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Preface

EMO is a biennial international conference series devoted to the theory and practice of
evolutionary multi-criterion optimization.

The first EMO took place in 2001 in Zürich (Switzerland), with later conferences
taking place in Faro (Portugal) in 2003, Guanajuato (Mexico) in 2005, Matsushima-
Sendai (Japan) in 2007, Nantes (France) in 2009, Ouro Preto (Brazil) in 2011, and
Sheffield (UK) in 2013. The proceedings of this series of conferences have been pub-
lished as a volume in Lecture Notes in Computer Science (LNCS), respectively, in
volumes 1993, 2632, 3410, 4403, 5467, 6576, and 7811.

The 8th International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2015) took place in Guimarães, Portugal, from March 29 to April 1, 2015. The
event was organized by the University of Minho. Following the success of the two pre-
vious EMO conferences, a special track was offered aiming to foster further cooperation
between the EMO and the multiple criteria decision making (MCDM). Also, a special
track on real-world applications (RWA) was endorsed.

EMO 2015 received 90 full-length papers, which were submitted to a rigorous
single-blind peer-review process, with a minimum of three referees per paper. Follow-
ing this process, a total of 68 papers were accepted for presentation and publication in
this volume, from which 40 were chosen for oral and 24 for poster presentation. The
selected papers were distributed through the different tracks as follows: 46 main track,
6 MCDM track, and 16 RWA track.

The conference benefitted from the presentations of plenary speakers on research
subjects fundamental to the EMO field: Thomas Stüetzle, from the IRIDIA laboratory
of Université libre de Bruxelles (ULB), Belgium; Murat Köksalan, from the Industrial
Engineering Department of Middle East Technical University, Ankara, Turkey; Luís
Santos, from the University of São Paulo and Embraer, Brazil; Carlos Fonseca, from
the University of Coimbra, Portugal.

From the beginning, this conference provided significant advances in relevant sub-
jects of evolutionary multi-criteria optimization. This event aimed to continue these
type of developments, being the papers presented focused on: theoretical aspects, algo-
rithms development, many-objectives optimization, robustness and optimization under
uncertainty, performance indicators, multiple criteria decision making, and real-world
applications.

Finally, we would express our gratitude to the plenary speakers for accepting our in-
vitation, to all the authors who submitted their work, to the members of the International
Program Committee for their hard work, to the members of the Organizing Committee,
particularly Lino Costa, and to the Track Chairs Kaisa Miettinen, Salvatore Greco, and
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Robin Purshouse. We would like to acknowledge the support of the School of Engineer-
ing of the University of Minho. We would also like to thank Alfred Hofmann and Anna
Kramer at Springer for their support in publishing these proceedings.

March 2015 António Gaspar-Cunha
Carlos Henggeler Antunes

Carlos Coello Coello
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Interactive Approaches in Multiple Criteria Decision
Making and Evolutionary Multi-objective Optimization

Murat Köksalan

Industrial Engineering, Middle East Technical University
06800 Ankara, Turkey

koksalan@metu.edu.tr

Abstract. The developments related to Multiple Criteria Decision Making
(MCDM) go back a long time. It has been over 50 years since MCDM became an
active research area. There have been major developments during this time both
in theory and applications.

Evolutionary Multi-objective Optimization (EMO) is a relatively new field
that has enjoyed a fast growth. EMO, although heuristic in nature, can success-
fully handle many complex problems. EMO has started independently from
MCDM and there was very little interaction between the researchers in early
developments of EMO. Earlier approaches mostly addressed two objectives and
attempted to generate the whole PO set. Preference-based approaches that attempt
to converge preferred regions are more recent. Efforts to combine forces from the
two areas are also more recent.

Although approaches have been developed to characterize the whole Pareto
Optimal (PO) frontier/set in both MCDM and EMO, this task is neither useful
nor feasible for many complex practical problems. Many of the PO solutions may
be less attractive than many dominated solutions for the decision maker (DM). In
complex problems from practice, the available computational budget would be
more wisely spent if the search is concentrated in the regions of interest to the
DM. Therefore, obtaining preference information from the DM and using the
obtained information to converge the preferred solutions is important. Incorpo-
rating preference information in the solution process has been well-developed in
MCDM and is being addressed in EMO in recent years.

In this talk, I will briefly review the historical developments in MCDM. Then
I will concentrate on preference-based approaches in general and interactive ap-
proaches in particular. I will cover some interactive approaches developed for
different types of MCDM problems. I will also cover some of the interactive ap-
proaches developed in the EMO field. Multi-objective combinatorial optimization
(MOCO) problems are computationally complex and there is a growing interest
in this field. I will briefly cover some preference-based approaches in MOCO and
emphasize the potential of EMO to address these problems.



Towards Automatically Configured Multi-objective
Optimizers

Thomas Stützle

IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
stuetzle@ulb.ac.be

Abstract. The design of algorithms for computationally hard problems is a time-
consuming and difficult task. This is in large part due to the large number of
degrees of freedom in defining and selecting algorithm components and settings
of numerical parameters but also due to a number of aggravating circumstances
such as the NP-hardness of most of the problems to be solved and the difficulty of
algorithm analysis due to stochasticity and heuristic biases. Even when tackling
specific problems or problem classes by off-the-shelf optimizers such as high per-
forming integer programming solvers, their performance can often be improved
substantially by using appropriate settings of the parameters that influence search
behavior.

While traditionally algorithm design and the choice of specific parameter set-
tings has usually been done manually, over the recent years various automatic
algorithm configuration methods have been developed to effectively search large
parameter spaces and to support algorithm designers as well as practitioners.
These automatic algorithm configuration methods have shown to be able to iden-
tify new algorithm designs and performance improving parameter settings in a
number of applications and proved in this way to be instrumental for developing
high-performance algorithms.

In this talk, we will first introduce the scope and potential impact automatic
algorithm configuration methods have and give an overview of the main exist-
ing techniques. We will then illustrate the successful application of automatic
algorithm configuration methods by a number of case studies where they have
been crucial to obtain improved algorithm designs and reach or surpass state-
of-the-art performance. In particular, we show how these methods can be ap-
plied to automatically configure algorithms for multi-objective optimization and
we demonstrate the performance gains that can be achieved for various types of
multi-objective optimizers ranging from the two-phase and Pareto local search
framework, over multi-objective ant colony optimization algorithms to multi-
objective evolutionary algorithms. Next, we show how the same methodology
that appeared to be successful for configuring multi-objective optimizers can be
used to improve the anytime behavior of algorithms. Finally, we argue that au-
tomatic algorithm configuration will transform the way optimization algorithms
are developed in the future and give an outlook on future research challenges.



A Review of Evolutionary Multiobjective Optimization
Applications in Aerospace Engineering

Luis Santos

Universidada de São Paulo, São Paulo, Brazil
lccs13@yahoo.com

Abstract. Evolutionary Multiobjective Optimization (EMO) has been applied to
several relevant problems in Aerospace Engineering for several years. To estabil-
ish a basis of comparison a 10-year span of publications of the aerospace field is
analyzed. This basis of publications is comprised by the publications of the pro-
fessional societies AIAA, ICAS, SAE and their related journals. From the papers
selected several aspects will be compared such as:

– The choice of the evolutionary, or bio-inspired methods, such as genetic al-
gorithms or particle swarm.

– The number of objective functions and their type (continuous or discrete)
– The number of design variables and their type (continuous or discrete)
– The number of constraints, the type of constraints, and how the constraints

are implemented.
– Convergence criteria and computational cost
– The use of surrogate methods
– and any other relevant aspects regarding applications.
The analysis of these parameters will provide an idea of current level of use

and application of EMO methods in Aerospace, providing the EMO research
community with a reference to the current industrial practice in the field. The
analysis of the data presented aims to encourage potentially novel applications
incorporating the advances of the latest EMO research. That may serve as a guide
of cooperation between researchers of both fields.



Performance Evaluation of Multiobjective Optimization
Algorithms: Quality Indicators and the Attainment

Function

Carlos M. Fonseca

CISUC, Department of Informatics Engineering, University of Coimbra
Pólo II, 3030-290 Coimbra, Portugal

cmfonsec@dei.uc.pt

Abstract. The development of improved optimization algorithms and their adop-
tion by end users are intrinsically dependent on the ability to evaluate how well
they perform on the problem classes of interest. In the absence of theoretical
guarantees, performance must be evaluated experimentally. Beyond the selection
of suitable, representative problem instances, which is a crucial step in the de-
sign of such experiments, analysis of the results must take both the experimental
conditions and the nature of the data collected into account.

A posteriori approaches to multiobjective optimization typically lead to dis-
crete approximations of the true Pareto-optimal front of the given problem in
the form of sets of mutually non-dominated points in objective space. When the
algorithm is stochastic, such non-dominated point sets are random, and vary ac-
cording to some probability distribution.

In the literature, two main approaches have been proposed to deal with non-
dominated point set distributions: quality indicators and the attainment function.
Quality indicators map non-dominated point sets to real values, and make subse-
quent data analysis simpler by side-stepping the set nature of the data. In contrast,
the attainment-function approach addresses the non-dominated point set distribu-
tion directly. Distributional aspects such as location, variability, and dependence,
are captured by the moments of the set distribution, which can be estimated from
the raw non-dominated point set data.

In this presentation, quality indicators and the attainment function are
reviewed as tools for the performance evaluation of stochastic multiobjective op-
timization algorithms. Complexity issues concerning the computation, visualiza-
tion, and size of the moment estimates, as the number of objectives, number of
runs, and size of the Pareto-front approximations grow are highlighted. Recent re-
sults relating the statistical distributions of some unary quality indicators to the at-
tainment function are presented, establishing a link between the two approaches.
A discussion of opportunities for further work concludes the presentation.
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and João Antônio de Vasconcelos

A Model to Select a Portfolio of Multiple Spare Parts for a Public Bus
Transport Service Using NSGA II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

Rodrigo José Pires Ferreira, Eduarda Asfora Frej,
and Roberto Klecius Mendonça Fernandes

A Multi-objective Optimization Approach Associated to Climate Change
Analysis to Improve Systematic Conservation Planning. . . . . . . . . . . . . . . . 458

Shana Schlottfeldt, Jon Timmis, Maria Emilia Walter, André Carvalho,
Lorena Simon, Rafael Loyola, and José Alexandre Diniz-Filho

Marginalization in Mexico: An Application of the ELECTRE III–MOEA
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Jesús Jaime Solano Noriega, Juan Carlos Leyva López,
and Diego Alonso Gastélum Chavira

Contents – Part II XXIII



Integrating Hierarchical Clustering and Pareto-Efficiency to Preventive
Controls Selection in Voltage Stability Assessment. . . . . . . . . . . . . . . . . . . 487

Moussa R. Mansour, Alexandre C.B. Delbem, Luis F.C. Alberto,
and Rodrigo A. Ramos

Multi-objective Evolutionary Algorithm with Discrete Differential Mutation
Operator for Service Restoration in Large-Scale Distribution Systems. . . . . . 498

Danilo Sipoli Sanches, Telma Worle de Lima,
João Bosco A. London Junior, Alexandre Cláudio Botazzo Delbem,
Ricardo S. Prado, and Frederico G. Guimarães

Combining Data Mining and Evolutionary Computation for Multi-Criteria
Optimization of Earthworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Manuel Parente, Paulo Cortez, and António Gomes Correia

Exploration of Two-Objective Scenarios on Supervised Evolutionary
Feature Selection: A Survey and a Case Study (Application to Music
Categorisation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Igor Vatolkin

A Multi-objective Approach for Building Hyperspectral Remote Sensed
Image Classifier Combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

S.L.J.L. Tinoco, D. Menotti, J.A. dos Santos, and G.J.P. Moreira

Multi-objective Optimization of Barrier Coverage with Wireless Sensors . . . 557
Xiao Zhang, Yu Zhou, Qingfu Zhang, Victor C.S. Lee, and Minming Li

Comparison of Single and Multi-objective Evolutionary Algorithms for
Robust Link-State Routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Vitor Pereira, Pedro Sousa, Paulo Cortez, Miguel Rio, and Miguel Rocha

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

XXIV Contents – Part II


	Preface
	Organization
	Plenary Talks
	Interactive Approaches in Multiple Criteria Decision Making and Evolutionary Multi-objective Optimization
	Towards Automatically ConfiguredMulti-objective Optimizers
	A Review of Evolutionary Multiobjective Optimization Applications in Aerospace Engineering
	Performance Evaluation of Multiobjective Optimization Algorithms: Quality Indicators and the AttainmentFunction
	Contents – Part I
	Contents – Part II



