
Sequential Symbolic Regression with Genetic
Programming

Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

Abstract This chapter describes the Sequential Symbolic Regression (SSR) method,

a new strategy for function approximation in symbolic regression. The SSR method

is inspired by the sequential covering strategy from machine learning, but instead

of sequentially reducing the size of the problem being solved, it sequentially trans-

forms the original problem into potentially simpler problems. This transformation

is performed according to the semantic distances between the desired and obtained

outputs and a geometric semantic operator. The rationale behind SSR is that, af-

ter generating a suboptimal function f via symbolic regression, the output errors

can be approximated by another function in a subsequent iteration. The method was

tested in eight polynomial functions, and compared with canonical genetic program-

ming (GP) and geometric semantic genetic programming (SGP). Results showed

that SSR significantly outperforms SGP and presents no statistical difference to GP.

More importantly, they show the potential of the proposed strategy: an effective way

of applying geometric semantic operators to combine different (partial) solutions,

avoiding the exponential growth problem arising from the use of these operators.

Key words: symbolic regression, semantic genetic programming, geometric se-

mantic crossover, problem transformation

Luiz Otávio V. B. Oliveira (B)

DCC, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

e-mail: luizvbo@dcc.ufmg.br

Fernando E. B. Otero

School of Computing, University of Kent, Chatham Maritime, UK

e-mail: F.E.B.Otero@kent.ac.uk

Gisele L. Pappa

DCC, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

e-mail: glpappa@dcc.ufmg.br

Julio Albinati

DCC, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

e-mail: jalbinati@dcc.ufmg.br

1

2 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

1 Introduction

Many researchers have been interested in exploring the regularities and modulari-

ties of the search space in order to improve the performance of Genetic Program-

ming (GP) (Koza, 1992a, 1994) when dealing with complex problems. A popular

approach is to allow GP to define modules, by either evolving specific code to be

used as a module or identifying potentially useful code in existing individuals, in

the hope that a module will capture regularities in the search space and ultimately

decompose the original problem into small (more tractable) subproblems. While

previous approaches have shown some degree of success, they rely on the idea that

useful modules will emerge during the GP search and they are very much focused

on the structure (syntax) of the individuals. There are potential drawbacks associ-

ated with these assumptions: there is no guarantee that modules are solving different

parts of the problem, the quality of modules is determined indirectly by evaluating

the individuals that use the modules and there is still a pressure on the GP to find

the complete solution to the problem at once—i.e., both modules and the code that

uses the modules are evolved at the same time.

Traditionally, GP search operators perform modifications to individuals’ repre-

sentation (syntax), with the aim that these modification will lead to changes on their

behaviour (semantics). In other words, traditional GP search operators are blind

operators regarding the semantics of an individual. In the same sense, syntactical

approaches for modularisation are also blind regarding the definition of modules,

since there is no guarantee that their behaviours are different—i.e., that they are

solving different parts of the problem. Moraglio et al (2012) recently proposed geo-

metric semantic search operators in the context of the Geometric Semantic Genetic

Programming (GSGP), which can be used to search directly the semantic space of

the problem. An interesting characteristic of GSGP is that the fitness landscape seen

by the search operators is unimodal for problems consisting in finding the correct

mapping for input-output pairs—the fitness is the distance of the output vector of

a solution to the optimum. Therefore, these operators present a new opportunity to

explore the modularity of the GP search.

The problem-solving procedure employed by GP algorithms can be seen as a su-

pervised learning procedure: given {(c1,o(c1)), . . . ,(cn,o(cn))} input-output pairs

representing the training cases C, where each pair (ci, o(ci)) denotes an input value

and its correspondent output value, respectively; the problem can be defined as find-

ing a function f : C→ O that maps each case ci in C to its correspondent output

o(ci) in O. Many supervised learning algorithms employ a strategy to decompose

the original into subproblems, find solutions to these subproblems and use them to

generate the solution for the original problem. For example, top-down decision tree

induction employ a divide-and-conquer strategy, where at each decision (internal)

node the training cases are divided based on a test outcome. Each subset of the train-

ing cases, representing a reduced problem, is push-down the tree and the procedure

is repeated until a leaf node is generated. A similar strategy is used by many rule

induction algorithms, where a sequential covering strategy is used to transform the

problem of finding a list of classification rules into a sequence of smaller problems

Sequential Symbolic Regression with Genetic Programming 3

of finding a good rule. After a rule is created, the training cases classified by the

rule are removed, reducing the number of training cases for the next iteration of the

procedure.

Given that GP is essentially a supervised learning method and geometric seman-

tic operators enable the direct manipulation of the output vectors, could we apply a

heuristic to decompose the problem into smaller subproblems and use GP to solve

them? Otero and Johnson (2013) presented a strategy based on the sequential cov-

ering to decompose a boolean problem into smaller subproblems. Each subproblem

is then solved by a traditional GP and the individual solutions are combined using a

geometric semantic crossover. It uses a property of the geometric semantic crossover

for the boolean domain: individuals are combined using a boolean mask, which acts

as a selector to inform when a particular individual solution should be used. While

this strategy is successful for boolean domains, there is not a straightforward way to

adapt it to the real domain, since the operation of the geometric semantic crossover

is different.

In this chapter we present a method to sequentially solve symbolic regression

problems using a combination of geometric semantic operators and a heuristic in-

spired by the traditional sequential covering strategy. The proposed method, Se-

quential Symbolic Regression (SSR), works by sequentially transforming the orig-

inal problem, according to the partial solutions generated, into potentially simpler

ones. The rationale behind SSR is that, after generating a suboptimal function f via

symbolic regression, the output errors can be approximated by another function, in

a subsequent iteration. In order to transform the original output based on the output

of function f , each iteration of SSR applies a transformation based on a geometric

semantic crossover operator (Moraglio et al, 2012). This procedure allows the GP to

focus, at each iteration, on different aspects (subproblems) of the original problem.

The remaining of the chapter is organised as follows. Section 2 reviews previous

works exploring regularities and modularity in GP. Section 3 revises the proper-

ties of geometric semantic operators. The proposed strategy for sequential symbolic

regression is presented in Section 4, followed by computational experiments in Sec-

tion 5. Finally, Section 6 concludes the chapter and presents future research direc-

tions.

2 Modulatisation in Genetic Programming

Since the introduction of genetic programming (Koza, 1992a), researchers have

been interested in exploring the regularities and modularity of the problem space.

One of the main motivation is to identify these regularities to decompose the prob-

lem at hand into more tractable sub-problems: finding solutions to sub-problems

should be easier than finding a solution to the original problem, and these sub-

solutions can be used to create the solution to the whole problem. This process is

illustrated in Figure 1. This is analogous to how human programmers usually tackle

problems: instead of creating a single procedure to implement an entire program,

4 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

original problem subproblems subproblems

solutions

original problem

solution

problem

decomposition

solving

subproblems

combining

subproblem

solutions

1 2 3

P

S

p1

p2

p3

p4

s1

s2

s3

s4

Fig. 1 The hierarchical problem-solving process: the original problem P is decomposed in a set

of subproblems (step 1); the goal is then to solve each of the subproblems (step 2); finally, the

solution S to the original problem P is created by using the solutions to the subproblems (step 3).

Figure adapted from (Koza, 1992a).

they usually break down the implementation into several different procedures and

the combination of these procedures compose the complete implementation.

The Automatic Defined Functions (ADFs) proposed by Koza (1992a,b, 1994)

was one of the first ideas to address the automated problem decomposition. ADFs

impose a syntactical structure to individuals: an individual genotype is divided into

a result-producing branch and several function-defining branches. The motivation

is that function definitions potentially exploit the regularities of the problem space

and these definitions can be used from the result-producing branch. On the one

hand, Koza argues that by allowing the definition and use of functions, the problem

is decomposed into subproblems. On the other hand, the modular structure (syn-

tax) of individuals is manually defined, therefore, the decomposition process is not

autonomous—the number of ADFs and their parameters are controlled by user-

defined values. Additionally, even if functions actually represent solutions to sub-

problems, they are being evolved at the same time as the complete solution. There is

a pressure to solve all parts of the problem at once—the definition of the functions

and the correct use of those functions.

A popular idea to explore problem space regularities focused on defining mod-

ules based on the genetic material of individuals. Several involved the random se-

lection of subtrees to create modules: Koza (1992a) proposed the use of a subtree

encapsulation operator, which consists of randomly selecting a subtree from an in-

dividual to create a terminal primitive that encapsulated the subtree; Angeline and

Pollack (1992, 1994) proposed the Genetic Library Builder (GLiB) system, which

employs mutation operators that randomly select subtrees to create modules (com-

press operator) that can be later expanded (expand operator); similar compress and

Sequential Symbolic Regression with Genetic Programming 5

expand operators to create and expand modules were more recently proposed by

Walker and Miller (2008) in the context of Embedded Cartesian Genetic Program-

ming (ECGP), with the extension of the use of module-altering operators (module

point mutation, add-input, add-output, remove-input and remove-output operators);

Spector et al (2011a,b, 2012) proposed the use of the concept of ‘tags’ to label frag-

ments of code that can be later reused by referencing the same label—while this is

similar to the use of a compress operator, it provides the flexibility of partial name

matches (a label will match the closest matching tag).

Other authors followed the idea of identifying useful building blocks (subtrees)

to define modules: Rosca and Ballard (1994) proposed the use of heuristics to cre-

ate new modules, selecting fit blocks (blocks with high fitness value) and frequent

blocks (blocks that appear frequently in the population); similarly, Roberts et al

(2001) accumulate the frequency information of multiple runs of a GP to create a

subtree database and subsequent runs can use the most frequent subtrees encapsu-

lated as terminal primitives.

There are also works that explore the idea of a library of modules created prior to

the run of a GP. Keijzer et al (2004) introduced the use of Run Transferable Libraries

(RTL). The RTL is created by running the GP on lower-order problem instances,

considered as a training phase, and then used to solve more complex instances of the

same problem. Similarly, Christensen and Oppacher (2007) generated small trees

for the Santa Fe Trail problem to create a library of modules in a training phase,

where the small trees are not necessarily complete solutions, and then is used this

library to find the complete solution to the problem. Another approach that uses the

idea of training a GP on smaller problem instances in order to generate modules was

presented by Jackson and Gibbons (2007), where the authors proposed the use of

layered learning. The first layer is used to solve a lower-order version of the original

problem and the final solution at this layer is converted to a parameterised module.

The second layer uses this module to search the solution of a higher-order version of

the same problem. While the creation of a library of modules in a training phase or

in different layers can provide a decomposition of the problem, it represents a single

decomposition step and it is not automated—the user has to manually choose to use

either a training phase or to generate small trees prior to the search for the complete

solution.

Considering the initial goal of problem decomposition, the aforementioned ap-

proaches rely on the assumption that the modules created could represent solutions

to subproblems. The main drawback of this assumption is that modules are defined

based on their syntax—i.e., the creation/selection of the modules does not involve

any evidence that the modules are solving different parts of the problem.1 A com-

mon characteristic of these approaches is that they provide a mechanism to cre-

ate/identify modules during the run of the GP and expect that good modules will

emerge as a result of the search, but at the same time, they do not employ any con-

trol over whether the use of modules decomposes the problem into subproblems.

1 The selection of building blocks based on fitness proposed by Rosca and Ballard (1994) is an

exception to the syntax-oriented selection, although there is no guarantee that different modules

are solving different parts of the problem.

6 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

Perhaps the emphasis in syntactical approaches to modularity is a result of the ten-

dency of using syntactical search operators in GP—both crossover and mutation op-

erators are blind search operators regarding their effect on the individual behaviour,

only focusing on syntactical changes. Additionally, the pressure of solving all parts

of the problem at once might reduce diversity and, in some cases, also prevent the

convergence to the optimal solution (McKay, 2000).

Lee (1999) proposed an extension to GP to deal with forecasting of real world

chaotic time series, which resembles the sequential strategy of the algorithm pro-

posed in this chapter. Lee’s assumption is that a time series is composed by deter-

ministic and stochastic parts—subtracting the solution found by a run of the GP for

the deterministic part from the original time series, the stochastic part is obtained as

a residual time series. Repeating this process recursively to the sequence of resid-

ual time series, a set of (sub-)solutions can be created. These are then combined

using numerical coefficients calculated by the least square method with respect to

a predetermined region of the time series—the explicit definition of regions of the

time series (regions of the search space) can be seen as a manual decomposition of

the problem. As we will discuss in the following sections, our proposed algorithm

does not rely on the definition of regions of the search space and the (sub-)solutions

evolved are combined using the principle of a geometric semantic crossover to pro-

duce the solution to the original problem.

3 Geometric Semantic Operators

Standard genetic programming operators were originally conceived to operate in

the syntatic-level of the solutions being evolved. Consider, for example, a subtree

crossover. It will randomly select subtrees from two previously generated solutions

and swap them, regardless of what the outputs of the selected subtrees are. When

tree outputs are neglected, we ignore the fact that, at the end of the evolutionary

process, what matters is the quality of the best solution found, which is indirectly

defined by the output generated.

The semantics of an individual can be informally defined as the meaning of syn-

tactically correct programs or functions (Uy et al, 2011)—in a GP context, the set of

outputs produced by a program or function given a set of inputs. Many approaches

have been previously used to represent and extract semantics from genetic program-

ming (Vanneschi et al, 2014). This section is interested in one of these approaches:

geometric semantic operators.

In order to design operators that directly impact the semantics of a solution,

Moraglio et al (2012) defined the concept of semantic distance and geometric se-

mantic operators for the real functions domain (e.g., symbolic regression), which

are replicated in Definition 1 and Definitions 2 and 3, respectively.

Definition 1 Let S be the set of solutions and s1,s2 ∈ S. A function SD : S×S→R is

said to be a semantic distance function if SD(s1,s2) = D(O(s1),O(s2)), where O(s)
returns the output vector of s and D is a distance function.

Sequential Symbolic Regression with Genetic Programming 7

xx

*

2516941

f(x)

x2

*

108642

g(x)

x

*0.4

*

x x2

*0.6

*

+

h(x) = 0.4f(x) + 0.6g(x)

11.21.6 4 7.2 16

Fig. 2 Example of geometric semantic crossover operator between f (x) = x2 and g(x) = 2x using

r = 0.4.

Definition 2 Let S be the set of solutions, XO : S× S→ S be a crossover operator

and SD be a semantic distance function. XO is said to be geometric with relation

to SD if, for all s1,s2,s3 ∈ S such that s3 = XO(s1,s2), SD(s1,s2) = SD(s1,s3)+
SD(s3,s2).

Definition 3 Let S be the set of solutions, MT : S→ S be a mutation operator and

SD be a semantic distance function. MT is said to be ε-geometric with relation to

SD if, for all s1,s2 ∈ S such that s2 = MT (s1), E[SD(s1,s2)] ≤ ε , where E denotes

the expected value.

Definitions 2 and 3 show that semantic geometric operators generate solutions in

a much more controlled fashion. Particularly, the semantics of a solution generated

through a geometric semantic crossover is guaranteed to be somewhere between the

semantics of its parents. This fact implies in an interesting property: an offspring

will never be worse than the worst of its parents. Similarly, an ε-geometric semantic

mutation will generate solutions that are, on average, not worse than the original

solution by more than ε .

Moraglio et al (2012) also proposed specific semantic geometric operators for

regression problems. The crossover operator proposed is essentially a convex com-

bination of functions. Let S be the set of solutions, s1,s2 ∈ S, XO(s1,s2) = r.s1 +
(1− r).s2, where r is a random real number in the interval [0,1]. The mutation

operator was defined as MT (s) = s+ms.(T R1− T R2), where s ∈ S, ms is a real

number and T R1,TR2 are randomly generated trees. The authors show that these

operators are geometric with relation to the semantic distance function SD(s1,s2) =

∑xi∈T [O(s1)(xi)−O(s2)(xi)]
2, where T is a set of training examples.

Figures 2 and 3 show examples of geometric semantic operators for the real

functions domain. Observe that in Figure 2, each element of the output vector of the

offspring is a convex combination of elements from the parents’ output vectors using

coefficients 0.4 and 0.6. In Figure 3, we notice how the impact of the geometric

semantic mutation operator can be controlled by setting appropriate values for ms.

8 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

xx

*

2516941

f(x)

h(x) = f(x) - 0.1(x - x/2)

15.80.95 3.9 8.85 24.75

x

*

x

2x

/x

0.1

*

-

-

Fig. 3 Example of geometric semantic mutation operator of f (x) = x2 using ms = 0.1, T R1(x) = x

and TR2(x) = x/2.

4 Sequential Symbolic Regression

This section introduces Sequential Symbolic Regression (SSR), a method that se-

quentially executes a standard GP for symbolic regression and indirectly considers

the semantic of the solutions being created. SSR is inspired by a sequential covering

strategy, similar to the one employed by Otero and Johnson (2013), where at each

iteration a solution to a transformed (and potentially simpler) problem is evolved.

The main difference between SSR and a traditional sequential covering method

is in the transformation step that occurs at each iteration. In a traditional sequen-

tial covering strategy, the problem is reduced at each iteration—i.e., the training

cases covered by the iteration solution are removed, effectively reducing the prob-

lem to the subsequent iterations. Since SSR deals with problems in the real-valued

domain, the concept of covered training cases is not directly applicable.2 Instead of

removing training cases, at each iteration of SSR, the output values of the original

problem are modified based on the use of a geometric semantic crossover and the it-

eration solution output—the transformation of the problem is based on the semantic

of the solution created on the iteration. We hypothesise that the use of the iterative

(sequential) solution construction procedure allows the GP to focus on different as-

pects (subproblems) of the original problem, creating individual solutions that are

combined by a geometric semantic crossover.

A typical symbolic regression problem can be defined as follows. Given a set of

input-output pairs C = {(c1,o(c1)), ...,(cn,o(cn))} representing the training cases,

where each pair (ci, o(ci)) denotes an input value and its correspondent output value,

respectively; a symbolic regression problem can be defined as finding a function

f : C→ O that minimizes an error metric, such as the mean squared error (MSE),

the mean absolute error (MAE) or the root mean squared error (RMSE).

2 It is unlikely that a solution will reach (near) zero error only for a subset of the points (training

cases), unless it is the optimal solution, which in this case it will reach a (near) zero error for all

points.

Sequential Symbolic Regression with Genetic Programming 9

The metrics described above use the summation of the squared or absolute

residuals—the difference between the current output and the function output—to

compute the error function. Hence, when the absolute value of residuals is mini-

mized, so is the measured error. A residual e(ci) corresponds to the error in the

fitting of the function to the i-th observation, and is defined as

e(ci) = o(ci)− ô(ci) = o(ci)− f (ci) . (1)

The optimal solution to a regression problem is a function f ∗, such that e(ci) =
o(ci)− f ∗(ci) = 0 for i = 1,2, ...,n, and often a function f found by a regression

method is an approximation of f ∗, not reaching a zero error or the minimum error

defined according to the problem.

The rationale behind the sequential procedure of SSR is that, after generating a

suboptimal function f , the residual can be approximated by another function, in a

subsequent iteration. In order to transform the original output based on the output of

function f , each iteration of SSR applies a transformation based on a geometric se-

mantic crossover operator (Moraglio et al, 2012). The geometric semantic crossover

operator for the real-value domain combines the output of two known functions f

and f ′ to generate a new function f ∗, with an a priori unknown output. The princi-

ple used in SSR is that the output of function f and the output of the function f ∗

are known, and therefore, they can be used to define the transformation required to

determine the desired output of function f ′ based on the residual of function f . The

definition of the geometric semantic crossover is given by

f ∗(ci) = r · f (ci)+ (1− r) · f ′(ci) , (2)

where r is a random real constant in the range [0,1). Substituting the definition of

function f ∗ to the residual equation, we obtain

e(ci) = o(ci)− [r · f (ci)+ (1− r) · f ′(ci)] . (3)

Using Equation (3) and given that f is the function created by an iteration of SSR,

the output o′(ci) for function f ′(ci) that reduces the residual error e to zero is com-

puted as

o′(ci) =
o(ci)− r · f (ci)

1− r
. (4)

The transformed output vector o′ defines a new regression problem, where the goal

is to find a function f ′ that minimizes the new residuals e′(ci) = o′(ci)− f ′(ci),
which is the definition of problem for the next iteration.

Another way to see the strategy employed in SSR is to look at the use of the

transformation step: a solution is built starting from the desired output, the output

of the original problem; if the function (individual) f created at an iteration of SSR

does not minimises the error e to zero, a geometric semantic crossover is used to

transform the original problem. Given that we know the desired output—the output

of the individual generated by the crossover operation—and one of the individuals

10 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

Algorithm 1 Sequential Symbolic Regression procedure

input: training points (C), stopping criteria, GP parameters

input← (c1,c2, ...,cn), for ck ∈C

output← (o(c1),o(c2), ...,o(cn)), for o(ck) ∈C

/* Solution iteratively constructed */

S← /0

while stopping criteria not reached do

f ← RunGP(input, output)

if (MSE(f ,output)≤ 0.01) then

S← AddFunction(f)

else

r← random()

S← AddFunction(f , r)

output← AdjustOutputs(f , r, output)

return

end if

end while

return S

of the crossover, we can determine the required output of a second individual that

complements the crossover.

Therefore, instead of combining individuals at random as in the Semantic GP,

SSR optimises the effect of the geometric semantic crossover operator by search-

ing for the individual that represents the best match (minimises the error) given the

desired output vector. At the same time, it indirectly mitigates the problem of ex-

ponential growth of individuals observed in SGP (Moraglio et al, 2012; Vanneschi

et al, 2013), since the solution is created sequentially, without requiring that all in-

dividual solutions are kept in memory, and there is only one solution being created

using the geometric semantic operator, requiring a single simplification step at the

end of SSR if the size of the complete solution needs to be reduced.

4.1 SSR procedure

Algorithm 1 presents the high-level pseudocode of the SSR procedure. It starts with

an empty solution tree S, which is iteratively incremented by carrying out sequential

regressions using a traditional GP algorithm. At the k-th iteration, a new function fk

is generated by the GP (RunGP procedure). If function fk corresponds to the optimal

solution—i.e., the output of fk is such that MSE(fk,output)≤ 0.01— fk is added to

the solution tree S and the sequential procedure stops. Otherwise, fk is added to the

solution tree S using a geometric semantic crossover with a random constant rk in

the range [0,1). Note that at this point the crossover operation is incomplete—i.e.,

only one of the parent individuals is known. Then, the constant rk and the function fk

are used to modify the desired output using transformation represented by Equation

(4). The iterative transformation step is given by

Sequential Symbolic Regression with Genetic Programming 11

f1

(a) First iteration.

+

f2-f1
r1

1 r1

* *

(b) Second iteration.

+

-

1 r1

f1
r1

* *

+

f3-f2
r2

1 r2

* *

(c) Third iteration.

Fig. 4 Illustration of the solution tree S and the corresponding expression at different iterations:

(a) S = f1; (b) S = r1 · f1+(1− r1) · f2; (c) S = r1 · f1 +(1− r1) · [r2 · f2+(1− r2) · f3].

ok+1(ci) =
ok(ci)− rk · fk(ci)

1− rk

, (5)

for k = 1,2, ...,n, where n is the maximum number of iterations. The sequential

SSR process continues until a minimum error or a maximum number of iterations

is reached. Figure 4 illustrate the sequential solution construction, showing the so-

lution tree S at different iterations of the procedure.

Next, we present an illustrative example of how SSR works. Let us consider we

want to find a function whose values match those in a set of training input cases

C = {(1,1),(3,4),(5,9)}, i.e., input = (1,3,5) and output1 = (1,4,9). Let us as-

sume the first GP regression generates a function f1 that produces the output vec-

tor (1,3.5,8), and the absolute residual vector (0,0.5,1). A constant r1 = 0.4 is

generated randomly and stored in f1. From there, the new target output vector is

calculated (Equation 4), and is equal to (1,4.33,9.67). The process continues until

MSE ≤ 0.01, as shown in Table 1. The column outputk represents the target output

points the regression needs to generate (when k = 1, they represent the original prob-

lem output), followed by the generated output (fk(ci)) and the residual generated by

fk (|e′k(ci)|) and the overall MSE.

Table 1 Example of SSR execution. The First column presents the current iteration, followed by

the values of rk , the desired outputs outputk (3 columns), the evolved outputs fk (3 columns), the

absolute residuals of fk regarding outputk (3 columns) and MSE (last column).

outputk fk(ci) |e′k(ci)| = |ok(ci)− fk(ci)|

k rk ok(c1) ok(c2) ok(c3) c1 c2 c3 c1,ok(c1) c2,ok(c2) c3,ok(c3) MSE

1 0.4 1.00 4.00 9.00 1.00 3.50 8.00 0.00 0.50 1.00 0.417

2 0.5 1.00 4.33 9.67 1.00 4.00 9.00 0.00 0.33 0.67 0.067

3 0.3 1.00 4.67 10.33 2.00 4.50 11.00 1.00 0.17 0.67 0.044

4 0.2 0.57 4.74 10.05 0.50 5.00 10.50 0.07 0.26 0.45 0.004

12 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

5 Experiments

This section presents experimental results performed to test SSR. All tests are com-

pared with the semantic GP (SGP) proposed in Moraglio et al (2012) and a canonical

GP (Koza, 1994) in a set of polynomial regression problems. Given that one of the

main characteristics of the method is to use the geometric semantic crossover to

combine solutions sequentially discovered to solve the problem, we use the same

testbed as Moraglio et al (2012), composed by 8 univariate polynomials functions

of degrees from 3 to 10, with real-valued coefficients uniformly drawn from [−1,1].
In order to make the comparisons fair, all algorithms were given an execution

budget of 100,000 evaluations, and the parameters used in each algorithm are de-

tailed in Table 2. Note that, as SSR evolves a GP for k iterations, the sizes of pop-

ulations vary across different algorithms, always respecting the evaluation budget.

Because of that, different tournament sizes were used in order to balance selective

pressure considering different population sizes. Notice that results of two versions

of SSR and SGP are reported. In the case of SSR, the variation tests the trade-off

between the number of generations of the canonical GP and the number of iterations

of SSR.

For SGP, we used the same parameters reported in Moraglio et al (2012), but var-

ied the method used for population initialization. The first algorithm configuration

(SGP1) initializes with polynomials of degree 10 (same procedure used in Moraglio

et al (2012)), while the initial population of SGP2 is randomly generated. One may

argue that the assumption that we know the structure of the function we are looking

for makes the use of symbolic regression unnecessary, which is true. However, the

way geometric semantic crossover works depends heavily on the individuals in the

initial population. If the genetic material we start with is not enough to produce the

target function, mutation will probably not be able to insert enough modifications to

the population to change this situation.

The experiments were performed in two phases. First, we run the methods in a

training set with 20 points. Then, we used the function discovered in the first phase

in a second set of 20 points. The points were uniformly drawn from the [0,1] in-

terval. All methods were executed 30 times. Table 3 shows the mean square error

Table 2 Parameter values for the methods used in the experiments.

Parameter GP SSR1 SSR2 SGP1 SGP2

Crossover probability 0.9 0.9 0.9 1 1

Mutation Probability 0.1 0.1 0.1 1 1

Tournament Size 7 3 3 5 5

Population Size 1000 100 100 20 20

Number of generations 100 50 100 5000 5000

Number of iterations - 20 10 - -

Initialization - - - YES NO

Sequential Symbolic Regression with Genetic Programming 13

Table 3 Average MSE (average [standard error]) for each algorithm in the training set, calculated

over 30 runs.

Problem GP SSR1 SSR2 SGP1 SGP2

polynomial3 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.009 [0.002]

polynomial4 0.000 [0.001] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.009 [0.002]

polynomial5 0.001 [0.003] 0.000 [0.000] 0.000 [0.001] 0.000 [0.000] 0.013 [0.004]

polynomial6 0.001 [0.001] 0.000 [0.001] 0.000 [0.000] 0.000 [0.000] 0.010 [0.003]

polynomial7 0.002 [0.001] 0.001 [0.002] 0.000 [0.000] 0.000 [0.000] 0.008 [0.002]

polynomial8 0.002 [0.002] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.009 [0.002]

polynomial9 0.005 [0.004] 0.001 [0.001] 0.001 [0.003] 0.000 [0.000] 0.010 [0.002]

polynomial10 0.002 [0.003] 0.001 [0.001] 0.001 [0.002] 0.000 [0.000] 0.010 [0.002]

Table 4 Pairwise Nemenyi test for MSE in the training set. The symbol N indicates the method in

the column is statistically better than the one in the row.

SSR1 SSR2 SGP1 SGP2

SSR2 - - - -

SGP1 - - - -

SGP2 N N N -

GP - - - -

(MSE) and standard deviation obtained by the three methods using different config-

urations.

Results are compared using a two-step approach. First, we apply Friedman’s test

with the null hypothesis H0 : θ1 = θ2 = ...θ5, where θi represents the MSE of one

of the algorithms tested. If H0 is rejected we apply Nemenyi test (Demšar, 2006) as

a post-hoc procedure and make pairwise comparisons between the MSEs. Table 4

shows the results of the comparisons. The symbol N indicates that the method in the

column is statistically better than the method indicated in the row.

The results show that there is no evidence for statistical difference among the

two versions of SSR. However there is statistical difference among the SGP ver-

sions, with SGP1 performing statistically better than SGP2. Concerning SSR, there

is no evidence of statistical difference regarding the GP or SGP1 and the results are

statistically better than those obtained by SGP2. In summary, the results of the pro-

posed approach are as good as the results of the GP and SGP1 and better than the

results of SGP2.

Figure 5 shows the results of MSE for different iterations of SSR for the 8 func-

tions tested using 50 and 100 generations over 20 iterations. The behaviour of the

method is the expected one: as iterations go on, the error is reduced. As observed, in

most cases the error converges as we approach 10 iterations. Hence, we can say that

a different stopping criteria—such as convergence—could significantly reduce the

14 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

Table 5 Average MSE (average [standard error]) for each algorithm in the test set, calculated

over 30 runs.

Problem GP SSR1 SSR2 SGP1 SGP2

polynomial3 0.001 [0.001] 0.001 [0.004] 0.000 [0.001] 4.9e8 [2.6e9] 891.7 [2989.9]

polynomial4 0.001 [0.002] 0.000 [0.000] 0.000 [0.001] 84.33 [231.6] 5.360 [13.186]

polynomial5 0.007 [0.020] 0.001 [0.001] 0.001 [0.002] 8.158 [15.36] 7.158 [17.318]

polynomial6 0.008 [0.011] 0.003 [0.007] 0.002 [0.003] 1.2e5 [6.6e5] 9.350 [16.763]

polynomial7 0.009 [0.034] 0.001 [0.002] 0.001 [0.001] 41.27 [83.21] 6.005 [11.144]

polynomial8 0.004 [0.003] 0.001 [0.001] 0.001 [0.001] 117.0 [350.3] 13.497 [49.12]

polynomial9 0.014 [0.020] 0.006 [0.008] 0.003 [0.004] 43.66 [223.2] 2.811 [2.682]

polynomial10 0.032 [0.027] 0.013 [0.012] 0.011 [0.015] 58.64 [230.4] 3.574 [4.479]

Table 6 Pairwise Nemenyi test for MSE in the test set. The symbol N indicates the method in the

column is statistically better than the one in the row.

SSR1 SSR2 SGP1 SGP2

SSR2 - - - -

SGP1 N N - -

SGP2 N N - -

GP - - - -

number of evaluations required to obtain the reported results (note that we did not

halt the algorithm and always allowed it to run for the maximum evaluation budget).

A different parameter setting, where the GP run for less generations at each iteration

of the sequential procedure, combined with an effective stopping criteria might re-

duce significantly the fitness budget, making the use of SSR preferable over a single

GP—these parameters can be tuned according to the problem at hand.

Table 5 presents the results of generalisation of the functions evolved in the train-

ing set and Table 6 the results for the Nemenyi test. The results show again that GP

and SSR present no evidence of statistical difference. However, in this case, the re-

sults obtained by SSR are better than both versions of SGP. Looking at the values

of MSE, we observe that SGP does not generalize well and has a tendency for over-

fitting. Therefore, these results show that SSR was successful in reducing the error

of the symbolic regression problems and, at the same time, produced solutions with

good generalisation power.

Regarding the comparisons with SGP, recall that the semantic operator has com-

pletely different roles in the algorithms. For SGP, experiments showed data over-

fitting (poor generalisation) can be a problem. Overfitting may be caused by the

restrictions imposed by the geometric crossover, which combined with a semantic

mutation designed to produce little semantic impact, makes SGP success heavily de-

pendent on the initial population. This fact, combined with a small population size,

Sequential Symbolic Regression with Genetic Programming 15

5 10 15 20

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

iteration

M
S

E

50 generations

100 generations

polynomial3

5 10 15 20

0
.0

0
0

0
0

.0
0

1
0

0
.0

0
2

0
0

.0
0

3
0

iteration

M
S

E

50 generations

100 generations

polynomial4

5 10 15 20

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

iteration

M
S

E

50 generations

100 generations

polynomial5

5 10 15 20

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

iteration

M
S

E

50 generations

100 generations

polynomial6

5 10 15 20

0
.0

0
0

0
.0

0
4

0
.0

0
8

iteration

M
S

E

50 generations

100 generations

polynomial7

5 10 15 20

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

iteration

M
S

E

50 generations

100 generations

polynomial8

5 10 15 20

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

iteration

M
S

E

50 generations

100 generations

polynomial9

5 10 15 20

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

iteration

M
S

E

50 generations

100 generations

polynomial10

Fig. 5 Evolution of the error during iterations for both configurations of SSR for each problem,

computed using the median of 30 runs.

16 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

Table 7 Number of nodes (average [standard error]) of the resulting function for each algorithm,

calculated over 30 runs.

Problem GP SSR1 SSR2 SGP1 SGP2

polynomial3 50.5 [21.0] 1677.9 [242.5] 637.1 [165.3] 2.3e9 [1.2e9] 2.0e9 [1.3e9]

polynomial4 59.7 [28.0] 1720.7 [228.5] 635.2 [164.7] 2.0e9 [1.2e9] 2.3e9 [1.2e9]

polynomial5 68.1 [24.2] 1745.9 [195.9] 729.1 [133.8] 2.2e9 [1.4e9] 2.1e9 [1.2e9]

polynomial6 60.8 [26.9] 1664.9 [257.5] 691.6 [134.0] 1.9e9 [1.1e9] 2.0e9 [1.4e9]

polynomial7 63.2 [21.2] 1752.0 [170.8] 767.0 [140.4] 2.2e9 [1.1e9] 2.0e9 [1.2e9]

polynomial8 57.8 [28.8] 1644.1 [220.0] 712.1 [164.5] 2.1e9 [1.3e9] 2.2e9 [1.4e9]

polynomial9 49.4 [22.1] 1736.7 [197.5] 771.9 [154.9] 1.9e9 [1.3e9] 2.4e9 [1.1e9]

polynomial10 62.6 [24.2] 1786.6 [170.1] 784.3 [142.0] 2.0e9 [1.3e9] 2.0e9 [1.3e9]

can make it difficult for SGP to find a good solution. Even if such solution is found,

it will usually be much more complex than those produced by SSR, also potentially

leading to overfitting—something that has been observed when analysing the size

of the evolved solutions.

Table 7 presents the average number of nodes and standard deviation of the final

solutions found by each algorithm. The size of SSR1 and SSR2 solutions reflect ap-

proximately the number of GP executions within the algorithm, i.e. it is 20 and 10

times the number of nodes of the solutions generated by the canonical GP, respec-

tively. The size of the functions generated by both SGP versions, on the other hand,

are at least 106 times greater than the other methods, since the size of SGP individu-

als grows exponentially in the number of generations. Note that while SSR performs

as many semantic crossovers as iterations, for SGP this number depends in the num-

ber of individuals, crossover probability and number of generations. The difference

in size of the solutions found by SSR1 and SSR2 can be explained by the num-

ber of iterations of the sequential procedure: while SSR1 has a total of 20, SSR2

has a total of 10 (Table 2). This illustrates the impact of the number of crossover

operations—iterations of the sequential procedure in the case of SSR—on the size

of the solutions. At the same time, we don’t see a big impact on the performance of

the SSR algorithm, since the error is minimised after 10 iterations in most cases—as

illustrated in Figure 5.

6 Conclusions and Future Work

This chapter proposed Sequential the Symbolic Regression (SSR), a new strategy

to perform symbolic regression by iteratively learning solutions from a transformed

set of problems. The definition of the problem changes according to the semantic

distance (or error rate) generated from the desired and obtained outputs, and differ-

ent (sub-)problem solutions are put together using a geometric semantic crossover

Sequential Symbolic Regression with Genetic Programming 17

operator. The use of the semantic operator guarantees the solutions generated are

never worse than the weakest of their parents.

Experiments were run in a set of eight polynomial functions and results com-

pared with a canonical GP and a geometric semantic GP (SGP). When compared

with SGP, which has a problem of exponential growth of its individuals, SSR has

the advantage of generating smaller solutions that are less prone to overfitting. Re-

garding the canonical GP, the method has the potential of improving solutions even

when the algorithm has already converged, by transforming the original problem

into a new one. The results showed SSR presents MSE values statistically better

than those generated by the solutions evolved by SGP, specially when a test set of

points is used to evaluate the generalisation of the method. When compared with

GP, there is no evidence of statistical difference among the results. However, we be-

lieve the results can still be improved to use a minimal computational budget (fitness

evaluations).

As future work, a more complete study of the impact of the parameters in SSR

needs to be performed, specially investigating what is the impact of running the GP

for longer or SSR for more iterations. The method also needs to be validated in more

complex symbolic regression problems, such as those suggested as GP benchmarks

(White et al, 2013). Finally, other methods for combining different solutions are

worth further investigation.

References

Angeline PJ, Pollack JB (1992) Evolutionary induction of subroutines. In: Proceed-

ings of the 14th Annual Cognitive Science Conference, pp 236–241

Angeline PJ, Pollack JB (1994) Coevolving high-level representations. In: Langton

C (ed) Artificial Life III, Addison-Wesley, Reading, MA, pp 55–71

Christensen S, Oppacher F (2007) Solving the artificial ant on the santa fe trail

problem in 20,696 fitness evaluations. In: GECCO ’07: Proceedings of the 9th

annual conference on Genetic and evolutionary computation, London, vol 2, pp

1574–1579

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research 7:1–30

Jackson D, Gibbons AP (2007) Layered learning in Boolean GP problems. In: Pro-

ceedings of the 10th European Conference on Genetic Programming, Springer,

Valencia, Spain, Lecture Notes in Computer Science, vol 4445, pp 148–159

Keijzer M, Ryan C, Cattolico M (2004) Run transferable libraries – learning func-

tional bias in problem domains. In: Genetic and Evolutionary Computation –

GECCO-2004, Part II, Springer-Verlag, Seattle, WA, USA, Lecture Notes in

Computer Science, vol 3103, pp 531–542

Koza JR (1992a) Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA

18 Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa and Julio Albinati

Koza JR (1992b) Hierarchical automatic function definition in genetic program-

ming. In: Whitley LD (ed) Foundations of Genetic Algorithms 2, Morgan Kauf-

mann, Vail, Colorado, USA, pp 297–318

Koza JR (1994) Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. MIT Press, Cambridge Massachusetts

Lee GY (1999) Genetic Recursive Regression for Modeling and Forecasting Real-

World Chaotic Time Series. In: Advances in Genetic Programming III, MIT

Press, chap 17, pp 401–423

McKay B (2000) Partial functions in fitness-shared genetic programming. In: Pro-

ceedings of the 2000 Congress on Evolutionary Computation CEC00, IEEE

Press, La Jolla Marriott Hotel La Jolla, California, USA, vol 1, pp 349–356

Moraglio A, Krawiec K, Johnson C (2012) Geometric Semantic Genetic Program-

ming. In: Parallel Problem Solving from Nature - PPSN XII, Springer Berlin

Heidelberg, Lecture Notes in Computer Science, vol 7491, pp 21–31

Otero FEB, Johnson CG (2013) Automated problem decomposition for the boolean

domain with genetic programming. In: Proceedings of the 16th European Con-

ference on Genetic Programming, EuroGP 2013, Vienna, Austria, pp 169–180

Roberts SC, Howard D, Koza JR (2001) Evolving modules in genetic program-

ming by subtree encapsulation. In: Genetic Programming, Proceedings of Eu-

roGP’2001, Springer-Verlag, Lake Como, Italy, LNCS, vol 2038, pp 160–175

Rosca JP, Ballard DH (1994) Learning by adapting representations in genetic pro-

gramming. In: Proceedings of the 1994 IEEE World Congress on Computational

Intelligence, IEEE Press, Orlando, Florida, USA, vol 1, pp 407–412

Spector L, Harrington K, Martin B, Helmuth T (2011a) What’s in an evolved name?

the evolution of modularity via tag-based reference. In: Genetic Programming

Theory and Practice IX, Genetic and Evolutionary Computation, Springer, Ann

Arbor, USA, chap 1, pp 1–16

Spector L, Martin B, Harrington K, Helmuth T (2011b) Tag-based modules in ge-

netic programming. In: GECCO ’11: Proceedings of the 13th annual conference

on Genetic and evolutionary computation, ACM, Dublin, Ireland, pp 1419–1426

Spector L, Harrington K, Helmuth T (2012) Tag-based modularity in tree-based ge-

netic programming. In: GECCO ’12: Proceedings of the fourteenth international

conference on Genetic and evolutionary computation conference, ACM, Philadel-

phia, Pennsylvania, USA, pp 815–822

Uy NQ, Hoai NX, ONeill M, McKay RI, Galván-López E (2011) Semantically-

based crossover in genetic programming: application to real-valued symbolic re-

gression. Genetic Programming and Evolvable Machines 12(2):91–119

Vanneschi L, Castelli M, Manzoni L, Silva S (2013) A new implementation of ge-

ometric semantic GP and its application to problems in pharmacokinetics. In:

Proceedings of the 16th European Conference on Genetic Programming, EuroGP

2013, Vienna, Austria, vol 7831, pp 205–216

Vanneschi L, Castelli M, Silva S (2014) A survey of semantic methods in genetic

programming. Genetic Programming and Evolvable Machines 15(2):1–20

Sequential Symbolic Regression with Genetic Programming 19

Walker JA, Miller JF (2008) The automatic acquisition, evolution and reuse of mod-

ules in cartesian genetic programming. IEEE Trans Evolutionary Computation

12(4):397–417

White D, McDermott J, Castelli M, Manzoni L, Goldman B, Kronberger G,

Jakowski W, OReilly UM, Luke S (2013) Better gp benchmarks: community

survey results and proposals. Genetic Programming and Evolvable Machines

14(1):3–29

Index

decomposition, 1

geometric semantic crossover, 1

modules, 1

problem transformation, 1

semantic genetic programming, 1

symbolic regression, 1

21

