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Abstract. Still image based activity recognition is a challenging prob-
lem due to changes in appearance of persons, articulation in poses, clut-
tered backgrounds, and absence of temporal features. In this paper, we
proposed a novel method to recognize activities from still images based on
transductive non-negative matrix factorization (TNMF). TNMF clusters
the visual descriptors of each human action in the training images into
fixed number of groups meanwhile learns to represent the visual descrip-
tor of test image on the concatenated bases. Since TNMF learns these
bases on both training images and test image simultaneously, it learns a
more discriminative representation than standard NMF based methods.
We developed a multiplicative update rule to solve TNMF and proved
its convergence. Experimental results on both laboratory and real-world
datasets demonstrate that TNMF consistently outperforms NMF.

Keywords: Still image based action recognition - Non-negative matrix
factorization - Transductive learning

1 Introduction

Activity recognition aims to recognize actions and goals of one or more individu-
als from a series of observations on the individuals’ actions and the environmental
conditions. It has found many applications in human-computer interaction [29],
human interaction recognition [28], robot trajectory planning [30], and video
surveillance [31] thanks to the convenience of capturing videos through cameras
[1-3,13,27]. Until now, activity recognition is an open and challenging prob-
lem due to changes in appearance of persons, articulation in poses, cluttered
backgrounds, and camera movements.
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Recognizing actions from benchmark videos has achieved promising perfor-
mance because of the dynamic features, but it is difficult to recognize actions
recorded in still wild images, e.g., images collected from Internet, because the
dynamic features cannot be extracted from still images. To recognize actions
from still images, it is important to extract representative cues including both
high-level and low-level cues. Traditional video-based activity recognition can
directly use the low-level cues such as the spatiotemporal interest point [23]
extracted from space-time volume, but the still image-based activity recognition
usually cannot because only the spatial information is available on single images
[35]. The high-level cues can be characterized by various low-level features, e.g.,
color names [21], and different high-level cues can be combined to enhance the
performance, e.g., combining pose and context information [20]. Interested read-
ers can refer to [24] for a systematic survey.

To construct high-level cues, it is an important pre-processing step to detect
human bodies, body parts and objects. However, it is quite challenging because
existing object detection methods usually work unsatisfactorily. Liu et al. [11]
proposed to represent actions by selecting key poses from video sequences. Zhang
and Tao [12] proposed the slow-feature analysis (SFA) framework to recognizing
human actions from video sequences by incorporating discriminative information
with SFA and spatial relationship of body components. Although these methods
have achieved great successes by utilizing human poses, they are not direct for
action recognition in still images due to the difficulty to extract body compo-
nents. In this paper, we constructed a high-level cues by clustering human poses
with non-negative matrix factorization (NMF, [7]) to avoid explicitly reasoning
about the body components [22]. Non-negative matrix factorization is a popular
data representation method which can extract intrinsic structure of dataset and
boost the performance of subsequent processing. Different from conventional
data representation methods, e.g., principal component analysis (PCA, [14])
and Fisher’s linear discriminative analysis (FLDA, [15]), which learns holistic
representation, NMF can learn parts-based representations from non-negative
datasets. For example, it can extract several versions of facial components such
as ‘noses’, ‘eyes’, and ‘mouth’ from frontal face image datasets. It is therefore rea-
sonable to believe that NMF can automatically extract body poses from bound-
ing boxes.

Thurau and Hlavac [4] proposed static histogram of oriented gradient (HOG)-
based features for activity recognition on still images by clustering a set of train-
ing human poses with NMF and utilizing histograms of the clustered poses to
represent each action. At the classification stage, they concatenated the pose
clusters of all actions and features of background, and calculated the histogram
of each test image on concatenated features and determined the label by clas-
sification. Since then, many works utilize NMF in activity recognition. Agarwal
and Xia [5] applied NMF to 3D poses recovery problem since NMF can effec-
tively represents local features of human body. According to [5], background
usually has a negative influence on action recovery because its changes are usu-
ally misunderstood as human actions. NMF is suitable for recovering poses from
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single image because it can significantly separate background from action poses.
Waltner et al. [6] utilized NMF to recognize actions from a small amount of video
frames. Different from [4] and [5], their method considers HOG of both appear-
ances and motions. The discriminative power of the learned poses is improved by
motions, but it is far from enough because aforementioned methods [4-6] ignore
test samples during training.

In this paper, we propose a novel method to recognize actions from still
images by using transductive NMF (TNMF). TNMF jointly learns a dictionary
of features on both training images from different actions and the test image to
be recognized. In particular, TNMF has two types of objectives: 1) it minimizes
the distance between the visual descriptors of the training poses of each action
and the product of its features and encodings, and 2) it minimizes the distance
between the visual descriptor of test image and the product of dictionary con-
catenated by those features of all actions and an encoding vector. Intuitively,
since the dictionary of features learned by TNMF contains the visual features
from both training images and test image, it can more accurately recover the
pose in single still image, and thus boost the recognition performance. TNMF
balances both objectives by a positive parameter and utilizes a multiplicative
update rule (MUR) to learn all features and the corresponding encodings. In
this paper, we proved the convergence of the MUR-based algorithm for TNMF.
Experiment results on both laboratory datasets and real-life datasets confirm
that TNMF significantly outperforms NMF in still image-based activity recog-
nition.

This paper is organized as follows: Section 2 surveys both NMF and its
application in activity recognition; we introduce the TNMF model and its MUR
based algorithm in Section 3; Section 4 verifies the method on both laboratory
and real-world datasets and Section 5 concludes this paper.

2 Related Works

2.1 Non-negative Matrix Factorization

Given a non-negative dataset, i.e., V € ]RTX", non-negative matrix factorization
(NMF, [7]) decomposes it into the product of two lower-rank matrices, i.e., W €
R and H € R*", where r < min {m, n}, by solving the following problem

. 2
wiin NV —WH[p. (1)

Usually, W and H can be considered as features and encodings, respectively.
It is obvious that NMF represents each sample by only additive, non-subtractive
combination of features. Therefore, NMF yields parts-based features represen-
tation.

Since such parts-based representation has strong evidence in human brain,
NMF has been widely applied in many real-world applications such as text min-
ing [8-10,14] and hyper-spectral imaging [10,15].
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2.2 Transductive NMF

Recently, Guan et al. [16] have proposed transductive NMF (TNMF) to simul-
taneously learn from multiple tasks, i.e., Vi, where 1 < k < K. TNMF combines
both training stage and test stage together to simultaneously learn single features
for each task and coefficient of test sample on concatenated dictionary.

The objective function of TNMF is

; K 2 Y _ T2
min B {Zk_l Vi — WiHi||% + M|V = WH|%},  (2)
V1<k<K,W,>0,H,>0,H>0 =

where W = [W1,--- ,Wg], and X € [0, 1] is a positive tradeoff parameter. When
A =0, TNMF reduces to NMF on each task separately.

2.3 NMF-Based Activity Recognition

Taking the advantage of clustering ability the parts-based representation of
NMF, Thurau and Hlavac [4,6] proposed a static HOG-based NMF method for
activity recognition on still images since the HOG-descriptor of any an image
is non-negative. Given training HOG-descriptors of all actions, i.e., V} for the
k-th action of totally K actions, they utilized NMF to learn features Wj and
encodings Hy, i.e., by
. 2

w min (Vi = Wi H [ (3)
By concatenating features of all actions together, they constructed a dictionary
of features, i.e., W = [Wy,---, Wx], and projected the HOG-descriptors of test
image, i.e., V, onto W to calculate its encoding, i.e.,by

H = argmin ||V — WH||?, (4)
H>0

where H is the encodings of V.

At the classification stage, they calculated the histogram of each action based
on {Hy, -, Hg}, and the histogram of the test image based on H, followed by
classification with the nearest neighbor (NN) classifier. Since the training stage
of learning the features of each action (see the formula (3)) and the classification
stage of learning the encodings on the dictionary of concatenated features (see
the formula (4)) are separate, NMF usually suffers from overfitting problem.

3 TNMF-Based Activity Recognition in Still Images

In still image-based activity recognition, most actions have sufficient training
images but some actions has rare training images because the training images
are collected from different sources and the activities are performed separately
by different individuals. Therefore, NMF cannot accurately learn features on
limited training images due to the overfitting problem in this situation.
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Since TNMF leverages the test set to enhance representing the training sam-
ples, it learns more representative dictionary and reduces the influence of over-
fitting by jointly learning the dictionary from both training and test sets. In
other words, TNMF has better generalization ability than NMF. In this paper,
we taken this advantage of TNMF to solve the overfitting problem in still image-
based activity recognition [4]. In particular, we applied TNMF to jointly learns
a dictionary on both training samples Vj, e.g., HOG-descriptors, from different
actions and the test samples V, e.g., HOG-descriptors, of the probe image to be
recognized. Since TNMF transduces the training poses to the learned dictionary
by incorporating the second term in (4), it represents the test data more accu-
rately and overcomes the deficiency of NMF. Experimental results confirm that
TNMF greatly boosts the activity recognition performance.

Although the objective function of TNMF is jointly non-convex with respect
to all variables, i.e., {Wy,--- , Wy, Hy,--- ,Hg, H}, it is convex with respect
to each of them separately. According to [17,20], we utilized the majorization
minimization (MM) method to derive a multiplicative update rule (MUR, [16])
for solving TNMF (2). MUR updates W}, Hy., and H, respectively, by

(VeHT + \VH,)

Wk — Wk ° T (5)
(WeH HI + \WHH,,)

wWIv,
Hy — Hyo—21%r "% 6
R AT ©

and o
HeHotv ', 7

W WH
where o signifies the element-wise multiplication operator, and Hj, is the k-

th component of H that corresponds to Wy, i.e., H = [FlT, e ,FIT(]T. MUR
alternatively updates all variables until they do not change the objective value
of (2).

Distinguished from our previous work, we proved the convergence of the
MURs (5)(6)(7) by using the majorization minimization (MM, [17]) technique.
MM builds an auxiliary function whose curve lies above that of the original
objective function everywhere and both curves are tangent at a certain point.
When calculating the gradient of the original function is non-trival, MM instead
updates the current variable by using the minimum of the constructed auxiliary
function. The auxiliary function is defined in Definition 1 and has the property
shown Lemma 1.

Definition 1. Given 2, the function g(z, ') is an auxiliary function of f(z), if
g(z,3) > f(2) and g(at, ') = ()

Lemma 1. If g(z, z') is an auxiliary function of f(x), then f(z) is non-increasing
under the update rule z(*+1) = arg min, g(z, z*).
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Proof. f(x!™l) < g(2'™1 2t) < g(2t,2t) = f(2f). B

It is easy to verify that (6) and (7) decrease the objective function because
they are same as the MURs in [17]. It is remaining to prove that (5) decreases
the objective function (see Proposition 1).

Proposition 1. The multiplicative update rule (5) decreases the objective func-
tion of (2).

Proof. At the t-th iteration round, we expect to prove that the update of Wy
can decrease the objective function

K
= =ttt —t —t
fo=>_IIVi = W H|[ + Vi = WaHL|[3 + A[V = W H + WiH, — Wi H, ||,
1#k

with all variables except Wy, fixed. Since the first term does not influence fy, it
is only necessary to prove that (5) decreases the following objective function

—  et—t —t —t

FWi) = ||V = Wi H|[E + NIV =W H + Wi H,, = WiH |5 (8)
To this end, we constructed its auxiliary function as follows:
9(Wie, W) = f(Wi) + (VF (W), Wi — W)

444+ T
WiHLH!" + W H H, o (9)
(Wt) )?[Wk—Wk] >7
k

+(

where V(W) = (W H}, — Vk)H,iT + )\(Wtﬁt - V)H}ET and [-]? signifies the
element-wise square of a matrix. Since it is obvious that g(W}, W}) = f(W}),
we only need to show f(Wy) < g(Wy, W}) for any W.

To do this, we have the Taylor series expansion of f(Wj) at W}, and the
objective function with respect to the (7, j)-th element of Wy is

F(Wilig) = F(IWEli) + [V FW)Li ((Welis — [Wili)

T —t—t T (10)
+([HLH] 155 + AMHGH), 15)(Wlij — [Wili)*.
Since H} <0 and W} <0, we have
S (WilalHEHE ]y T
HthT < ! i P ! _ [leH]iH]i ]7«7 11)
[ k+tk }].7 = [ng]lj - [Wﬁ]” . (
Since F; < 0 and W} <0, we have
T > [Wila [FZHZT]U WIH H T W FtT
ma), <! _ Wl Hy Loy o Wi Hy, i (12)

Wil Wil = Wiy
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where the last inequality comes from the fact that W*H* = Z{;k W} H! +W,§FZ
and Z{;k I/Vltﬁf > 0.

By substituting (11) and (12) into (10), we can easily verify that f(Wj) <
g(Wy, W}), and thus g(Wy, W}) is an auxiliary function of f(W}) according to

Definition 1. By setting %’W
s

T ——t—t =t |
Vi)H,” + X\W H —V)H, , we have

= 0 and substituting V f(W}) = (W, H}, —

T T ——t—t—t T’ ——t T
(WiH{HE Jij — [ViHy Jiy + AW H Hy, 1i; — A[VH,, i

T bt —t '
(WEHLHY iy + AW H Hy, ij
Wil

(Wilij — [Wilij) = 0.
It is equivalent to

tyrt it T Tttt T
WiH Hy Jij + AW H Hy i
(Wilis

tT ot L [
—[ViHy iy = AlVH, Jij + [(Wili; = 0. (13)

From (14), we have the minimum of g(Wj, W) with respect to the (i,j)-th
element of W), as follows:

+ T
k

T —
Wil = Whi; (VeHy Jij + AV Hy Jij) (14)
kla = kleg trrt e T, —t—t—tT”'
(WiHH i + AW H Hy,

By rewriting (14) in a matrix form, we have

4+ T
ViH!" + \VH),
trrt T o TR L
WiH!H! + W H H,

Wi =Wio

By setting W,i“ = W, we know that f(WIEH) < f(W}) according to Lemma
1. This completes the proof. B
Interestedly, the above proof procedure suggest the generalization ability
of TNMF. By simple algebra, the formula (9) is equivalent to the following
minimization:
min ||Xk - WkYkH%‘;
Wy >0

where X = [Vi, VAV = W H + W,ﬁﬁ;)} and Yy, = [H}i,ﬁﬁ;] It means
that TNMF learns dictionary both from training examples and test examples.
In other words, TNMF achieves better generalization ability than the standard
NMEF only on training examples.

Since MURs decrease the objective function of TNMF, the objective function
gets more and more close to the minimum, and gets farther and farther from
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the initial point, on its fly. We therefore gave the following stopping condition
of MUR like [25,26]:
[fo— fmal _

T =5 15

Fi= fil (1)

where f; = ST, ||V — WEHE|% + M|V — WH |2, signifies the objective value

at the t-th iteration round (¢ < 1), and ¢ signifies the tolerance, i.e., ¢ = 1073.
We summarized the total procedure of MUR for TNMF in Algorithm 1.

Algorithm 1. MUR for Optimizing TNMF

Input: {V4,--- ,Vk}, V, and r
Output: {Wl,--- 7VV}(}7 {H1,--- ,HK}, and H

1. Initialize {W1,--- , Wk}, {H1, -+, Hx}, and H with random matrices
Set Wt = [Wl,"' ,WK} and t =1

Repeat
Fork=1,-- K
t+1 . t4+1 t Vka‘T+>\ﬁt+lT
3. Update W, ™" with W, ™" = W o W}QH;I;QTH\W*%tﬁLT
t+1

4. Update H'*! with BV = HE o — Wi Vi

Eod k k W£+1 W;+1Hi

nd For
Update W' = (Wit Wit
_ _ 1T 41T

6. split ' into H#T = [HTY o HY T

7. Update t — t+ 1
Until {The stopping condition (15) is satisfied.}
8. Return {Wh,--- Wk}, {Hi,--- ,Hr}, and H

TNMF provides a flexible framework for transductive NMF learning and
various algorithms can be easily developed by replacing the Frobenious norm
in (2) with other losses, e.g., Kullback Leibler divergence. Algorithm 1 can be
easily modified for optimizing TNMF variants and can be accelerated by utilizing
the line search strategy introduced in [25,26]. In addition, the Frobenius norm
based TNMF can be optimized by using the efficient NeNMF [33] method. We
omit these studies due to the limit of space.

In summary, TNMF presents a friendly way of recognizing actions from still
image due to the simplicity and flexibility of TNMF. We can easily construct the
histograms of training actions and test image according to [4] and recognizing
the action of the test image by the nearest neighbor (NN) classifier. By fur-
ther incorporating constraints or regularizations on either features or encodings,
interesting readers can easily extend this method for their own purposes in the
future.
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4 Experiments

Although the NMF-based method performs well on laboratory video frames [4],
it is difficult to be applied to some tasks especially when some actions have
insufficient examples, e.g., web images. This is because the pose clusters learned
for some actions containing rare examples may be ill-posed.

4.1 Laboratory Datasets

For each collected images, we used an effective human detector [18] to detect
people in different poses and aligned the detection rectangle by positioning the
human head in its top-middle. Each of the detected human images is cropped and
resized to a 78 x 42 color image. Based on the same image retrieval procedure for
eight actions, we obtained a set of web images and extracted the HOG-descriptor
for each cropped image. The HOG-descriptor for each image of each action is
reshaped to a 1296-dimensional long vector and treated as a pose example [4].

Table 1. Statistics of the Google and Weizmann dataset, and ‘tr/ts’ means that the
numbers of training poses and test poses are tr and ts, respectively

Action Name‘ ‘run’  ‘walk’ ‘skip’ ‘jump’ ‘pjump’ ‘wave’ ‘jack’ ‘bend’ ‘side’
Google  [201/202 285/286 67/68 118/119 109/109 52/53 43/44 30/30 -
Weizmann | 30/165 129/238 30/184 30/140 103/167 283/326 90/206 97/84 96/124

Google Search Images. Figure 1(a) depicts some web images collected by
using Google image search engine corresponding to human actions ‘run’, ‘walk’,
‘skip’, ‘jump’, ‘pjump’, ‘wave’, ‘jack’, and ‘bend’. For each action, e.g., ‘run’,
we searched images on Google image search engine by using the keywords ‘run
people’; ‘running people’; ‘run person’, and ‘running person’, and manually fil-
tered all irrelevant images. Figure 1(b) shows the flow chart of generating the
HOG descriptors of the Google web images. We constructed the Google dataset
to include all the collected pose examples of web images.

Weizmann Video Frames. We conducted the same procedure on Weizmann
video frames [1] which contains nine actions and formed another Weizmann pose
dataset (or simply Weizmann dataset). Figure 2 gives examples of four actions
including ‘run’, ‘walk’, ‘jump’, and ‘bend’ in the Weizmann dataset. It shows
that video frames have more static backgrounds, and are therefore easier than
the Google dataset.

Table 1 summarizes both datasets. It shows that actions ‘bend’ and ‘jack’
of the Google dataset contain a small number of training examples, and actions

run’, ‘skip’, and ‘jump’ of the Weizmann dataset contain a small number of
training examples. Thus, the numbers of training examples for all actions are
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Fig. 1. Examples of web images returned by Google image search, where the action
names from top to bottom are ‘run’, ‘walk’, ‘skip’, ‘jump’, ‘pjump’, ‘wave’, ‘jack’, and
‘bend’ (a), and (b) the flow chart of generating the HOG descriptor
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Fig. 2. Examples of video frames extracted from Weizmann dataset, where the action
names from top to bottom are ‘run’, ‘walk’, ‘jump’, and ‘bend’
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imbalanced and performing NMF on the training examples of individual actions
cannot obtain ‘effective’ primitive poses. In this experiment, we employed TNMF
to overcome this deficiency by jointly learning dictionary from both training sam-
ples and test samples of each action. Although some actions have rare training
examples, the dictionary obtained by simultaneously learning from both train-
ing and test samples are more discriminative than those obtained by separately
learning from training samples [4]. To evaluate the effectiveness of TNMF, we
compared the recognition accuracy of its learned dictionary with those learned
by NMF.

According to [19], we first set the number of features for each action to 5
based on the number of common viewpoints for each action (2 for lateral views,
2 for views +45° and 1 for frontal/back view), and cross-validated the trade-
off parameter on a set A € {0.1,0.3,0.5,0.7,0.9}. Then we fixed the trade-off
parameter to the best one, and cross-validated the number of features on a set
r € {5,30,50,70,90}. To evaluate the effectiveness of TNMF, Figure 3 gives the
highest accuracies of NMF and TNMF obtained by cross-validation. Figure 3(a)
and (b) show that TNMF outperforms NMF on Google dataset when varying r
and A in wide ranges of [50,90] and [0.1,0.7]. It shows that TNMF performs best
when A = 0.7 and r = 50. From Figure 3(c) and (d), we can see that MT-NMF
outperforms NMF on Weizmann dataset when varying r» and A in wide ranges
of [5,90] and [0.1,0.5], and it performs best when A = 0.1 and r = 70.

Table 2. Accuracy (%) of NMF and TNMF on the Google and Weizmann dataset

Algorithms|NMF TNMF
Google |74.66 78.09
Weizmann [88.30 91.17

Table 2 depicts the average accuracy of NMF and TNMF on both Google
and Weizmann datasets. It shows that TNMF outperforms NMF on the Google
dataset because it leverages the datasets across actions and learns better pose
clusters for actions whose training examples are insufficient. The experimental
results on the Weizmann dataset are consistent with this observation. It confirms
the effectiveness of TNMF in action recognition from still images.

4.2 Willows Dataset

The Willow dataset® [22] contains totally 913 images for 7 activities including
‘interacting with computer’, ‘photographing’, ‘playing music’, ‘riding bike’, ‘riding
horse’, ‘running’, and ‘walking’ (see Figure 4 for some examples of each action).
Khan et al. [21] have demonstrated that fusing color and shape information can

! The Willow dataset is available at: http://www.di.ens.fr/willow/research/
stillactions/.
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Fig. 3. Cross-validation of the number of features r and trade-off parameter A of TNMF
on the Google and Weizmann datasets, (a) accuracy versus r when A = 0.7 and (b)
accuracy versus A when r = 5 on the Google dataset; (c) accuracy versus r when
A =0.1 and (b) accuracy versus A when r = 70 on the Weizmann dataset. The highest
accuracies of NMF are included for comparison.

produce promising results of action recognition in still images. Along this direc-
tion, we extracted the shape cues by SIFT descriptors [32] and color cues by color
names [34] separately, from each image, and fused them to construct the feature
vector. The SIFT descriptor has 289 dimensionality and the color names has 11

Interacting
with Computer &

Fig. 4. Example images of different actions in the Willow dataset
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dimensionality, and thus we constructed a 300-dimensional feature vector for each
image.

100—— ; ; ; 100
90t 98;
S gol S
5 v
g 70t 3 oaf ]
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60! | 92! ]
NMF NMF
~—TNMF ~TNMF
50 v - v : 90 . . . .
20 40 60 80 100 5 4 3 2 A 0
r a=log, (%)

(a) (b)

Fig. 5. Cross-validation of the reduced dimensionality r and trade-off parameter A of
TNMF on the Willow dataset: (a) accuracy when varying the reduced dimensionality
r from 10 to 100 and fixing A = 0.1, and the highest accuracy appears at r = 70; (b)
accuracy when varying the trade-off parameter A from 107° to 1 and fixing r = 70,
and the highest accuracy appears at A = 1072

In this experiment, we selected 100 images for each action, where 70 images
are utilized for training and the remaining images are utilized for testing. To
filter the influence of hyper-parameters of TNMF, i.e., the reduced dimension-
ality r and the trade-off parameter A, to the final results, we varied the reduced
dimensionality from 10 to 100 with a step size 10, and varied A from 107° to 1.
Such trial was repeated ten times for eliminate the influence of initialization of
both TNMF and TNMF. Figure 5 shows that TNMF achieves the highest accu-
racy when » = 70 and A = 1072, and that TNMF consistently outperforms NMF
on the Willow dataset. This observation confirms the effectiveness of TNMF in
still image based activity recognition.

4.3 Discussion

In summary, the experimental results on both laboratory dataset and real-world
dataset demonstrate that the transductive learning trick in TNMF significantly
improves the performance of action recognition still images. It should be hon-
est that the TNMF based activity recognition method performs not very well
when the number of actions are quite large, e.g., Stanford 40 [36] dataset. That
is because the concatenation operator in TNMF (2) might lead to cancellation
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Fig. 6. The objective values versus number of iterations of TNMF on the Google (a),
Weizmann (b), and Willow (c) datasets

among dictionaries of actions in this situation, and thus reduces the discrimina-
tive ability of the learned dictionary.

In this paper, we have theoretically proved the convergence of the MUR
algorithm for TNMF. To verify this point, Figure 6 depicts the objective values
versus number of iterations on the Google, Weizmann, and Willow datasets.
They show that the MUR algorithm converges quite quickly, e.g., within 50
iteration rounds.

5 Conclusion

This paper proposes a novel method for activity recognition in still images based
on transductive non-negative matrix factorization (TNMF). TNMF can trans-
duce the visual features from training images to the learned encoding of test
image. Therefore, TNMF boosts the performance of NMF based activity recog-
nition especially on the datasets that contain insufficient training images for some
actions. Experiments on both laboratory and real-world datasets demonstrate
the effectiveness of TNMF.
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