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Abstract. Event detection has advanced significantly in the past
decades relying on pixel- and feature-level representations of video-clips.
Although effective those representations have difficulty on incorporating
scene semantics. Ontology and description-based approaches can explic-
itly embed scene semantics, but their deterministic nature is suscepti-
ble to noise from underlying components of vision systems. We propose
a probabilistic framework to handle uncertainty on a constraint-based
ontology framework for event detection. This work focuses on elementary
event (scenario) uncertainty and proposes probabilistic constraints to
quantify the spatial relationship between person and contextual objects.
The uncertainty modeling framework is demonstrated on the detection
of activities of daily living of participants of an Alzheimer’s disease
study, monitored by a vision system using a RGB-D sensor (Kinect®,
Microsoft®) as input. Two evaluations were carried out: the first, a
3-fold cross-validation focusing on elementary scenario detection (n:10
participants); and the second devoted for complex scenario detection
(semi-probabilistic approach, n:45). Results showed the uncertainty mod-
eling improves the detection of elementary scenarios in recall (e.g., In
zone phone: 84 to 100 %) and precision indices (e.g., In zone Reading:
54.5 to 85.7%), and the recall of Complex scenarios.

Keywords: Uncertainty Modeling + Ontology - Event Detection * Activ-
ities of Daily Living - Older People

1 Introduction

Event detection has been significantly advancing since the past decade within the
field of Computer vision giving birth to applications on a variety of domains like
safety and security (e.g., crime monitoring [9]), medical diagnosis and health
monitoring [23][5], and even as part of a new paradigm of human-machine
interface in gaming and entertainment (Microsoft© Kinect®). Event detection
methods in computer vision may be categorized in (adapted from Lavee et al.
[11]): classification methods, probabilistic graphical models (PGM), and seman-
tic models; which are themselves based on at least one of the following data
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abstraction level: pixel-based, feature-based, or event-based. Artificial Neural
Networks, Support-Vector Machines (SVM), and Independent Subspace Anal-
ysis (ISA) are examples of classification methods. For instance, Le et al.[12]
have presented an extension of the ISA algorithm for event detection, where
the algorithm learned invariant spatio-temporal features from unlabeled video
data. Wang et al. [21] have introduced new descriptors for dense trajectory esti-
mation as input for non-linear SVMs. Common examples of PGMs approaches
are Bayesian Network (BN), Conditional Random Fields, and Hidden Markov
Models (HMM). BNs have been evaluated at the detection of person interactions
(e.g., shaking hands) [16], left luggage [13], and traffic monitoring [9]. Kitani et
al. [8] has proposed a Hidden Variable Markov Model approach for event fore-
casting based on people trajectories and scene features. Despite the advances,
PGMs have difficulty at modeling the temporal dynamics of an event. Izadinia
and Shah [7] have proposed to detect complex events from by a graph represen-
tation of joint the relationship among elementary events and a discriminative
model for complex event detection.

Even though the two previous classes of methods have considerably increased
the performance of event detection in benchmark data sets, as they rely on pixel-
based and feature-based abstractions they have limitations in incorporating the
semantic and hierarchical nature of complex events. Semantic (or Description-
based) approaches use descriptive language and logical operators to build event
representations using domain expert knowledge. The hierarchical nature of these
models allow the explicit incorporation of event and scene semantic with much
less data than Classification and PGM methods.

Ceusters et al. [3] proposes the use of Ontological Realism to provide semantic
knowledge to high-level events detected by a multi-layer hierarchical and dynami-
cal graphical model in a semi-supervised fashion (human in the loop). Zaidenberg
et al. [22] have evaluated a constraint-based ontology language for group behav-
ior modeling and detection in airport, subways, and shopping center scenes. Cao
et al. [2] have proposed an ontology for event context modeling associated to a
rule-based engine for event detection in multimedia monitoring system. Similarly,
Zouba et al. 23] have evaluated a video monitoring system at the identification of
activities of daily living of older people using a hierarchical constraint-based app-
roach. Oltramari and Lebiere [15] presents a semantic infra-structure for a cogni-
tive system devoted for event detection in surveillance videos.

Although Semantic models advantage at incorporating domain expert knowl-
edge, the deterministic nature of their constraints makes them susceptible to
noise from underlying components - e.g., people detection and tracking com-
ponents in a pipeline of computer vision system - as they lack a convenient
mechanism to handle uncertainty. Probabilistic reasoning has been proposed to
overcome these limitations. Ryoo and Aggarwal [17] [18] have proposed halluci-
nation concept to handle uncertainty from low-level components in a context-free
grammar approach for complex event detection. Tran and Davis [19] have pro-
posed Markov logic networks (MLNs) for event detection in parking lots. Kwak
et al. [10] have proposed the detection of complex event by the combination
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of primitive events using constraint flows. Brendel et al [1] propose probabilis-
tic event logic to extend an interval-based framework for event detection; by
adopting a learned weight to penalize the violation of logic formulas.

We present a uncertainty modeling framework to extend the generic
constraint-based ontology language proposed by Vu et al. [20] by assessing the
probability of constraint satisfaction given the available evidence. By combining
both frameworks we allow domain expert to provide event models following a
deterministic process, while probabilistic reasoning is performed in second plan
to cope with the uncertainty in constraint satisfaction. In this paper we focus
on handling uncertainty of elementary events.

2 Uncertainty Modeling Framework

Uncertainty may come from different levels of the event modeling task; from
failures on the low-level components which provided input-data for the event
detection task (e.g., sudden change in person estimated dimension) to the model
expressiveness at capturing the real-world event. For instance, constraint viola-
tion may be due to person-to-person differences in performing an event (event
intra-class variation). In both cases it may be desirable that the event model be
still detected even with a smaller probability.

We propose here a framework to handle uncertainty on elementary events.
The framework may be decomposed on: event modeling, uncertainty model-
ing, and inference. In event modeling step domain experts use the constraint-
based video event ontology proposed in [20] to devise event models based on
attributes of tracked physical objects (e.g., a person) and scene semantics (con-
textual objects). In uncertainty modeling step we learn the conditional probabil-
ity distributions about the constraints using annotation on the events and the
event models provided by domain experts. The inference step is performed by
the temporal algorithm of Vu et al. [20] adapted to also compute event proba-
bility. The probability computation sub-step infers how likely a model is given
the available evidence based on pre-learned conditional probabilities about the
evaluated constraints.

2.1 Video Event Ontology

The constraint-based framework is composed of a temporal scenario (event)
recognition algorithm and a video event ontology for event modeling. The video
event ontology is based on natural terminology to allow end users (e.g., medical
experts) to easily add and change event models of a system. The models take into
account a priori knowledge of the experimental scene, and attributes of objects
(herein called Physical Objects, e.g., a person, a car, etc. ) detected and tracked
by the vision components. A priori knowledge consists of the decomposition
of a 3D projection of the scene floor plan into a set of spatial zones which
carry semantic information about the monitored scene (e.g., zones like “TV”,
“armchair”, “desk”, “coffee machine”). The temporal algorithm is responsible for
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the inference task, where it takes as input low-level data from underlying vision
components, and evaluates whether these objects (or their properties) satisfy
the constraints defined in the modeled events. An event model is composed of
(up to) five parts [20]:

— Physical Objects refer to real-world objects involved in the detection of the
modeled event. Examples of physical object types are: mobile objects (e.g.,
person, or vehicle in another application), contextual objects (equipment)
and contextual zones (chair zone).

— Components refer to sub-events of which the model is composed.

— Constraints are conditions that the physical objects and /or the components
should hold. These constraints could be logical, spatial and temporal.

— Alert define the level of importance of the event model, and

— Action is an optional clause which works in association with the Alert type
describes a specific course of action which should be performed in case the
event model is detected,(e.g., send a SMS to a caregiver responsible to check
a patient over a possible falling down).

The physical object types depend on the domain of application. Two disjoint
default types are presented, Mobile and Contextual Objects, with one exten-
sions each, respectively, Person and Contextual Zone. Mobile is a generic class
which defines the basic set of attributes for any moving object detected in the
scene (e.g., 3D position, width, height, depth). Person is an extension of Mobile
class whose attributes are body posture and appearance signature(s). Contextual
Object (CO) type refer to a priori knowledge of the scene. Contextual zone is an
extension of CO commonly used to define a set of vertices in the ground plane
which corresponds to a region with semantic information (e.g., eating table, tv,
desk) for an event model. Contextual objects may be defined at the deployment
of the system by the domain experts or by launching an object detection algo-
rithm for scene description at system installation, and specific times where object
displacement is identified. Physical object types can be expanded accordingly to
describe all types of objects in the scene.

Constraints define conditions that physical object properties and/or compo-
nents must satisfy. They can be non-temporal, such as spatial (person->position
in a contextual zone; or displacement(personl) >1 m) and appearance con-
straints (personl->AppearanceSignature = person2->ApperanceSignature); or
temporal to capture specific duration patterns or time ordering between a
model sub-events (components). Temporal relation are defined following Allen’s
interval algebra (e.g., before, and, meet, overlaps). Fig. 1 describes the model
Person changing from zonel to zone 2; which is defined in terms of a tempo-
ral relationship between two sub-events: e.g., cl, Person in zone 1 before ¢2,
Person in zone 2.

The ontology hierarchically categorizes event models according to their com-
plexity as (in ascending order):

— Primitive State models property(ies) and/or relationship among physical
object(s) constant on a time interval (person posture, or person inside a
contextual zone).
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CompositeEvent (Person changing from zonel to zone 2,
PhysicalObjects( (per:Person), (zl: Zone), (z2: Zone) )
Components (

(cl: PrimitiveState Person_in_zone_1 (pl,z1)
(c2: PrimitiveState Person_in_zone_2 (p1,z1)
)

Constraints( (c1 before c2) )
Alert ( NOTURGENT )

Fig. 1. Person changing from zone 1 to zone 2

— Composite State refers to a composition of two or more primitive states.

— Primitive Event models a change in a value of physical object property
(e.g., person changes from sitting to standing posture), and

— Composite Event refers to the composition of two previous event models
which should hold a temporal relationship (person changes from sitting to
standing posture before person in corridor zone).

2.2 Uncertainty Modeling for Elementary Scenarios

For uncertainty modeling purposes we divided the constraint-based ontology
event models into two categories: elementary and composite scenarios. The term
scenario is used to differentiate the modeling and inference tasks. Elementary
Scenario have a direct correspondence to the primitive state type of the ontology,
and the Composite Scenario represents all other ontology event types (Primi-
tive Event, Composite States and Composite Events). This simplification is per-
formed since these ontology event categories were devised to help domain experts
at devising models in a modular fashion and then reduce model complexity and
increase its re-usability. But, none difference exists for the inference algorithm
while processing these event categories besides to the hierarchy depth of the
sub-events they define a relationship for.
The uncertainty modeling framework is based on the following concepts:

— Elementary Scenario(ES) is composed of physical objects and constraints.
This scenario constraints are only related to instantaneous values (e.g., cur-
rent frame) of physical object(s) attribute(s).

— Composite Scenario(CS) is composed of physical objects, sub-scenarios
(components) and constraints; where the latter generally refer to composition
and/or temporal relationships among model sub-scenarios.

— Constraint is a condition that physical object(s) or sub-scenarios must
satisfy, and refer to the constraint types presented on the constraint-based
ontology section.

— Attributes correspond to the properties (characteristics) of real world
objects measured by the underlying components of the event detection task
(e.g., vision system).
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— Observation corresponds to the amount of evidence on a constraint or a
scenario model.
— Instance refers to an individual detection of a given scenario.

Fig. 2 presents a description for the elementary scenario Person in zone Tea.
This scenario is based on the physical objects Person and the semantic zone
zoneTea. For instance, zoneTea would be polygon drawn on the floor - close or
around the table where the kitchen tools to prepare tea are commonly placed
- a priori defined by a domain expert during system installation or automati-
cally detected by the system. The model has two constraints: the logic constraint
that the target zone is zoneTea; and a spatial constraint called In which veri-
fies whether the person position lies inside the given zone. Fig. 3 illustrates an
example of a scene where semantic zones were manually drawn on the floor plane
where contextual objects are located.

ElementaryScenario(Person_in_zone_Tea,
PhysicalObjects( (per:Person), (zT: Zone) )
Constraints(

(per->Position In zT->Vertices)
(zT->name = "zoneTea")
(displacement (per->Position) < stopConstant)

Fig. 2. Elementary Scenario Person in zone Tea

2.3 Computation of Elementary Scenario Uncertainty

The uncertainty of an Elementary Scenario is formalized as function of the
framework confidence on the satisfaction of the Elementary Scenario constraints.
Equation 1 presents an formalization of Elementary Scenario Uncertainty using
Bayes Rule.

(1)

where,

— P(E;|C;): Conditional Probability of Event E; given its observed constraints
Ci;

— P(C}|E;): Probability of constraints which intervene on E; at the current
frame; and

— P(E;): Prior Probability of Event.
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DescriptionBasedEventRecognition x

Zone Tea
Zone Phone

Lione Plant

Fig. 3. Scene semantic zones

The conditional probability of event F; given its set of observed constraints
C; is given by the multiplication of the individual conditional probabilities of its
constraints. We assumed all constraints contribute equally to the event model
detection and are conditionally independent (see Equation 2).

P(Cy|E;) = H P(ci j|E:) (2)

ci,; €C

where C} ;:
— Conditional probability of Constraint j of given event 1.

To avoid computing P(C;) which can become costly as the number of con-
straints increase, we opted to use the non-normalized probability of P(FE;|C;) as
described in Equation 3.

P(E;|C;) = H P(ci;|E:) (3)

ci,; €C

In its final form the proposed formula for elementary scenario uncertainty
(Equation 3) addresses small violations of constraints from noise coming from
underlying components and due to event intra-class variations.

2.4 Probabilistic Constraints

The uncertainty of a scenario model or its conditional probability given the evi-
dence is addressed by associating each of its constraints to a Probability Density
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Function (PDF) responsible for quantifying how likely the constraint would be
satisfied given the available evidence. The use of PDFs provide a modular and
flexible way to model and change the uncertainty process that governs the condi-
tional probability distribution of a constraint given the available evidence - e.g.,
by modeling the variation of the low level data the constraint is conditioned on
during the targeted event execution - and allowing us to avoid the fully speci-
fication of the set of assignments of a conditional probability table. Moreover,
different constraints may use different PDF's according to the low-level data, and
the PDF may be easily changed without any other changes to the event model.

Besides to selecting the fitting PDF to a given constraint it is also important
to how we evaluate the constraint goal in a probabilistic fashion. In the case of
the spatial operator In its deterministic version is susceptible to different sources
of uncertainty: firstly, from the estimated position of the person which may be
influenced by noise from low-level computer vision components; and secondly,
from the semantic zone zoneTea - a priori defined by an expert - which may not
accommodate the complete floor surface where people may stand to prepare tea.
Its probabilistic counter-part should quantify how likely is the person position
to be inside the zone of interest given these sources of noise. We here propose
two probabilistic alternatives to the deterministic constraint In: the Center In
and the Border In.

— The Center In is fully based on a PDF with respect to the relative distance
between the centroid of the person - projected onto the floor - and the central
position of the given semantic zone.

— The Border In is a hybrid implementation which provides maximum prob-
ability (100 %) when the person is anywhere inside the semantic zone, and
a probability proportional to the distance of the person to the closest zone
edge otherwise.

To model the conditional probability distribution of the distances between
the person position and the semantic zone we have used Equation 4. Briefly, this
equation converts the observed distance among objects into the corresponding
value in an uniform Gaussian distribution using expected parameters pre-learned
per semantic object. The corresponding value is then applied to an exponential
function to obtain the probability of the constraint given the evidence, e.g., a
specific low-level data value for elementary scenario. The resulting PDF provides
a probability curve with maximum value around the mean parameter and a
monotonically decreasing behavior is observed as the observed value distances
from the mean.

1 observed_value — T
P(Ci;z) = exp( *( . )%) (4)

where, T : learned mean of constraint value, and s: standard deviation of &

2.5 Learning Constraint Conditional Probabilities

The conditional probability distribution of the elementary constraints were
obtained by a learning step based on the event models provided by domain
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experts - using the constraint-based ontology - and annotated RGB-D record-
ings of the targeted events. The learning step was performed as follows: firstly,
an event detection process was performed using the deterministic event models.
Each time the deterministic In was evaluated the relative distance used by the
probabilistic counterparts was stored independent of whether the current con-
straint is satisfied. Secondly, using the event annotation we collect the distance
values frequently assumed by the In variants when elementary scenario annota-
tion is present for the given RGB-D recording. Thirdly and finally, we computed
statistics about the the collected values of the attribute the constraint was con-
ditioned on. By performing the learning step using event models combined with
event annotation (both provided by domain experts) we aim at capturing the
Conditional Probability Distribution (CPD) of the constraints according to the
event model semantics and maybe reduce the semantic gap between the event
model and the real-world event.

Elementary Scenarios are assumed to be equally probable as their evidence
is mainly related to a single time unit (e.g., a frame). The Temporal aspect of
scenario models such as instance filtering is currently performed by a thresh-
old method which removes low-probability events. The influence of previous
instances probabilities into the evaluated time unit will be evaluated in the
future in conjunction with uncertainty modeling at Composite Scenario level
(Composite Event).

3 Evaluation

The proposed framework has been evaluated at modeling the uncertainty of
activities of daily living of participants of a clinical protocol for Alzheimer’s
disease study. Two evaluations were performed, firstly on the detection of ele-
mentary scenarios, and secondly on the detection of complex events by using
uncertainty framework for elementary scenarios as basis for the deterministic
complex event models. The latter evaluation intends to assess the improvement
brought to the detection of high-level scenario by low-level uncertainty modeling.
For both evaluations contextual objects were defined a priori by domain experts
and mostly refer to static furniture in the scene.

Concerning the learning step necessary to obtain the parameters for the con-
straint conditional probabilities, in the first evaluation the parameters were com-
puted following the rules of the 3-fold cross-validation procedure. For the second
evaluation, the 10 videos involved in the 3-fold cross-validation procedure were
used for the learning procedure, and the complex detection performance was
evaluated on a set of recordings of 45 participants new to the system, which
were only annotated in terms of Composite Events.

3.1 Data Set

Participants aged 65 years and over were recruited by the Memory Center of Nice
Hospital. Inclusion criteria of the Alzheimer Disease (AD) group are: diagnosis
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of AD according to NINCDS-ADRDA criteria and a Mini-Mental State Exam
(MMSE) score above 15. AD participants who have significant motor distur-
bances (per the Unified Parkinson’s Disease Rating Scale) are excluded. Control
participants are healthy in the sense of behavioral and cognitive disturbances.
Experimental recordings used a RGB-D camera (Kinect®, Microsoft©).

The clinical protocol is divided into three tasks: directed tasks, semi-directed
tasks, and discussion with the clinician task. The directed tasks (10 minutes)
are divided on two sub-tasks: physical directed- and vocal directed-tasks. In
the semi-directed task (15 minutes) the participants are asked to undertake a
set of Instrumental Activities of Daily Living in a Hospital observation room
furnished with home appliances [6]. The participants enter the room alone with
a list of activities to perform and are advised to leave the room only feeling all
the required tasks are accomplished.

For this framework evaluation we have focused only on the semi-directed
task. The list of semi-directed activities is composed as follows:

— Read 1 article and answer three questions,

— Turn on the TV,

— Establish the account balance,

— Pay the phone bill (check writing),

— Answer the phone,

— Call the psychologist to confirm the appointment afterwards,

— Find on a bus map the line that takes you to the train station,

— Prepare the drug box for tomorrow according to the prescription,
— Water the plant,

— Prepare a hot tea.

3.2 RGB-D Monitoring System

The framework for uncertainty modeling was evaluated using a RGB-D sensor-
based monitoring system, built on the event detection framework proposed by
Vu et al. [20], and later evaluated on the detection of daily living activities of
older people by Crispim-Junior et al. [5] using a 2D-RGB camera as the input
Sensor.

The evaluation monitoring system can be composed into three main steps:
people detection, people tracking, and event detection. People detection step
is performed by a depth-based algorithm proposed in Nghiem et al. [14], since
we have replaced the 2D-RGB camera by a RGB-D sensor. The depth-based
algorithm performs as follows: first, background subtraction is employed on the
depth image provided by the RGB-D camera to identify moving regions. Then,
region pixels are clustered in objects based on their depth and neighborhood
information. Finally, head and shoulder detectors are employed to detect people
amongst other types of detected objects.

The set of people detected by the previous algorithm is then evaluated by a
multi-feature tracking algorithm proposed in Chau et al. [4], which employs as
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features the 2D size, the 3D displacement, the color histogram, and the dominant
color to discriminate among tracked objects.

Event detection step has as input the set of tracked people generated in the
previous step and a priori knowledge of the scene provided by a domain expert.
This step was evaluated for two different components for comparison purposes:
the proposed framework for uncertainty modeling, and the deterministic event
modeling framework proposed by Vu et al. [20] and evaluated by Crispim-Junior
et al. [5]. Both components frameworks used the same underlying components.

3.3 Performance Measurement

The framework performance on event detection is evaluated using the indices of
Recall (Rec.) and Precision (Prec.) described in Equations 5 and 6, respectively
in comparison to ground-truth events annotated by domain experts.

TP

Recall = m (5)
. TP
Precision = TP+ FP (6)

where TP: True Positive rate, FP: False Positive rate and FN: False Negative
rate.

4 Results and Discussion

Table 1 presents the performance of the uncertainty modeling framework on
elementary scenario (primitive state) detection in a 3-fold cross-validation
scheme. The cross-validation scheme used 10 RGB-D recordings of participants
of the clinical protocol data set. “Deterministic” stands for the deterministic
constraint-based approach. Results are reported as the average performance on
the frameworks on the validation sets.

Table 1. Framework Performance on Elementary Scenario Detection on a 3-fold-cross-
validation scheme

Deterministic Border In Center In
TADL Rec. Prec. |Rec. Prec. |Rec. Prec.
In zone Pharmacy {100.0 |71.4 100.0 |100.0 |100 83.3

In zone Phone 84.0 95.45 192.0 92.0 100.0 {100.0

In zone Plant 100.0 [81.8 100.0 |34.6 100.0 [81.8
In zone Tea 93.3 7.7 100.0 |36.6 93.3 73.7
In zone Read 75.0 54.5 100.0 |38.1 75.0 85.7

N : 10 participants; 15 min. each; Total : 150 min.

The proposed probabilistic constraints outperformed the deterministic app-
roach on the recall index and on precision index in a few cases such as “In
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zone reading” and “In zone Pharmacy” with Center In constraint. Border In
constraint presented the highest recall, but the lowest average precision.

Table 2 presents the results of the framework on Composite Event Detection.
Here an hybrid strategy is adopted where the uncertainty modeling is used on
elementary scenarios and the deterministic constraint-based framework is used
on composite event modeling.

Table 2. Framework Performance on Composite Event Detection Level

Deterministic Border In Center In
IADL Rec. Prec. |Rec. Prec. |Rec. Prec.
Talk on Phone 88.76 [89.77 [89.88 |70.79 |[88.76 |85.86

Preparing Tea/Coffee  |81.42 |73.07 |95.71 |40.36 [92.85 [55.08

Using Pharmacy Basket |87.75 |97.72 |89.79 |95.65 |89.79 |97.77

Watering plant 78.57 |84.61 [100.0 [23.14 |100.0 |28.86
N : 45 participants; 15 min. each; Total : 675min.

The results on complex event detection showed Center In and Border In had
similar performance on recall index outperforming the deterministic approach.
Center In outperformed Border In in the precision index for this test but was
still worse than the deterministic approach in most cases. The worse performance
in precision index may be attributed to other model constraints which did not
have their uncertainty addressed. Based on the results presented we select Center
In constraint as the probabilistic alternative for the deterministic In.

5 Conclusions

We have presented a uncertainty modeling framework to handle uncertainty
from low-level data in constraints of elementary scenarios (low-level events).
The framework improves the detection performance of elementary scenarios in
recall and precision and of composite scenarios in recall.

Further work will extend the framework to model composite scenarios and
the uncertainty related to composite and temporal relations among its sub-
components. Moreover, we will also investigate alternatives to allow small devi-
ations from the scenario constraint without the need of performing a supervised
learning step.

References

1. Brendel, W., Fern, A., Todorovic, S.: Probabilistic event logic for interval-based
event recognition. In: 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3329-3336, June 2011

2. Cao, Y., Tao, L., Xu, G.: An event-driven context model in elderly health moni-
toring. In: Symposia and Workshops on Ubiquitous, Autonomic and Trusted Com-
puting, pp. 120-124 (2009)



10.

11.

12.

13.

14.

15.

16.

17.

Uncertainty Modeling Framework for Constraint-Based Elementary 281

Ceusters, W., Corso, J.J., Fu, Y., Petropoulos, M., Krovi, V.: Introducing ontologi-
cal realism for semi-supervised detection and annotation of operationally significant
activity in surveillance videos. In: Proceedings of the 5th International Conference
on Semantic Technologies for Intelligence, Defense and Security (STIDS) (2010).
http://www.cse.buffalo.edu/jcorso/pubs/stids2010_istare_withresponses.pdf

Chau, D.P., Bremond, F., Thonnat, M.: A multi-feature tracking algorithm
enabling adaptation to context (2011)

Crispim-Junior, C., Bathrinarayanan, V., Fosty, B., Konig, A., Romdhane, R.,
Thonnat, M., Bremond, F.: Evaluation of a monitoring system for event recognition
of older people. In: 2013 10th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pp. 165-170, August 2013

Folstein, M.F., Robins, L.N., Helzer, J.E.: The mini-mental state examination.
Archives of General Psychiatry 40(7), 812 (1983). http://dx.doi.org/10.1001/
archpsyc.1983.01790060110016

Izadinia, Hamid, Shah, Mubarak: Recognizing Complex Events Using Large Mar-
gin Joint Low-Level Event Model. In: Fitzgibbon, Andrew, Lazebnik, Svetlana,
Perona, Pietro, Sato, Yoichi, Schmid, Cordelia (eds.) ECCV 2012, Part IV. LNCS,
vol. 7575, pp. 430—444. Springer, Heidelberg (2012)

Kitani, Kris M., Ziebart, Brian D., Bagnell, James Andrew, Hebert, Martial:
Activity Forecasting. In: Fitzgibbon, Andrew, Lazebnik, Svetlana, Perona, Pietro,
Sato, Yoichi, Schmid, Cordelia (eds.) ECCV 2012, Part IV. LNCS, vol. 7575,
pp. 201-214. Springer, Heidelberg (2012)

Kumar, P., Ranganath, S., Weimin, H., Sengupta, K.: Framework for real-time
behavior interpretation from traffic video. IEEE Transactions on Intelligent Trans-
portation Systems 6(1), 43-53 (2005)

Kwak, S., Han, B., Han, J.H.: Scenario-based video event recognition by constraint
flow. In: CVPR, pp. 3345-3352. IEEE (2011)

Lavee, G., Rivlin, E., Rudzsky, M.: Understanding video events: A survey of meth-
ods for automatic interpretation of semantic occurrences in video. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 39(5),
489-504 (2009)

Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis. In:
Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2011, pp. 3361-3368. IEEE Computer Society, Washington, DC
(2011). http://dx.doi.org/10.1109/CVPR.2011.5995496

Lv, F., Song, X., Wu, B., Kumar, V., Nevatia, S.R.: Left luggage detection using
bayesian inference. In: PETS (2006)

Nghiem, A.T., Auvinet, E., Meunier, J.: Head detection using kinect camera and its
application to fall detection. In: 2012 11th International Conference on Information
Science, Signal Processing and their Applications (ISSPA), pp. 164-169. July 2012
Oltramari, A., Lebiere, C.: Using ontologies in a cognitivegrounded system: Auto-
matic action recognition in video surveillance. In: Proceedings of STIDS 2012 (7th
International Conference on “Semantic Technology for Intelligence, Defense, and
Security (2013)

Park, S., Aggarwal, J.K.: A hierarchical bayesian network for event recognition of
human actions and interactions. Multimedia Syst. 10(2), 164-179 (2004)

Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human activities through
context-free grammar based representation. In: CVPR (2), pp. 1709-1718. IEEE
Computer Society (2006)


http://www.cse.buffalo.edu/jcorso/pubs/stids2010_istare_withresponses.pdf
http://dx.doi.org/10.1001/archpsyc.1983.01790060110016
http://dx.doi.org/10.1001/archpsyc.1983.01790060110016
http://dx.doi.org/10.1109/CVPR.2011.5995496

282

18.

19.

20.

21.

22.

23.

C.F. Crispim-Junior and F. Bremond

Ryoo, M.S., Aggarwal, J.K.: Semantic representation and recognition of continued
and recursive human activities. International Journal of Computer Vision 82(1),
1-24 (2009)

Tran, Son D., Davis, Larry S.: Event Modeling and Recognition Using Markov
Logic Networks. In: Forsyth, David, Torr, Philip, Zisserman, Andrew (eds.) ECCV
2008, Part II. LNCS, vol. 5303, pp. 610-623. Springer, Heidelberg (2008)

Vu, V.T., Bremond, F., Thonnat, M.: Automatic video interpretation: A novel
algorithm for temporal scenario recognition. In: Proc. 8th Int. Joint Conf. Artif.
Intell., pp. 9-15 (2003)

Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajec-
tories. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3169-3176, June 2011

Zaidenberg, S., Boulay, B., Brmond, F.: A generic framework for video understand-
ing applied to group behavior recognition. CoRR abs/1206.5065 (2012)

Zouba, N., Bremond, F., Thonnat, M.: An activity monitoring system for real
elderly at home: Validation study. In: 2010 Seventh IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS), pp. 278-285, August
2010



	Uncertainty Modeling Framework for Constraint-Based Elementary Scenario Detection in Vision Systems
	1 Introduction
	2 Uncertainty Modeling Framework
	2.1 Video Event Ontology
	2.2 Uncertainty Modeling for Elementary Scenarios
	2.3 Computation of Elementary Scenario Uncertainty 
	2.4 Probabilistic Constraints
	2.5 Learning Constraint Conditional Probabilities

	3 Evaluation
	3.1 Data Set
	3.2 RGB-D Monitoring System
	3.3 Performance Measurement

	4 Results and Discussion
	5 Conclusions
	References


