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Abstract. In this paper, we propose an approach to Simultaneous Local-
ization and Mapping (SLAM) for RGB-D sensors. Our system computes
6-DoF pose and sparse feature map of the environment. We propose a
novel keyframe selection scheme based on the Fisher information, and
new loop closing method that utilizes feature-to-landmark correspon-
dences inspired by image-based localization. As a result, the system
effectively mitigates drift that is frequently observed in visual odome-
try system. Our approach gives lowest relative pose error amongst any
other approaches tested on public benchmark dataset. A set of 3D recon-
struction results on publicly available RGB-D videos are presented.
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1 Introduction

The goal of online 3D reconstruction and 6-DoF pose estimation, also known as
Simultaneous Localization and Mapping (SLAM) is to incrementally build a 3D
model of the surrounding environment while concurrently localizing the camera.
This has been a key technology for autonomous navigation of robots and many
useful applications [6,10–12,15,22,26]. To this end, selection of a keyframe and
finding inter-keyframe geometric relationships, are one of the most important
parts. However, most existing systems select keyframe based on heuristics, such
as fixed time or distance intervals, and find geometric relation only between
adjacent keyframes.

In this paper, we discuss two essential problems of online 3D reconstruction
and camera tracking, which critically affect the quality and speed of the recon-
struction1. The first problem is the online keyframe selection. The keyframes are
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c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part I, LNCS 8925, pp. 238–254, 2015.
DOI: 10.1007/978-3-319-16178-5 16

http://dx.doi.org/10.1007/978-3-319-16178-5_16
http://dx.doi.org/10.1007/978-3-319-16178-5_16
http://www.springerimages.com/videos/978-3-319-16177-8
http://www.springerimages.com/videos/978-3-319-16177-8
http://youtu.be/gnbnFEjy8wU


Online 3D Reconstruction and 6-DoF Pose Estimation for RGB-D Sensors 239

Fig. 1. The 3D model of fr3/office reconstructed by the proposed method.
This reconstruction is obtained by registering the full point clouds of all keyframes
transformed according to their keyframe poses computed by the proposed method.
Position and orientation of keyframes are denoted by coordinate axis that is color
coded by red, green and blue (X-Y-Z order) in below four images.

the representative images of the scene chosen among the input frames, and they
are used in building the model and optimizing the structure [10,22]. Since the
reconstruction is performed on top of the selected keyframes, selecting proper
keyframes is a critical task, but how to choose good keyframes has not been stud-
ied extensively so far. Several heuristic methods have been widely used, such as
using fixed time intervals or using fixed distance or rotation threshold. These
rule-of-thumb methods have introduced somewhat ad-hoc parameters, and they
tend to generate more than necessary keyframes to model the scene. Instead,
we propose an information theoretic approach to measure informativeness of
the current estimate to decide whether to put it as a keyframe or not. Detailed
method is described in Section 4.1.

The other problem we are tackling in this paper is the loop closing. The loop
closing is the task of finding new geometric relationships between keyframes,
which was not available from temporal incremental motion estimation. By closing
loops, the uncertainty of reconstruction can be reduced and the model quality can
be improved. However, the existing methods using visual features [4,10,11,15,22]
search only keyframe-to-keyframe loops. However, these existing approaches have
been overlooked normal frames between keyframes. As the number of normal
frames is significantly greater than the number of keyframes, finding a loop
on normal frames will increase the chance of finding of better loops. Other
approaches such as [10,22] search metric loop closures by assuming some motion
prior to be available. However, such metric loop closure is less likely to be suc-
cessful in most online 3D reconstruction scenarios due to the measurement noise
and pose drift.

To address the problems above, we propose a method which is not only
utilize an appearance-based method [3] but also bridges disconnected feature-
to-landmark relations inspired by image-based localization. The key distinction
of proposed method compared to the existing online 3D reconstruction methods
[4,10,11,15,22] is that we seek direct link between the 2D features and 3D land-
marks at every input image, and add the image as a new keyframe on-the-fly
when a good match is found. Most existing methods ignores the non-keyframe
images (i.e., normal frames) mainly due to computational overhead, and only
utilized the keyframe-to-keyframe matching. However, we address this issue by
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Fig. 2. The block diagram of the core steps in the existing methods (left side)
and the proposed method (right side). Note that loop closure test is performed
at every frame (while existing approaches perform at keyframe creation) and keyframe
selection is based on the Fisher information in our method. Refer to the text for more
detail.

distributing computational load by extracting specified number of descriptors on
keypoints at each frame. This is inspired by work of real-time image-based local-
ization [14]. The difference between the existing approaches and the proposed
method is visualized in Fig. 2.

We developed a full 6-DoF online 3D reconstruction system with proposed
methods to demonstrate the effectiveness of the proposed approaches. An exam-
ple input and output of developed system is shown in Fig 1. We have evaluated
our approach on public RGB-D datasets recorded in various environment [24].
We are able to achieve high quality of 3D reconstruction with less number of
keyframes than existing keyframe selection scheme. Most of evaluation results
show less than 10 cm in root mean square error (RMSE) of absolute trajectory
error. To summarize, our key contributions are:

− A novel keyframe selection scheme based on Fisher information of the tracked
camera pose. It measures informativeness of the given frame. As a result,
a keyframe is added only if it has enough information, thus it can select
keyframes adaptively and creates less number of keyframes to build similar
quality reconstructions as compared in Section 5.

− A new loop closing strategy for online 3D reconstruction. This consists of
two types of match. The one matching process seeks best similar view of cur-
rent keyframe which only happens at keyframe creation process (keyframe-
to-keyframe), while the another process searches best 3D landmarks in the
2D keypoints in an image (feature-to-landmark) at every input frame. The
effectiveness of proposed method is tested our own built online 3D recon-
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struction system with real experiments with ground truth comparison. We
also evaluated the proposed approach with other method.

2 Related Work

2.1 Online 3D Reconstruction

The online 3D reconstruction is a task that reconstructs surrounding environ-
ments in 3D by utilizing input video sequences. A common components of online
3D reconstruction are feature point tracking, which takes care of the temporal
keypoint relationship between frames, and bundle adjustment for accurate 3D
reconstruction [25]. In the existing video-based reconstruction [11,12,26], the
quality of frame-by-frame feature track seriously affects the quality of recon-
struction. This is prone to image noise, object occlusions, illumination change,
large-motion, which easily causes occasional feature dropout and distraction. If
a feature track is interrupted by these disturbances, the existing methods cre-
ate a new feature track even though it is a same physical point of lost feature.
We argue that this non-consecutive track should be bridged correctly for accu-
rate 3D reconstruction. However, most of approaches have no explicit answer to
this question because it is not obvious how to insert this discontinuous track as
observations. We will discuss this further in Section 4.3.

2.2 Keyframe Selection

Several selection schemes have been proposed to build a map with a smaller set
of keyframes. The näıve choice is to choose every n-th frame. However, this will
create unnecessary keyframes during stationary motion. Another popular option
is to choose keyframe based on distance or orientation change threshold since
last keyframe [10,11,15,22]. This method will sample Euclidean space evenly,
but it does not consider sensor accuracy. For example, if a sensor quality is good
enough to measure wide range of the environment, this method will create redun-
dant keyframes. Henry et al. [6] selects keyframe based on the number of inliers
during RANSAC procedure of current pose. But we observed that an informa-
tion gain is different even when the same number of inliers is given. Snavely et
al.[21] propose skeletal graphs to select informative frames. They solved offline
problem by utilizing trace of translational covariance as an uncertainty mea-
sure. In offline problem, maximum and minimum boundaries of uncertainty are
bounded in the problem as all the images are provided prior to run algorithm.
However, our problem is online 3D reconstruction and camera tracking, and such
boundary cannot be determined prior to run the system. Therefore, we consider
Fisher information matrix and its summarized statistics to measure informative-
ness of the current frame and initialize the new keyframe based on this metric.
Recently, similar work is proposed by Kerl et al [8]. They have utilized relative
entropy that is somewhat heuristic method based on their observation, while
ours utilized summarized statistics of Fisher information which represents the-
oretically lower bound of the variance of estimator. Furthermore, we show that
simple thresholding works well as opposed to [8].
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2.3 Image-Based Localization

Image-based localization in this paper is a problem of computing the 6-DoF
location of given image with respect to existing set of images. In early period
of research, only approximated location was obtained [20] by solving large-scale
image retrieval approach [18]. Recently, a complete 6-DoF pose is obtained based
on visual 3D maps built by structure from motion technique [7,13,19,26]. In [7,
26], synthesized views are created to group the set of features as same document
in vocabulary tree [18]. Most relevant top-k views are considered for expensive
SIFT [16] matching. In [13], prioritized 3D points are matched to input image
using approximate nearest neighbor search. Unlike other approaches, it queries
3D point first rather than 2D features in an input image. In [19], direct 2D-3D
matches are used to localize a frame. In [19] visual vocabulary-based prioritized
search has been proposed to match the number of features required for geometric
verification with less computation. We are particularly interested in direct 2D-
3D match [14,19] with vocabulary tree [18] which introduces predictable amount
of computation.

3 Problem Formulation

3.1 Metric-Topological Map Representation

The internal representation of the map can be metric or topological :

− The metric representation is the most common for robot navigation and con-
siders a three-dimensional space in which it places the objects. The objects
are placed with precise coordinates. This representation is very useful, but
is sensitive to noise and it is difficult to close a loop because the location of
all vertexes should be adjusted at the moment of the loop closure detection.

− The topological representation only considers relative relations between them.
No exact global coordinates defined to describe the position of vertexes (i.e.,
keyframes). The map is then a graph, in which the vertexes corresponds to
keyframes (or landmarks) and edges correspond to the relations (e.g., relative
pose, image measurements).

The topological map can be transformed to metric map by compositing rel-
ative poses assigned on edges between vertexes. To this end, we search a topo-
logical graph starting from reference keyframe by breadth-first search (BFS). In
many cases, current keyframe is set to origin and remaining keyframes pose are
described based on the origin.

3.2 The Graph Representation of Topological Map

Keyframes and 3D points are represented as graph G consists of a set of keyframe
vertexes K, a set of homogeneous 3D points M, and a set of edges represent the
relative pose P between two keyframes or image projection Z. Each keyframe
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Fig. 3. A mini example of topological map. The i-th 3D point with anchor
keyframe j is denoted by mj

i . The anchor keyframe is a keyframe which observes a
3D point at first. The image measurement of mi in j-th keyframe is defined zji . The
pose between keyframe i and j is denoted by P ij .

vertex saves unique identification number, list of 3D points observed and nor-
malized image coordinates of associated 3D points. Note that we do not save
absolute pose in the keyframe vertexes.

Let P = {pjk | j, k ∈ [0, . . . , m − 1]} be a set of m 6-DoF camera poses (i.e.,
keyframe poses) where each pjk ∈ SE(3) is a 6 × 1 vector contains orientation
(i.e., angle-axis representation) and position that defines a 4 × 4 homogeneous
transformation matrix P jk ∈ R

4×4, a pose j defined in frame k. The transfor-
mation matrix P jk and its inverse is defined as

P jk =
(
P kj

)−1
=

[
Rjk T jk

0 1

]
∈ R

4×4, with R ∈ SO(3), T ∈ R
3. (1)

Let M = {mk
i | i ∈ [1, . . . , n], k ∈ [0, . . . , m − 1]} be a set of n land-

marks described relative to anchor keyframe k. Each mk
i = [m̄k

i , 1]� =
[m̄k

i,1, m̄
k
i,2, m̄

k
i,3, 1]� is a 4×1 homogeneous point where the bar notation selects

the 3D component (See Fig. 3). A landmark mk
i defined in keyframe k can be

transformed to keyframe j by transformation matrix P jk as Equation (2).

mj
i = P jkmk

i = [Rjkm̄k
i + T jk, 1]� =

[
Rjk T jk

0 1

]
[m̄k

i,1, m̄
k
i,2, m̄

k
i,3, 1]� (2)

In this paper, we assume that the camera is calibrated (i.e., intrinsic param-
eters are known a priori). Image projection using homogeneous coordinates
π : R4 → R

3 is modeled as a pinhole camera:

π
(
P jkmk

i

)
=

(
m̄j

i,1f

m̄j
i,3

+ ox,
m̄j

i,2f

m̄j
i,3

+ oy, 1

)�
, (3)

where f is the focal length, o = [ox, oy]� is the principal point. The normal-
ized image coordinates is defined by π

(
P jkmk

i

)
/‖π

(
P jkmk

i

) ‖. In a monocular
camera, the observation of a 3D point mi in keyframe j is denoted by (3) where
zj
i ∈ R

3. In a binocular camera (e.g., stereo or RGBD camera), the observation
is

zj
i =

[

π(P jkmk
i ), f

m̄j
i,1 − b

m̄j
i,3

+ ox

]�
∈ R

4, (4)
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Algorithm 1. Local bundle adjustment: Bundle adjust keyframes and landmarks within the

sliding window w. Reference frame a0 usually set to most recent frame.

Input : Reference keyframe a0, Window size w

Output: Bundle adjusted active keyframes A ∈ G and periphery keyframes A′ ∈ G, A �= A′
1 Initialize active keyframe set A, periphery keyframe set A′ and active landmark set MA as ∅;
2 Perform metric embedding from a0 only w number of frames. Insert embedded keyframes to A;

3 // Construct active set A and periphery keyframe set A′
4 forall the keyframe k ∈ A do
5 L ⇐ All landmarks associated to a keyframe k ;
6 forall the landmark m ∈ L do
7 MA ⇐ MA ∪ {m};
8 N ⇐ Set of keyframes that observed the landmark m;
9 // Add periphery keyframes for pose optimization

10 forall the keyframe k′ ∈ N do

11 if k′ /∈ A then

12 A′ ⇐ A′ ∪ {k′}
13 end

14 end

15 end

16 end

17 Perform bundle adjustment using cost function (5) with A, A′, MA;
18 // De-embedding : Update topological map using optimized poses

19 forall the Optimized keyframe i ∈ {A ∪ A′} do

20 P̃ ia0 ← Pose of the keyframe i with respect to a0 ; /* bundle adjusted pose */

21 N ← Find neighbor keyframes of i;
22 forall the neighbor keyframe j ∈ N do

23 P̃ ja0 ← Pose of the neighbor keyframe j with respect to a0;

24 P ij ← P̃ ia0 P̃
ja	

0 ; /* Update an edge j → i */

25 P ji ← P̃ ja0 P̃
ia	

0 ; /* Update an edge i → j */

26 end

27 end
28 // Update landmark position in topological map

29 forall the Optimized landmark m̃
a0
i

∈ MA do

30 P̃ ka0 ← Pose of anchor keyframe k of a landmark m
a0
i

with respect to a0;

31 mk
i = P ka0 m̃

a0
i

; /* m̃i Bundle adjusted 3D point */

32 end

where b is the baseline between two cameras. All images are assumed to be
undistorted and rectified.

3.3 Optimization of Pose Graph

In order to achieve constant-time operation, we define a sub set of keyframes A
which is called active keyframes from set K. The set A usually constructed with
most recent-w keyframes from the current keyframe. The w is called window-
size, typically 5 to 10 in our implementation. Local optimization is performed
within the set A.

As we preserve topological relations between map and poses, we further seek
keyframes that are worthy of inclusion in the optimization. These keyframes
are denoted A′ which are selected based on the existence of covisible features
between the set A and a neighbor keyframe set N of A, but N /∈ A. The orig-
inal active keyframes include all measurement and poses to be optimized (i.e.,
poses and landmarks are optimized). However, only relative pose information
of keyframes in A′ are optimized (i.e., pose-to-pose only optimization). This
approach is motivated by [22]. In contrast to [22] which used single global coor-
dinates, our approach is purely based on relative formulation, so it shows better
metric consistency in local window in large-scale loop closures. Therefore, our
algorithm can handle complex multi level loop closures which will be described
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.

in detail in Section 4.3. Following cost function J is considered to optimize both
3D point and pose-to-pose constraint of local metric embeddings constructed by
Algorithm 1:

J2(G, a0)=
∑

i∈MA,

∑

j∈A
vij

(
zj
i − π

(
P ja0ma0

i

))2

+
∑

i,j∈A′
vij

(
P ij	

Λij

(
P ia0P ja	

0

))

(5)
where G is a pose graph, a0 is an reference frame of local window, vij (i�=j) is a
function where 1 if a direct path available in topological map, otherwise 0 and
Λij is a covariance matrix.

4 Proposed Method

4.1 Fisher Information for Uncertainty Measure

Current scheme to determine keyframe usually relies on a norm of translation or
rotation part of the pose with respect to previous keyframe. This results uniform
sample of poses and landmarks in the Euclidean space as proposed by existing
approaches [10,11]. However, determination of this threshold is somewhat vague,
also it is prone to pose estimation error or spiky motion. The distance or rotation
threshold also depends on scene characteristic. For example, if a camera travels
in a large outdoor environment, the same distance threshold as indoor environ-
ment will create keyframe too frequently. Therefore, we need a more intelligent
metric to determine whether current frame should be registered as keyframe or
not. In the following subsection, we describe detailed metric used for keyframe
generation.

In [21], the uncertainty is modeled by a trace of covariance matrix. It is well
suited for offline problem such as structure from motion (SfM) by calculation
of uncertainty amount along given keyframe path. However, it is unclear to
determine the threshold of trace of the covariance to represent uncertainty to be
kept for the keyframe creation that is online process. To address this problem, we
propose a novel keyframe selection scheme based on Fisher information matrix.

The Fisher information matrix can be approximated by the inverse of the
covariance matrix of maximum-likelihood estimators [1]. As bundle adjustment is
a maximum likelihood problem, estimators asymptotically have zero bias and the
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lowest-variance that any unbiased estimator can have [25]. Obtaining covariance
is not straightforward, since the bundle adjustment problem is large. Filters like
Kalman filter always keep covariance of the system, but they are not practical
for such large problems.

Let pose p� is a solution of maximum likelihood estimate of p obtained by
bundle adjustment :

p� = arg min
p

‖z − f(p)‖2 where z = f(p), (6)

where f(·) is a nonlinear measurement process (3) and z is a measurement. If
measurement process f(·) is differentiable, the covariance matrix of pose p can
be estimated by following equation:

Σp� = (J�
p�ΣzJp�)−1 (7)

where Jp� is Jacobian matrix evaluated at estimated pose p�, and Σz is covariance
matrix of observations. We assume that the measurement process is independent
and equal covariance which means that Σz = I. The Fisher information matrix
F is defined as

F = Σ−1
p� . (8)

See Fig. 4 for F of fr2/sitting xyz sequence. For online algorithm, com-
puting the covariance of current frame with respect to all other existing keyframe
is not feasible. As our representation separates global and local map, we only
compute current pose uncertainty within active keyframes. This naturally mod-
els current frame uncertainty within a meaningful physical region. For example,
if we consider whole pose graph to compute covariance, the distant keyframe
might increase actual uncertainty we are interested in. In [21], only translational
uncertainty was considered for offline structure from motion. However, the rota-
tional uncertainty should be considered in online video-based reconstruction.
We estimate full 6× 6 covariances of 6-DoF pose with considering all landmarks
currently observing and relative keyframes in pose graph.

4.2 Keyframe Selection Scheme

The Fisher information is inverse of covariance in our problem. We consider the
determinant of Fisher information matrix τF :

τF = det(F ) = det
(
Σ−1

p�

)
. (9)

As the amount of variance can be approximated by determinant of covariance
matrix, if estimator variance becomes large, proposed metric τF naturally con-
verges to zero, but never reaches zero in theory. Fig. 4 shows actual value of
proposed metric for RGB-D sequence fr2/xyz along with time (See Table. 1 for
details). Setting threshold of τF as moderately small number (e.g., 0.001 in our
case) will adaptively selects keyframes based on surrounding environment and
feature qualities. The proposed method creates keyframe based on uncertainty
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Fig. 5. An illustrative example of two loop detection cases. (a) local bundle
adjustment is performed past five frames. (b) If loop is found, corresponding relative
pose and landmark observations are added to the bundle adjustment framework, then
optimized. (c) Right before the loop, features in current frame and 3D landmarks are
linked. (d) After the detection, pose links are registered.

bound of pose. Naturally it considers both position and rotational uncertainty in
a single framework. In the previous approach, distance or rotation threshold was
used to keep feasible problem size for optimization. In other words, the propose
approach is naturally considers the quality of measurements which depends on
scene size and the speed of moving camera. In summary, it creates even sample
of keyframe in information wise, not heuristically determined distance thresh-
old. Although a user still have to determine uncertainty boundary, however, the
tuning parameter itself more informative. Tuning the threshold is easier than
determination of 0.2 m or 20 degrees which depends on scene characteristics for
example.

4.3 Multi Level Loop Closing

Structure-from-motion or keyframe-based visual SLAM problem largely rely on
the quality of feature tracking [27]. If feature tracks are disjointed caused by
objects moving in an out of the view, or pure rotation motion, are not included
as constraint in the bundle adjustment. Observing a 3D point in many views
definitely helps to obtain accurate map and pose within bundle adjustment
framework. We will call this constraint namely feature-level loop throughout
this paper.

However, obtaining a feature-level loop is not a straightforward problem. In
PTAM [10], they projected all 3D features in the map which are visible by the
previous motion, to obtain non-consecutive feature-level loop. But, the PTAM
requires strong motion prior to this end. Once a camera motion is lost, they
compare small image patches of all keyframes to measure similarity then perform
exhaustive matching that takes time. It is also prone to errors and not scalable.
In [27], they proposed two-pass algorithm to find non-consecutive feature tracks
which is the same as the feature-level loop. However, it is very slow and not an
online algorithm.

In this paper, we propose feature-level loop closing motivated by recent
development of image-based localization [7,19]. The main difference compared
to image-based localization, we update database in real-time and utilize linked
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Algorithm 2. Feature-level loop detection. τ = 0.7, ε = 0.001 in this paper.

Data: Vocabulary tree V , trained by using descriptors associated to 3D points.
Input : SURF descriptors Q, of current input frame.
Output: Loop constraint P ka0 between current frame a0 and matched keyframes k.

1 M, K ← ∅ ; /* Initialize M:2D-to-3D matches, K:votes */

2 W ←Find visual words of query descriptors Q using vocabulary tree V ;
3 forall the visual word w ∈ W do
4 L ← Get landmark ids of w;
5 q ← Get SURF descriptor of w;
6 dfirst, dsecond = ∞;

7 forall the landmark l ∈ L do

8 q′ ← Get SURF descriptor of a landmark l;

9 d ← Compute distance between descriptors q and q′;
10 if d < dfirst then

11 dsecond = dfirst;

12 dfirst = d ;

13 m ← A 2D feature related to the visual word w and a 3D landmark l are set as best match;
14 k ← Find anchor keyframe number of a landmark lj ;

15 end

16 end

17 if
dfirst

dsecond
> τ then

18 M = M ∪ {m};
19 K = K ∪ {k};
20 end

21 end
22 Perform RANSAC with P3P using 2D-3D matches M;
23 /* Compute Fisher information and optimize pose. λ (= 15) */

24 if the number of inliers > λ then
25 Optimize pose P using inliers. The determinant of Fisher information, J is returned.;
26 if J > ε then
27 forall the voted keyframe k ∈ K do

28 Compute relative pose P ka0 between current a0 and target keyframe k;
29 Add relative pose constraint to the pose graph.
30 end

31 else
32 Create a new keyframe using current frame.
33 end

34 end

motion prior of the matched 3D landmark, to reject false positives. Also we use
videos, not a discrete images as in [7,19], we utilize both temporal relationship
among frames and feature-level loops. The two types of loop are shown in Fig. 5.

Keyframe-to-Keyframe Loop Closing. We first utilize existing keyframe-
to-keyframe style loop closing. Our feature tracker will provide the most recent
SURF descriptor tracked until the current frame. These descriptors are provided
to vocabulary tree when keyframe is created. The SURF descriptors of a new
keyframe are queried to the existing keyframes, and 2D-3D correspondences are
obtained from query result. Further geometric verification is performed with
RANSAC. Outliers will be removed during the RANSAC process. If enough
inliers are found, nonlinear optimization minimizing reprojection error is per-
formed to obtain accurate relative pose with respect to matched frame. We add
this relative pose and 2D-3D observations to the graph, further local bundle
adjustment will be performed.

Feature-Level Loop Closing. The majority of existing online 3D modeling or
visual SLAM systems have been used keyframe-to-keyframe loop closure scheme
[11,15,22] which seeks corresponding keyframe among existing keyframes. Loop
closure operation (i.e., querying current keyframe to the database) only happens
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Table 1. Evaluation datasets. Evaluation sequences and its scene characteristics are
shown. The length of camera traveled, duration, the number of images and keyframes
reconstructed are listed. As you can see, relatively stationary motion shows low per-
centage of frames selected as keyframes.

Dataset Travel Length [m] Duration [s] # images # of keyframes % of frames used

fr1/xyz 7.112 30.09 798 53 6.6
fr1/room 15.989 48.90 1362 138 10.1
fr1/desk 9.263 23.40 613 74 12.1
fr1/desk2 10.161 24.86 640 121 18.9
fr1/rpy 1.664 27.67 723 83 11.4
fr2/desk 18.880 99.36 2965 99 3.4
fr2/xyz 7.029 122.74 3669 53 1.5
fr3/office 21.455 87.09 2585 118 4.6
fr3/sitting xyz 5.496 42.50 1261 17 1.4

Table 2. Comparisons to other approaches. We have compared our method to
four different approaches. The nine sequences were evaluated. The reader should note
that all the methods compared in this table are using pose estimation based on dense
iterative closed point (ICP) using depth image. In contrast, our algorithm considers
only a depth of each keypoint which is essentially same as a stereo camera. Without
use of ICP algorithm as main pose estimator, we achieved few (2.2cm) difference com-
pared to the state-of-the-art approaches in ATE. Furthermore, our approach has better
performance in terms of relative pose error (RPE). This is due to the fact that our
algorithm successfully close the loop which is a key of minimizing drift. We compared
RPE with [23] because the RPE is only reported in [23].

RMSE ATE in [m] RMSE RPE in [m]
Dataset Ours Stuckler et al.[23] Bylow et al.[2] Kinfu RGB-D SLAM [5] Ours Stuckler et al.[23]
fr1/xyz 0.015 0.013 0.021 0.026 0.014 0.021 0.02
fr1/room 0.101 0.069 0.078 0.313 0.101 0.056 0.139
fr1/desk 0.059 0.043 0.046 0.057 0.026 0.014 0.075
fr1/desk2 0.108 0.049 0.069 0.420 0.059 0.067 0.09
fr1/rpy 0.031 0.027 0.042 0.133 0.026 0.037 0.04

Average 0.062 0.040 0.051 0.189 0.045 0.032 0.077

fr2/xyz 0.013 0.020 - - - 0.002 0.030
fr2/desk 0.072 0.052 - - - 0.047 0.099
fr3/office 0.025 - 0.039 0.064 - 0.011 -

fr3/sitting xyz 0.017 - - - - 0.005 -

when the keyframe insertion is performed. The existing approaches overlooked
the fact that it is possible to have better loop closure from input frames between
keyframes.

In this paper, we directly search 2D-3D correspondences efficiently to perform
every-frame loop seeking by utilizing recent results of image-based localization
[7,19]. In [4], similar view recognition is performed by using kd-trees. The system
builds kd-tree incrementally, and all descriptors in current frame are queried
to the database. They kept top-k views among registered views for geometric
verification. However, this approach does not scale well due to the fact that the
metric tree is required to store all descriptors on memory, also search time grows
significantly as the number of features in the tree increases.



250 H. Lim et al.

Instead computing pose from these 2D-3D matches directly, we create keyframe
based on a pose between current and last keyframes that is most accurate pose in
the graph. Then we add these 2D-3D matches to the keyframe. See Algorithm 2
in detail.

5 Experimental Result

The evaluation datasets are summarized in Table 1. For evaluation we chose 9
sequences across Freiburg1 to 3 (FR1–3) datasets that are especially recorded by
handheld camera. Those datasets also have been used by several other authors
for evaluation [2,5,9,23]. We have compared our approach with those authors
(See Fig. 2). The experiments were performed on a laptop with an Intel Core i7
with 2.3 Ghz processor. But only single core is utilized for the proposed method
to make the proposed method work on embedded system in the future.

We utilize the evaluation software that measures root mean square error
(RMSE) of the translation drift (RPE) in m/s and absolute trajectory error
(ATE) in meters. Detailed computation of those metrics is shown in [24].

(a) fr1/xyz (left), fr2/xyz (right)
sequences reconstructed. Both seque-
ces have a specific camera motion as shown
in the figures (i.e., the camera was moved
only in axial direction). The axial trajec-
tory is clearly seen in the figures.

(b) fr1/desk (left), fr1/desk2 (right)
sequence reconstruction. Two
sequences were captured in the same
physical place, but captured twice.
Dense 3D point cloud model obtained by
proposed method. Red, gree, red color
bars mean X,Y,Z axes of the keyframes
respectively.

(c) Sequence
fr1/desk. 74
keyframes.

(d) Sequence
fr1/room. 138
keyframes.

(e) Sequence
fr1/xyz. 53
keyframes.

(f) Sequence
fr2/desk. 99
keyframes.

Fig. 6. Reconstruction results. Once all frames are processed, bundle adjustment
with all keyframes is performed. Then the full-resolution depth image of each keyframes
are projected by the assigned keyframe pose. Currently, colored points are rendered.
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(a) Proposed keyframe selection
scheme. The proposed method utilizes
Fisher information matrix to select
keyframe from 30fps video sequence. In
fast or high angular velocity motion, our
method automatically creates more dense
keyframes compared to normal camera
movement.

(b) Existing distance-based
keyframe selection scheme. The
keyframes are generated with 0.2m con-
stant distance threshold with orientation
norm 0.1 radian. This method creates reg-
ular sample of Euclidean 3D environment,
but these keyframes are very redundant.

Fig. 7. Comparison between keyframe selection methods. The propose method
and existing method are compared with same video sequence. Our method (left) adap-
tively creates sparse or dense keyframe compared to the right (distance-based app-
roach).

Unlike existing RGB-D online mapping approaches which use all dense 3D
point cloud to obtain relative pose between frames [5,17], we only utilize depths
of tracked 2D features (usually 200 in a frame) and the relative pose is computed
by P3P algorithm, essentially the same as stereo camera. Thus the RGB-D cam-
era can be replaced with a stereo camera without changing the system.

We have compared our method with four other approaches: multi-resolution
surfel maps (MRSMap) [23], KinectFusion [17], RGBD-SLAM [5] and Bylow et
al.[2]. As shown in Table 2, our approach is superior in terms of relative pose
error (RPE) as two types of loops are thoroughly considered. However, absolute
trajectory error (ATE) is slightly inferior to existing approach (by less than a
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few centimeters). One of the main reasons is that we did not use dense depth
map for motion estimation that is likely to be more accurate than image only
pose estimation when the motion is slow. Another reason is that the ATE metric
divides number of keyframes used. In most cases, our algorithm produces fewer
numbers of keyframes than other approaches which used all frames as keyframe.
The accuracy of our method can be shown by RPE as other approaches are
less accurate despite they have used ICP and all frames. The reconstructed 3D
environment map of evaluation sequences is shown in Fig. 6.

Fig. 7 shows the difference between the proposed and existing keyframe
selection method. Our method creates keyframes adaptively as shown in the
screenshot above according to the uncertainty amount of current pose com-
puted with landmarks. A video of our method is available on http://youtu.be/
gnbnFEjy8wU.

6 Conclusion and Future Work

We have proposed a novel and efficient framework for online 3D reconstruction
and camera tracking. The information theoretic keyframe selection scheme can
adaptively selects the keyframe, and the feature level loop detection successfully
closes the loops with the same uncertainty metric. We demonstrated the pro-
posed approach with ground truth, where it performs better than or at least as
good as the state of the art methods. Considering that only sparse keyframes
are used for reconstruction, the proposed algorithm has many benefits over the
dense RGB-D reconstruction algorithms.

One interesting problem for the future work is to keep the number of keyframes
and landmarks as sparse as possible while it preserves essential information of the
environment. This is also connected to life-long visual mapping or skeletal graph
construction. This would allow the map size to be proportional to the characteris-
tics (e.g., size, a degree of clutter) of the environment not to the number of images
taken in the environment.
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