.: Information granulation and uncertainty measures in interval-valued intuitionist fuzzy information systems. European Journal of Operational Research 231, 162–170 (2013)

    Article  MathSciNet  Google Scholar 

  6. Kudlacik, P., Porwik, P.: A New Approach To Signature Recognition Using The Fuzzy Method. Pattern Analysis And Applications 17(3), 451–463 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cao, Y., Liu, S., Zhang, L., Qin, J., Wang, J., Tang, K.: Prediction of protein structural class with Rough Sets. BMC Bioinformatics 7, 20 (2006)

    Article  Google Scholar 

  8. Pedrycz, W.: Interpretation of clusters in the framework of shadowed sets. Pattern Recognition Letters 26(15), 2439–2449 (2005)

    Article  Google Scholar 

  9. Hirota, K.: Concepts of probabilistic sets. Fuzzy Sets and Systems 5(1), 31–46 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mago, V., Morden, H., Fritz, C., Tiankuang, W., Namazi, S., Geranmayeh, P., Chattopadhyay, R., Dabbaghian, V.: Analyzing the impact of social factors on homelessness: a Fuzzy Cognitive Map approach. BMC Medical Informatics and Decision Making 13, 94 (2013)

    Article  Google Scholar 

  11. Emam, K., Dankar, F., Neisa, A., Jonker, E.: Evaluating the risk of patient re-identification from adverse drug event reports. BMC Medical Informatics and Decision Making 13, 114 (2013)

    Article  Google Scholar 

  12. Bernas, M., Placzek, B., Porwik, P., Pamula, T.: Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. IET Intelligent Transport Systems. doi:10.1049/iet-its.2013.0164

  13. Berthold, M., Diamond, J.: Constructive training of probabilistic neural networks. Neurocomputing 19(1–3), 167–183 (1998)

    Article  Google Scholar 

  14. Berthold, M.: Mixed fuzzy rule formation. International Journal of Approximate Reasoning 32(2–3), 67–84 (2003)

    Article  MATH  Google Scholar 

  15. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  16. John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Besnard, P., Hanks, S. (eds.) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  17. Pantazi, S.V., Arocha, J.F., Moehr, J.R.: Case-based medical informatics. BMC Medical Informatics and Decision Making 4, 19 (2004)

    Article  Google Scholar 

  18. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. John Wiley, Hoboken (2007)

    Book  Google Scholar 

  19. Aha, D., Kibler, D.: Instance-based prediction of heart-disease presence with the Cleveland database. University of California (1988)

    Google Scholar 

  20. Jossinet, J.: Variability of impedivity in normal and pathological breast tissue. Med. & Biol. Eng. & Comput 34, 346–350 (1996)

    Article  Google Scholar 

  21. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  22. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update; SIGKDD Explorations, 11(1) (2009)

    Google Scholar 

  23. Ramana, B.V., Prasad Babu, M., Venkateswarlu, N.: A Critical Study of Selected Classification Algorithms for Liver Disease Diagnosis. International Journal of Database Management Systems (IJDMS) 3(2), 101–114 (2011)

    Article  Google Scholar 

  24. Porwik, P., Doroz, R., Orczyk, T.: The k-NN classifier and self-adaptive Hotelling data reduction technique in handwritten signatures recognition, Pattern Analysis and Applications. doi:10.1007/s10044-014-0419-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Bernas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bernas, M., Orczyk, T., Porwik, P. (2015). Fusion of Granular Computing and \(k\)–NN Classifiers for Medical Data Support System. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9012. Springer, Cham. https://doi.org/10.1007/978-3-319-15705-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15705-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15704-7

  • Online ISBN: 978-3-319-15705-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics