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Abstract. In this paper, we present a system for visualizing tempera-
ture changes in a scene using an RGB-D camera coupled with a thermal
camera. This system has applications in the context of maintenance of
power equipments. We propose a two-stage approach made of with an
offline and an online phases. During the first stage, after the calibration,
we generate a 3D reconstruction of the scene with the color and the
thermal data. We then apply the Viewpoint Generative Learning (VGL)
method on the colored 3D model for creating a database of descriptors
obtained from features robust to strong viewpoint changes. During the
second online phase we compare the descriptors extracted from the cur-
rent view against the ones in the database for estimating the pose of the
camera. In this situation, we can display the current thermal data and
compare it with the data saved during the offline phase.

1 Introduction

Usually, anomalies in power equipments or building structures are detected by
looking for variations in the temperature which are difficult to be directly visu-
alized. Such strong changes will often imply a malfunction or a future problem.
A common way to evaluate the changes in the temperature state is to fix a cam-
era and to compare the temperature at two different times. The resolution and
the field of view of the thermal cameras is, however, quite small which makes
difficult to monitor big size objects or large areas. Since the cost of such a device
is also high, it makes it hard to use several cameras to cover a large surface.
We then propose a system for detecting abnormalities from temperature
changes in wide areas with a thermal camera coupled with an RGB-D cam-
era. Our approach is based on two precomputed 3D reconstructions of the tar-
get scene achieved with a RGB-D camera coupled with the thermal camera as
shown in Fig. 1. The first reconstruction holds the color information, while the
second one holds the thermal information. The colored 3D reconstruction is used
with the Viewpoint Generative Learning (VGL) [11] algorithm to detect feature
points robust to strong viewpoint changes. We then generate a database with the
corresponding 3D positions and descriptors of these features. For comparing the
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status of the temperature between the reconstruction and the current time, we
accurately estimate the pose of the camera by finding keypoint correspondences
between the current view and the database. Knowing the pose of the camera, we
are then able to compare the thermal 3D reconstruction with the current status
of the temperature from any viewpoint only with a hand-held camera.

Fig. 1. Our capture system is made of the Microsoft’s KINECT and the optris PI160

Since the RGB-D camera and the thermal camera are two distinct devices,
we need to estimate their relative pose. Here, we propose our own calibration
board that makes easier the pose estimation of the thermal camera in reference
to the RGB-D camera.

The remainder of the paper is organized as follow: After an overview of
the components of our system, we describe our calibration process with the
introduction of our calibration board. Section 4 will detail our reconstruction
process based on Kinect Fusion, and in section 5 we will give a reminder about
the VGL algorithm. After describing the online phase of our method, we finish
by presenting the experiments.

In our system, Thermal information is projected onto the current color image,
because that would makes easier to understand where we are looking at, and
enhances our system [9]. In our knowledge, this is the first work to propose the
visualization of temperature changes over middle sized areas.

2 Proposed Method

Our proposed method consists of two stages. During the first one, we precom-
pute two 3D models of a scene, one with corresponding temperature distribution
at the capture time and another with the color information. We will refer to this
temperature map as the reference temperature. Kinect Fusion[5] is used to gen-
erate uncolored 3D Models. This offline phase thus requires a calibration that
estimates the relative pose of the thermal camera in reference to the RGB-D
camera. The thermal map will be used later for the comparison of the reference
temperature with the current state. The colored model is the source of key-
points robust to strong viewpoint changes that will be used to create a database
of descriptors and 3D points with the Viewpoint Generative Learning algorithm.
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Fig. 2. System Overview

The database will then be available for the online phase for accurately estimating
the pose camera.

During the second stage, we estimate the pose of the camera and use it to
compare the current temperature state with the reference one. The pose of the
camera is estimated by comparing the descriptors stored in the database with
the ones extracted from the current view. At this time, we know the pose of the
camera, the current state of the temperature, and the reference one stored in a
3D model. With the pose estimation we can then align the thermal 3D model
with the current viewpoint. By combining these data, users are able to visualize
thermal changes and can freely move the camera around the scene, but in the
limits of the 3D model. An overview of our system is depicted in Fig. 2.

3 Calibration

3.1 Our Calibration Board

A traditional approach for calibration is to use a planar pattern like a chess-
board that can be easily detected and matched from multiple cameras [12]. If
this approach works well with standard color cameras, it remains difficult to
directly apply it with images from a thermal camera since the temperature on
the calibration board is uniform. A common solution is to heat the board using,
for instance, a flood lamp as described by [3] or [8].

We extended this idea by proposing a special calibration board that is visible
from both color and thermal cameras. Our board is made of two plastic plates
generated with a 3D printer. The first one, the lower plate, is made of a planar
surface covered of regular bumps corresponding to the black parts of the calibra-
tion pattern. The second plate is designed to plug onto the first one, It is thus
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(a) The lower plate is heated while (b) The calibration board captured
the upper one remains at ambient from the thermal camera
temperature

Fig. 3. The Board used for calibration the RGB-D and the thermal cameras

made of a planar surface with holes where the black parts of the calibration pat-
tern should appear. At the end, combining both plates creates a flat calibration
pattern like the ones commonly used. The plates can be observed in Fig. 3(a).
To make it visible from the thermal camera, we simply heat the lower plate
while the upper one remains at ambient temperature. This will provides enough
contrasts in the resulting image to detect the calibration pattern as presented in
Fig. 3(b). For our board, we preferred the use of a pattern made of black circles
rather than a checkerboard for two reasons. First, a circle shape makes the plug
of the two plates easier. Second, the detection of the center of the circles remains
robust even if the captured images are blurred or if the heat from the lower plate
propagates uniformly on the upper plate.

3.2 Estimation of Intrinsic Parameters

The intrinsic parameters of the thermal camera are evaluated using the Zhang’s
method [12]. We capture several views of our calibration board and evaluate the
corresponding focal lengths, principal point and aspect ratio. The skew param-
eter is considered null. For better evaluation of the parameters and since the
sensor is slightly different from the pinhole camera model, we start by fixing
the principal point at the center of the image plane and refined it during the
calibration process.

3.3 Estimation of Extrinsic Parameters

The goal of this calibration is to estimate the pose (rigid transformation) of
the thermal camera with reference to the RGB-D camera. For this process, we
take advantage of the 3D coordinates provided by the depth camera. For each
circle’s center from the calibration board, we can obtain the corresponding 3D
position. By finding the corresponding pixels in the thermal image, we create a
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set of 3D/2D correspondences. We then apply the Efficient Perspective-n-Point
algorithm to estimate the extrinsic parameters [6].

However, the depth map generated by the RGB-D camera suffers of noise.
We then propose to fit the 3D coordinates extracted from the calibration board
to a planar surface. The equation of this surface is found by first gathering
several samples (~400 3D points) from the target surface around the detected
pixels. We then apply a singular value decomposition UXV™ on the data and
extract the singular vector from U describing the normal to the plane we are
looking for. Finally, each of the 3D coordinates previously obtained from the
center of the circles are projected onto the computed plane to accurately esti-
mate their position. The resulting points are then used for the calibration of
external parameters. Benefits of this approach will be demonstrated later in the
experiment section.

4 Creation of the 3D Models

4.1 The 3D Models

Kinect Fusion[5] is used to generate uncolored 3D Model. This method esti-
mates the pose of an RGB-D camera for each frame using a dense version of the
Tterative Closest Point (ICP) algorithm on GPU [2], and integrating the depth
information from each frame into a voxel grid using a Truncated Signed Distance
Function(TSDF) [4].

While running Kinect Fusion for generating the uncolored 3D reconstruction
of the scene, we also save the pose estimation of the camera and the correspond-
ing color information. After finishing the reconstruction, we convert the voxel
grid into two meshes. Using the pose estimation of the camera, we then map the
color images on one mesh, and the thermal images on the other one. The field
of view of the thermal camera is however smaller than the RGB-D camera’ one
and thermal data will not cover all the surface of the 3D model.

4.2 Resolution of Occlusions with the Thermal Images

As described in the previous subsection, we generate the colored 3D model and
the thermal 3D model in similar ways. However, the RGB-D camera and the
thermal camera are located at two slightly separate positions which implies that
we need to apply the rigid transformation computed in Sec.3.3) to compensate
this difference and correctly performing the mapping. Also, since the viewpoints
are different, we need to deal with occlusions on the 3D reconstruction during
the mapping stage as observed in Fig. 4(a).

Our solution is to perform a depth test by projecting depth and color pixels
from the RGB-D camera onto the thermal image plane. First, the 3D points
corresponding to the pixels from the depth image are projected onto the thermal
image, and are discarded if the projection is outside of the thermal image plane.
Since we are dealing with occlusions, a pixel of the thermal image can correspond
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(a) Before the processing (b) After the occlusion removal

Fig. 4. Example of occlusion processing, almost all of the occlusion areas are removed
by our depth test approach

to multiple depth/color values from the RGB-D image. Our goal is then to
preserve the candidate with the smallest depth in the thermal image. This pixel
will finally represent the surfaces visible from the thermal camera viewpoint.

At this point, several pixels of the thermal camera can still be incorrectly
displayed in the color image, especially if the field of view of the cameras are
strongly different. In our case, the RGB-D camera has a vertical fov of 45° while
the thermal camera’s field of view is 31°. So, when projecting a RGB-D pixel
onto the thermal image, it will overlap multiple thermal pixels and not a single
one. We resolved this issue by computing the average of the values inside of a
3 x 3 pixel area (empirically estimated) centered on the projected color pixel and
by replacing the neighbors pixels with a strong absolute difference with average
of this area.

Finally, for each pixel of the RGB-D image, we can find or not (in case of
occlusions or if the projection is outside of the thermal image) a correspondence
in the thermal image. An example of our occlusion removal process is presented
in Fig. 4 (b).

5 Viewpoint Generative Learning for Tracking

During the online phase, in order to estimate the pose of the RGB-D camera with
the scene captured for the 3D model, we need a tracking algorithm that can be
robust against strong viewpoint changes and occlusions. Our solution is to use the
Viewpoint Generative Learning (VGL) [11]. The first step requires, during the
offline phase, to generate a database of descriptors from visual features with high
repeatability. The idea is then to capture the reconstructed 3D model of the scene
from several different views using the OpenGL rendering process as illustrated
in Fig. 6. For each image obtained, we detect the features with SIFT [7]. We
aggregate these features in the 3D space and conserve only the ones that can be
detected over multiple views. We define these features with high repeatability
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(a) The colored model (b) The thermal model

Fig. 5. 3D models of a scene occupied by server machines

Fig. 6. Illustration of the multiple view rendering used in VGL

as stable keypoints and extract the corresponding descriptors. At this stage,
however, the amount of data is too high for expecting a fast traversal of the
database. We then decided to cluster the descriptors of a stable keypoints by
applying k-means++ [1] on them. Finally, we store in the database the clustered
descriptors and the 3D position of each stable keypoint.
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6 Online Phase

6.1 Camera Tracking

During the online phase, we want to display the actual temperatures of the
scene and make comparisons with the reference temperature mapped on the 3D
thermal model. This means that we need to find correspondences between the
pixels of the current view and the 3D coordinates and descriptors of the 3D
model stored in the VGL database.

The tracking algorithm consists of two phase, the first one consists in initial-
izing the pose of the camera by comparing the current view with the database.
The second phase uses the initialization for performing a frame to frame tracking.
This approach appears to be faster since requesting the database is slow. Also,
we can only use descriptors stored in database, so if good features are detected in
current frame, we end up discarding those if we don’t have corresponding stable
keypoints in database.

In the first frame, we start by detecting features in the current image captured
by the RGB-D image and extract their descriptors. We look for the two most
similar descriptors inside of the database using the Fast Library for Approxi-
mate Nearest Neighbors (FLANN) algorithm. We then evaluate the Euclidean
distance ratio between the descriptors from the current view and these two near-
est neighbors from the database. If the ratio is under a given threshold, we then
verify the established correspondence, otherwise the correspondence is consid-
ered as incorrect. Using these results, we are able to generate a set of 3D/3D
correspondences with the 3D position stored in the database and RGB-D current
view. The pose of the RGB-D camera is finally deduced with a singular value
decomposition associated to RANSAC for excluding wrong correspondences.

In the frame-to-frame tracking, we also extract descriptors from current
RGB-D frame. We then searches in local neighborhood for correspondences with
the feature from the previous frame assuming a small displacement. The match-
ing pairs are evaluated based on Euclidean distance, and keep the closest one as
matching pair. The pose is finally deduced with a singular value decomposition.

Fig. 7 shows an example of visualization of the reference temperature on the
current captured view and of the current temperature.

6.2 Online Thermal Image Rendering

During the online processing, we project the thermal information from thermal
camera onto the color image of the RGB-D camera using previously estimated
intrinsic and extrinsic parameters of the camera. Occlusions are resolved in the
same manner as the algorithm we mentioned in Sec.4.2, and applied on GPU
with CUDA. The processing time will be presented in the experiment section.
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Fig. 7. Examples showing two different states of the temperature distribution of the
scene

7 Experiment

7.1 Calibration Accuracy

In order to evaluate our calibration accuracy, we estimated the field of view
of the thermal camera, which is calculated using intrinsic parameter from our
calibration method, and compare it with the one written in technical description
of thermal camera. We used two kinds of thermal camera in the experiment. One
is NEC Aviofs Thermal Shot F30 with a resolution of 160 x 120 and a framerate
8 img/s. The other one is optris’s PI160 with a resolution of 160 x 120 and
a framerate 120 img/s. Vertical/Horizontal values of the field of view of the
30 is 31°/41°. Vertical/Horizontal values of the field of view of the PI160 is
21°/28°. We estimated those parameter of the F30 to 20.18°/27.56°, and P1160
t0 41.6396° /30.9459°. We can safely say that our intrinsic parameters are correct
while assuming that the principal point is close from the center of the image.

The accuracy of the extrinsic parameters are evaluated based on are-
projection error computation. In this experiment, we compare the average of
re-projection error with the planar approximation and without it. By using the
extrinsic matrix and the intrinsic matrices of the RGB-D and thermal cameras,
we projected the centers of the circle from our calibration pattern from the
color image onto the thermal image that we define as the ”projected point”.
We then compute the re-projection error as the sum of the distances between
the projected points and the detected centers of the circles in thermal image.
Table 1 depicts the accuracy of our calibration process with and without the
planar fitting approach. This result demonstrates that the calibration process is
more accurate when we use planar approximation for reducing the noise from the
depth image. The Thermal Camera is the Thermal Shot F30 with a resolution
of 160 x 120 and a framerate 8 img/s.
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Table 1. Extrinsic Calibration Accuracy Comparison

Thermal Camera|Planer Approximation|Reprojection Error(pixel)
Use 5.05
F30 Don’t Use 5.46
Use 2.84
P1160 Don’t Use 2.92

7.2 Overall System Evaluation

In this experiment, we precomputed a two 3D models as shown in Fig. 8. In
Scenel/Scene2, we demonstrate that proposed system is effectiveness against
small/big objects. In scenel, we also compute the processing time. The system
was executed on a PC with 16.0GB of Ram, a Core i7-4800MQ CPU and a
Nvidia Geforce GTX 780M graphic card. The RGB-D camera is a Microsoft
Kinect with a resolution 640 x 480 and a framerate of 30 img/s.

In scenel we used the Thermo Shot F30, and scene2 we used optris PI160.

Processing Time. The processing time of our system is presented in Table 2.
We computed the processing time on an average of 100 frames. We can observe
50% of the time is dedicated to the tracking. The reason is that we use SIFT [7]
as local features, which is computationally expensive to extract. This might
be improved by defining new descriptors which is a combination of local fea-
ture(computationally cheap one such as FAST [10]) and the depth information.

Table 2. Evaluation of Processing Time

processing time(sec)
Tracking 0.110
Render on-line thermal image 0.008
Visualization 0.084
Total 0.202

Experiment with Small Objects. For this experiment, we used different
small target objects such as a mannequin’s head (manually heated), a laptop,
a projector and an electric kettle. The objects can be seen in Fig. 9 with also
the reference temperature and the current temperature states. We can visually
notice that the thermal data match the 3D corresponding objects. For evaluating
our system, we computed the average error between the depth values from the
3D model and the current captured depth map. We compared only pixels located
in the area covered by the thermal data in the current view.
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(d)

Fig. 8. 3D Color and Thermal Models used in experiment. The top row is a relatively
small scene filled with several small target objects captured with NEC Avio’s Thermo
Shot F'30. The bottom row is large scene which target object is air-conditioner captured
with Optris PI 160. Target objects are emphasized with yellow lines.

In the left side of Table 3, we present the average error in terms of depth
for each of our target objects. For objects with a relatively simple shape such as
the projector, the error becomes less than lcm. On the other hand, with more
complex objects like the mannequin’s head and the electric kettle, the error
varies from lcm to 3cm. However, with the laptop PC even if its shape is simple,
the error is the largest one, because its material properties increase the noise in
the depth map. By observing the results, we can then conclude that our system
is stable to many kinds of small objects, and that the tracking and calibration
are accurate enough for our purpose.
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Fig. 9. Thermal image with the reference temperature on the left column and the
current temperature state in the right column. Mannequin, notebook PC, projector,
electric kettle from top to bottom The size of the thermal information is smaller in
the right column because left one is generated by rendering precomputed 3D thermal
model from the estimated camera pose.
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(8) (h)

Fig.10. Thermal image of normal state and abnormalities detecting time. Target
object is air-conditioner and images are captured from front, side, under, behind against
target object from top to bottom
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Experiment with Large Object. For this experiment, we used an air-
conditioner as a large target object. We evaluated in the same manner as for
small objects. Accuracy is evaluated from different view points(front, side, under,
behind). The result is shown in Fig. 10, and the right side of Table 3. We
can visually notice that the thermal data match the 3D corresponding objects.
Average of depth error from ”Side”, ”Under”, ”Behind” viewpoints is under
3cm. We can then assume that the current view of the temperature is correctly
projected on the reference model. Average of depth error from and ”Front” view-
point is over 4cm and is larger compared to the one from other viewpoints.

For "Front” viewpoint, images were captured from far, that is why cam-
era tracking by matching descriptors would be a difficult task, and also depth
accuracy with RGB-D camera would become low.

For these reasons, about result from ”Front” viewpoint, we can say result
is acceptable. We can then conclude that our system is robust to strong view-
point changes and works for large object which we need to see temperature
changes from many viewpoints to detect abnormalities. (For example, tempera-
ture change of outlet of cold air can only be seen from front viewpoint.)

Table 3. Overall System Evaluation

Scenel Scene2
Target Object |Average Error of Depth(mm)|Viewpoint|Average Error of Depth(mm)
Mannequin 13.63 Front 48.5208
Note-PC 43.88 Side 9.08713
Projector 6.39 Under 25.7105
Electric Kettle 23.48 Behind 26.9239

8 Conclusion

In this paper, we proposed a system for visualizing temperature changes of a
given scene using a RGB-D camera coupled with a thermal camera. During
an offline phase, we reconstruct a 3D model of the scene and save the poses
of the camera with the corresponding color and thermal images. During the
online phase, using the Viewpoint Generative Learning method applied on the
3D reconstruction of the scene, we are able to know the pose of the camera
and compare the current status of the temperature compared with the reference
one. With our experiments, we have shown that we can accurately calibrate our
capture system and visualize the differences between current and reference tem-
peratures. In future works, we would like to optimize the tracking by using new
descriptors that could be a combination of local feature and depth information,
and focus on single objects tracking rather than a whole scene.
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