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Abstract. Semantic Content-Based Image Retrieval (SCBIR) allows
users to retrieve images via complex expressions of some ontological lan-
guage describing a domain of interest. SCBIR adds some flexibility to the
state-of-the-art methods for image retrieval, which support query either
by keywords or by image examples. The price for this additional flexi-
bility is the generation of a semantically rich description of the image
content reflecting the ontology constraints. Generating these semantic
interpretations is an open research problem. This paper contributes to
this research line by proposing an approach for SCBIR based on the
somehow natural idea that the interpretation of a picture is an (onto)
logical model of an ontology that describes the domain of the picture.
We implement this idea in an unsupervised method that jointly exploits
the ontological constraints and the low-level features of the image. The
preliminary evaluation, presented in the paper, shows promising results.

Keywords: Computer vision - Ontologies + Semantic image interpreta-
tion

1 Introduction

In recent years internet has seen a terrific increase of digital images. Thus the
need of searching for images on the basis of human understandable descrip-
tions, as in the case of textual documents, is emerging. For this reason, sites
as YouTube, Facebook, Flickr, Grooveshark allow the tagging of the media and
support searching by keywords and by examples. Tags associated to media con-
stitute a simple human understandable representation of the media content.
Tagging activity is very stressful and often is not well done by users. For this
reason, methods for automatically generate a description of the image content,
as in textual document understanding, become a real necessity. There are many
approaches to image understanding which try to generate a high level descrip-
tion of an image by analysing low-level information (or features), such as colours,
texture and contours, thus providing such a high level description in terms of
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semantic concepts. This would allow a person to search, for instance, for an image
containing “a man is riding an horse”. The difficulty to find the correspondence
between the low-level features and the human concepts is the main problem in
content-based image retrieval. It is the so-called semantic gap [17]. It’s widely
recognised that, to understand the content of an image, contextual information
(aka background knowledge) is necessary [21]. Background knowledge, relevant
to the context of an image, can be expressed in terms of logical languages in an
ontology [6]. Ontologies can play two main roles in image processing. First, they
allow to express a set of constraints on the possible interpretations of an image
and the satisfaction of such constraints can be checked via logical reasoning.
Second, the terminology introduced by the ontology can be used as formal lan-
guage to describe the image content. This will enable semantic image retrieval
using queries expressed in the language introduced by the ontology. These two
roles can be obtained by designing ontologies that formalize human understand-
able concepts (aka object types) and relations that can be found in the set of
considered pictures (e.g., rides, part-of, nearby, is-talking-to, etc.). Furthermore,
the background knowledge encoded in ontologies provides constraints on types
of objects and relations, e.g. a vehicle has at least two wheels or horses can be
ridden by men. The advantage of having the tags as concepts coming from a
background knowledge allows to reason over the image. For example the tag
“horse” enables to infer the presence of an animal.

In the present work we adopt the natural idea, envisaged in [19,23], that the
interpretation of an image, in the context of an ontology, is a (partial) model
of the ontology, which expresses the state of affairs of the world in the precise
moment in which the picture has been taken. We propose to formalize the notion
of image interpretation, w.r.t. an ontology, as a segmented image, whose segments
are associated with a set of objects of a partial model of the ontology. To cope with
the fact that a picture reports only partial information on the state of affairs we
use the notion of partial model of a logical theory [30]; to cope with the possibility
of having multiple alternative interpretations of a picture we introduce the notion
of most plausible partial model of an image. The most plausible partial model
for a picture is a partial model that maximizes a given scoring function, which
depends from the low-level features of the image.

To have a preliminary evaluation of the above idea, we implemented this
framework for a specific and limited case. We developed a fully unsupervised
method to generate image interpretations able to infer the presence of complex
objects from the parts present in the picture, thus inferring the relative “part-
whole” structure. The method jointly exploits the constraints on the part-whole
relation given by the ontology, and the low-level features of the objects available
in the image. This work should be considered preliminary. Nevertheless, the
evaluation shows promising results.

The paper is organized as follows. In Section 2, we present an overview on
semantic image interpretation (SII). Section 3 describes our formal framework for
SII. Section 4 shows how we adapt our general framework to the specific task of
interpreting part-whole relation. Finally Section 5 describes the preliminary
evaluation.
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2 Related Work

The pure logical approach to image interpretation considers the information
coming from a knowledge base for generating a semantic interpretation of an
image. It is the most popular and satisfactory method. The first work that
faced the problem in a logical approach is described in [23]. The authors pro-
pose a framework, based on first-order logic (FOL), for the depiction and inter-
pretation of images. They address the image interpretation problem as finding
the set of logical models of a knowledge base under the closed world assump-
tion (CWA). The framework is presented with the example of interpreting hand
drawn geographical maps, but it can be applied to other domains. The uncer-
tainty is treated adding assertions on the specific case. A possible drawback is
that an interpretation based on a total segmentation of the image using the
CWA is unreasonable. This critique was described in [26] where the authors fur-
ther explore the notion of logic-based approach to image interpretation. They
introduce the notion of partial model for finding an image interpretation. More-
over, they propose a DL language with a calculus system for computing such a
partial model. Uncertainty is not addressed. The growing interest in DL led to
the first DL framework for computer vision [18]. In this work the authors inves-
tigate reasoning about spatial information in order to understand objects in a
scene. The output are simple assertions on the objects and uncertainty is not
handled. Following the DL-based approach, the authors of [20] explore a frame-
work for the general high-level scene understanding task. The main interest of
the work is in the conceptual structure for describing the basic components of
a scene: the aggregates. An aggregate is a set of parts that compose a concept
in a scene with some constraints. For example, an aggregate can be the concept
of laying a table, its parts are physical objects as the table cover, actions as the
transport of a dish and temporal constraints: the tablecloth has to be put before
the dishes. Thus, the task of scene interpretation is the instantiation of aggre-
gates driven by the evidence. The output of the framework is a partial model
and uncertainty is not handled. This work has been extended in [19], where the
authors propose a DL framework for knowledge-based high-level scene under-
standing. The framework remarks the necessity of a partial model and, finally,
it introduces the notion of the most plausible partial model. Indeed, more inter-
pretations can arise, so the construction of a partial model has to be guided for
selecting the most probable one using a probabilistic approach. Uncertainty is
not addressed. Another approach for selecting the most plausible partial model,
or explanation, for a multimedia is given in [22]. Here the authors propose a DL
framework for the multimedia interpretation based on abduction. The abduc-
tive reasoning [13] infers a possible explanation from a set of facts, or evidence.
In this work, the evidence coming from the media analysis is the input for the
abduction process that computes a plausible high-level interpretation (a partial
model) of a knowledge base. The preferred explanation for the media is the one
that contains more evidence and less hypotheses. This method requires a set of
DL rules for defining what is abducible and uncertainty is not handled. A recent
method for performing abduction, for scene understanding problem, is given by
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the algebraic erosion over the concept lattice of a background knowledge [4]. A
survey on logical approaches to multimedia interpretation can be found in [9].

The above-mentioned works assume that the information coming from the
low-level image analysis is certain and without errors. But it is possible that
this information, such as the labels or the spatial relations between regions, can
be incomplete, vague and contradictory. We can have regions without labels, or
more weighted labels or even contradictory labels. Fuzzy DL [31] is an appro-
priate formalism to reason in presence of imprecision. Fuzzy DL can reduces the
semantic gap as in [14] where the authors propose a fuzzy DL ontology of spa-
tial relations. The goal is to recognize objects exploiting the spatial information
extracted from the image. A fuzzy DL framework for handling the vagueness
and the inconsistency of the semantic features is proposed in [7]. The presented
system enriches the image with new labels taken from an ontology.

Alternative approaches rely on Gestalt theory, attribute grammars and
machine learning techniques. In [32] a generic framework for scene understand-
ing that integrates domain knowledge with Gestalt theory [28] is proposed.
The framework exploits the Gestalt laws of grouping such as similarity, closure
and continuty with domain knowledge to perform the semantic segmentation
of images. The work described in [12] uses an attribute graph grammar and
a top-down/bottom-up inference algorithm for bulding the parse tree of man-
made scenes such as buildings, hallways, kitchens ect. The algorithm maximizes
a Bayesian posterior probability. In [29] the authors train a recursive neural net-
work for parsing natural scene images. They recover the intrinsic structure of
the natural scene by individualizing objects and capturing part-whole and prox-
imity relations among them. The work in [3] detects structured objects, building
facades, using a hierarchical approach based on layers. Every layer detects and
classifies structures in the image for the next layer that computes higher level
semantic structures. Every layer selects the best interpretation of the image
using an ad hoc similarity distance between graphs. Uncertainty is addressed
using this similarity distance. This method is generalized in [2] using a kernel
function for the graph similarity. The above methods perform the parsing of the
scene starting from low-level information of the image, but the structures they
build lack of a formal semantics as the logic approaches provide.

Probabilistic approaches are alternatives to fuzzy DL for handling the vague-
ness but also for driving the construction of the most plausible model. A well-
known formalism that combines FOL knowledge bases and probabilistic graphical
models in a unique representation is given by Markov Logic Networks [24]. Another
significant approach is given by combining FOL with kernel machines [8].

3 Problem Formulation

We start by introducing some assumptions and definitions which constitute the
basic elements of the proposed framework.
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Background knowledge. We suppose that background knowledge is contained in
a knowledge base expressed in a logic of the family of Description Logics (DLs)
[5]. In the following we briefly introduce DL formalism. Given three disjoint
sets of symbols X' = Yo W Xp W X}, denoting concepts, relations (or roles) and
individuals respectively, a SHZQ concept is defined by the following grammar:

C,D:=A|~C|CND|CUD|3R.C|VR.C | (>n)R.C |(<n)R.C

where A € Y¢, and R € Y'r. Furthermore, we suppose that X'g is closed under
inverse role, i.e., if R € X then R~ (the inverse of R) is in Y'r. Axioms are
expressions of the following forms:

’ Axioms of the T-box \ Axioms of the A-box ‘
C C D, concept inclusion axiom|C'(a), object class assertion
R C S, role inclusion axiom R(a,b), role assertion

An interpretation Z of the signature X is a pair (A%, .7), where A is a non empty
set called the interpretation domain of Z. The symbol - is a function from X
to the subsets, the relations and the elements of AZ satisfying the following
constraints: X : Yo — 2AI, concept names are interpreted as subsets of the
domain; £ : Xy — 2AIXAI, role names are interpreted as binary relations;
and -2 : ¥; — AZ, individual names are interpreted as elements of the domain.
The function -Z can be extended to all the concept expressions as follows:

(-C)F =AT\¢* | (cnD)?=cTnD? | (CuD? =CTuD?
(AR.C)T = {d € AT | for some (d,d’) € R, d' € C*}
(VR.C)T = {d € A% | for all (d,d') € R*, d' € C*}
n)R.C)YE ={dec AT | #({d € CT | (d,d) € R*}) > n}
n)R.C)T = {d € AT | #({d € CT | (d,d) € R*}) <n}

((
((

>
<

where #(A) is the cardinality of the set A. A knowledge base KB is a set of
axioms. 7 is a model of a knowledge base ICB if it satisfies all the axioms in KB,
i.e. 7 |E ¢ for all ¢ € KB, where the satisfiability relation is defined as follows:

’ Axioms of the T-box \ Axioms of the A-box ‘
IECLCD, iff C2CD*TEC(a), iff aZecC?
IERLCS, iff RTCST|TE R(a,b), iff (af,b?) e RT

An interpretation that satisfies B, namely a model of KB, is a complete rep-
resentation (at a certain level of abstraction) of a possible state of affairs of
the real world. The knowledge base, by means of its axioms, imposes con-
straints on possible states. The states of affairs corresponding to interpretations
that do not satisfy B are considered impossible. So, for instance, the axiom
House C JhasPart.Door imposes that the state of affairs where a house has no
door will never be the case.
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formalized by

Real World Model Z of KB

partial viewT T c

Picture =~ —————— Partial Model Z,, of KB
formalized by

Fig.1. The world is formalized by a model of KB and the partial view of the world
contained in the picture is formalized by a partial model

Partial models. An image is a partial view of the world. Therefore, a formal
representation of the content of an image should be a partial view of a model of
ICB. This view can be considered as an interpretation of the language of KB, but
it does not necessarily satisfy all the axioms of XB. The intuition is represented
in Figure 1. For example, in a picture we can see a car with only two wheels, the
others could be not visible due to the perspective of the view. The claim that
a car has four wheels is not satisfied in the picture but it is satisfied in the real
world supposing to be in a normal situation. Thus, if we formalize the world as
a model of our knowledge base KB we formalize the picture with the notion of
partial model I,,. A partial model for a knowledge base ICB is an interpretation
I, = (A%r, %) of the knowledge base, such that there is a model Z = (AZ,.7)
of KB, called the completion of Z,, such that:

1. AT» C AT 3. AT = AT N A% forall A € X¢
2. a¥» =g’ forallae ¥; 4. RT» = RT N A%» x A?» for all R € Y.

Labelled picture. Our starting point is a segmented picture where every segment
is associated with a set of labels paired with a confidence level. Labels are symbols
taken from the alphabet of a knowledge base which is used to describe the real
world from which the picture is taken. Given the current states of image process-
ing software this seems a realistic assumption. We assume therefore that an image
is divided into regions where every region has a set of weighted labels. Labels
are taken from the signature X' of the knowledge base. An example of labels and
weights of a region is {(Duck, 0.8), (DonaldDuck,0.7), (isArguingWith, 0.4)}. We
now provide a formal definition of labelled segment with the notion of patch.

A labelled picture P is a finite set of labelled patches P = {p1,...,pn}. A
labelled patch p is a pair p = (P, L) where:

— P is a set of adjacent pixels (i,j) € N? of the labelled image P. The pair
(i,7) is the coordinates of the pixel in the image.
— L is a set of weighted labels of the patch and it is defined as L C X' x R.

The function Labels : P — X returns the set of labels (without weights). Namely
for CVery p = <P7 {<l1u w1> sy <ln7wn>}>ﬂ La‘bels(p) = {lh 127 ln}
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+ ]

Segmented image The model and the partial model of the image

Fig. 2. Alignment between a labelled picture and its semantic interpretation

Problem definition. Following the intuition about partial models we define the
semantic image interpretation as computing a partial model Z, = (ATv ) Ip)
of the knowledge base. Thus, the solution is to find a method for creating the
individuals (the nodes) of AZ#, typing them and linking together (the arcs)
according to -Z», in order to create the structured information representing the
semantic content of the image. Having this graph describing the image content
is not enough. We need also the information about the segmentation, e.g. in
an information retrieval system it could be also necessary returning the single
patches. So, we need a link between the individuals of our partial model and their
corresponding segments, see Fig. 2. This consideration leads to the following
formal definition of the semantic interpretation task.

Definition 1 (Semantic interpretation of a labelled image). Given a
knowledge base ICB with signature X and a labelled picture P, a semantic inter-
pretation of a labelled image is a couple (Z,,cf) where:

- I, = (A%», 2r) C T is a partial model for KB;
— cf : P — A s called conceptualization function from the set of patches P
to individuals, that is:

cf(p) =i e AT : 3l € Labels(p) :
i=1%, withl € Xy,
i e, withl € X,
3je AT (i,5) € IX, withle Zg . (1)

Preference relation between (partial) models. In general there are many possible
explanations of the content of a picture. Formally this means that there are
many partial models. On the other hand the interpretation of a picture should
be unique, we have therefore to select one among a set of possible partial models.
To face this problem, we introduce a scoring function S that assigns a score to
a partial model based on its adherence to the image content, the highest the
adherence the highest the score. Our problem turns to construct a partial model
Z; that maximizes S. In symbols:
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I, = argmax S(Z,) (2)
I,eM,

where M, is the set of all possible partial models. This function can not be
addressed in a purely logical manner but in a statistical framework that mixes
low-level features with the logical constraints between concepts (the axioms of
the knowledge base). There will be the necessity of a dataset for learning the
correlation between objects and relations.

Issues in constructing an image interpretation. To construct the partial model
I, we have to determine its elements ATr | their types, their relations, and to
search for a completion Z O Z,, which satisfies all the axioms of CB. There are
several problems to face. Decide which are the elements of AT and AZ» that
correspond to the picture patches, for example two regions labelled with car can
be assigned to the same individual due to occlusions in the image. There can be
also elements in A%» which correspond to the composition of a set of patches.
For instance, an individual of type House corresponds to the region obtained by
joining the regions labelled with Window, Door, Roof, and Wall.

We also have to decide which are the types of the elements of A%r, this can
be done using the labels contained in the corresponding patch as well as the
axioms in the ontology. In general labels are not unique and weights need to be
taken into consideration.

Another problem is to decide which are the relations between the elements
of A%r. This can be achieved mixing visual and semantic features. For instance,
by clustering with respect to the position of the patches, we can instantiate
new individuals and linking them according to the part-whole relation. These
inferences strongly depends on the type of relation we are considering.

4 Recognizing Complex Objects from their Parts

In this section we apply our framework to a specific subtask of semantic image
interpretation: inferring the presence of complex objects from the presence of
their parts. We consider the simplified scenario of a segmented image where
patches can be labelled with at most one (non weighted) label. The background
knowledge (and constraints) about part-whole relation is described by a sim-
ple ontology. Preference relation between partial models is inspired by a general
principle of the mereology: the parts of the same object are topologically close in
the space. Thus, we will prefer models where close parts in the image are consid-
ered parts of the same complex object. But we have to consider that sometimes
close parts are not always parts of the same complex object. Therefore, to com-
pute this preference, we need to take into account low-level features, such as the
topological distance between patches, as well as semantic features, in order to
prefer models that group together parts close in the space belonging to the same
object. To compute the best partial model (i.e., the best grouping of parts in
wholes) we use clustering techniques.
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House C dhasParts.Door
M JhasParts.Window
M JhasParts.Roof
M JhasParts.Chimney
Foliage M JhasParts.Walls
Tree C dhasParts.Foliage
M JhasParts. TreeTrunk
Car C StreetVehicle
Motorbike C StreetVehicle
isPartOf = hasParts™

Fig.3. The image of our running example. Every segment has one label among
Foliage, TreeTrunk, Window, Walls, Door, and Roof. The labels are taken from a
simple ontology O. The right part shows an excerpt of it.

We explain our method via a running example. Suppose that we start from
the labelled image P of Figure 3. The set of patches of P and their labels
are highlighted by the segments in the figure, e.g. a patch of the image is
p = (P, (window, 1)). We have manually built a simple ontology O containing
part-whole axioms about houses and vehicles, as well as some concept inclusion
axioms. An excerpt of O is shown on the right side of Figure 3. Despite the
simplicity of this example, and the manual construction of O, we believe that
this can be highly automatized and scaled to a larger domain since there are
several knowledge bases describing objects from a mereological and taxonomical
point of view, e.g. Wordnet [10].

Partial Model Initialization. According to the approach described in Section
3, building a semantic image interpretation means to construct a partial model
7, and the conceptualization function cf. To construct Z,, we have to create the
set of individuals A%» corresponding to the patches of the picture, assign them
the correct concepts, and find relations between them. Finally, we have to check
if 7, is a partial model for O, i.e., if there is a completion of Z,, that is a model for
O. This last task can be easily solved by the inference services provided by DL
reasoners, such as Racer [11] or Pellet [27]. Reasoners perform the completion
of an ABox: they search for a model satisfying the ontology and the statements
in the ABox. Moreover, they are able to infer new knowledge from the ABox
exploiting the axioms in the ontology. From this consideration it follows that
the main steps for the semantic interpretation of P are:

— for every patch p € P create a new individual i, in the ABox of O;
— typing i, according to Labels(p);
— starting the reasoner for a possible completion of the ABox.

In the specific, given a patch p we instantiate a statement as Concept(ip)
in the ABox of O, where i, is a new individual and Concept € Labels(p).
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This procedure links together two levels: the concrete level, i.e. the labelled
image showing a part of the reality, and an abstract level, i.e. the math-
ematical entity called partial model. The procedure not only creates the
partial domain AZ» but also the conceptualization function cf. In the running
example the partial domain A%» is composed by the individuals foliaged,
foliage2, treeTrunk3, treeTrunk4, windowb, window6, window7, windows,
walls9, door10, roofll. Furthermore, the typing of these individuals brings
to the following ABox assertions: Foliage(foliagel), Foliage(foliage2),
TreeTrunk (treeTrunk3), TreeTrunk (treeTrunk4), Window(window5),
Window(window6), Window(window7), Window(window8), Walls(walls9),
Door (door10), Roof (roof11). Now, if we run a reasoner on O with the ABox it
does not raise any inconsistency, this means that there exists a model extending
the ABox, thus the latter is a partial logical model of O.

Clustering Parts for Discovering New Complex Objects. The obtained
partial model is not so informative, it is necessary to fill it with part-whole rela-
tions between individuals. This means to guide the construction of a semantic
interpretation of P towards the most plausible partial model. Such a partial
model is obtained according to a general principle, the most plausible model is
the one relating together parts of the same object. The idea is to group together
the several parts of an object and then inferring a new individual correspond-
ing to that object. We clustered together the several parts of the same object,
so different clusters mean different objects. Then, with abductive reasoning, we
provide the best explanation for every cluster, that is, the whole object underly-
ing the presence of some parts in the cluster. This approach takes into account
geometrical features of the patches and semantic features in a clustering algo-
rithm. Indeed, we need both kind of features because some objects can be close
in the Euclidean space but far from a semantic point of view and we do not want
to group them together. For example, an house and a tree could be close in the
picture, but they are distant in the semantics so they cannot belong to the same
cluster. Moreover, two objects can have the same parts but they do not share
them. For example, two different houses have as parts some windows, but they
do not share them. This is the case where objects can be near in the semantics
but distant in the space.

The idea is to define a joint input space for a clustering algorithm. Such a
space has to embed low-level with semantic features and its elements are asso-
ciated to every patch. These elements are vectors representing the joint features
of the patch, specifically:

— the (z,y) coordinates of the centroids;
— the semantic distance between the concept expressed by the patch respect
to the concepts expressed by other patches.

There are many methods for calculating the semantic distance between concepts,
our method is based on the part-whole relations between concepts [16]. Given a
patch p € P let L its label (the concept it expresses), (xp,y,) the coordinates of
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its centroid, {L;}?"; C X the set of concepts expressed by the other patches,
dpw (L;j,Lk) the semantic distance according part-whole relation between con-
cepts L;, L, the input space function ZS py associating patches to their features
according to part-whole relation is:

ISPW P — Rn+2
pr <‘rp7yp7dPW(L7L1)7 7dPW(L7Ln)> (3)

Thus, our input space is the image of ZS py over P. In our example, an element
of the input space associated to a patch p labelled with door has the form:

p — (Tp, Yp, dpw (Door, Walls), dpw (Door,Foliage), dpw (Door, Roof),. .. )

With such an input space we aim at clustering together patches both close in the
Euclidean space and in the semantics. In this manner we guide the construction
of the partial model towards the most plausible one, i.e. the one that groups parts
belonging to the same object in the image. After the clustering we have a set
of clusters CL = {cly, ..., cl;, }. In our running example the clustering algorithm
(see Section 5 for details) individualized 2 clusters:

cly = {foliagel,foliage2, treeTrunk3, treeTrunk4}

cly = {windowb, window6, window7,window8,walls9, door10, roof11}.

For the sake of presentation clarity the clusters contain the individuals corre-
sponding to the patches and not the elements of the input space. The first cluster
should group only one foliage and a trunk, the reason is these parts are too close
in the Euclidean space and the unsupervised learning (as clustering) is not able
to distinguish between them, see Section 5 for details.

Inferring New Individuals from Clusters. The construction of the partial
model follows from the set of clusters containing parts belonging to the same
object. Indeed, we need to create a new individual in the ABox corresponding
to this object and typing it. Technically, we have to compute the least common
concept containing the types in the cluster. More generally, we have to find
the best explanation underlying a certain cluster. The reasoning that gives an
explanation to some evidence is called abductive reasoning. We present a method
for typing the most likely object given a cluster of its parts and an ontology.
The idea is to find, for every cluster, the ontology concept whose existential
concept restrictions maximize the concepts expressed by the cluster elements.
This procedure is a further step towards the construction of the partial model
that mostly adheres to the image.

This idea needs the following formalism to be expressed. Let us consider the
axioms of O with the form A C [];, 3R.B;, where B; C Y¢ and R € Y'z. We call
B; the set of types of the existential restrictions through R. Consequently, let
CFgr : Yo — 2%9, where R € Yy, the function that assigns to every concept
A € Y the set of types of its existential restriction through R. For example,
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in our ontology CFhasparts(House) = {Door,Window,Roof, Chimney, Walls} and
C Fhasparss(Tree) = {Foliage, TreeTrunk}. Our approach is to compare the clus-
ters with our ontology, thus we need to extract the concepts expressed by the
parts in the clusters and a similarity measure between set of concepts. Given a
cluster cl, the function CE extracts the concepts it expresses: CFE : CL — Y.
In our running example, CE(cly) = {Foliage, TreeTrunk}. With this formal-
ization it is simple to compare a cluster ¢/ with each concept A by defining a
simple kernel set K based on the intersection between sets:

CE(cl) N CFrasparts (A
w8 = e

(4)

The abduction step now reduces to:

— perform the kernel set similarity between a given cluster and all the concepts
Ae ZC, with C(}'ﬁhasl’arts (A> 7é ®7

— choose the concept that scores best;

— instantiate a new individual, in the ABox of O, with that concept as type.

Thus, given cluster cl, A € Y such that CFhaspares(A) # 0, we formalize the
abductive step as instantiating a new individual newInd € M%» in AZ», such that:

M = argmax K (ce(cl), A). (5)
Ace Yo

This new individual represents the whole object that best explains the several
parts/patches in the cluster. Moreover, the presence of this individual in AZr
improves the plausibility of the partial model. After its creation we instantiate
the hasParts relations with the individuals corresponding to its parts. In our
running example, the two new individuals after the abductive step are of type
Tree and House for cly and cly respectively.

Remarks. Some considerations are needed. Sometimes, there is not enough
semantic information (labels) to discriminate two objects, e.g. can we distinguish
a car from a motorbike knowing only the concepts of Bodywork and Wheel? In
this case the kernel could be the same. Objects in the real world are categorized
according to a taxonomy (isA relation) and a general principle exists: the more
general a concept is the less attributes it has. That is, more general concepts
have less types of existential restrictions and thus they have a bigger kernel. For
example, given the concepts of Bodywork and Wheel, the kernel with best score
will not return the concepts of Car or Motorbike, but the more general one of
StreetVehicle.

We have seen that clustering together semantic and low-level features allows
to discover objects far in space and semantics, close in space but far in the
semantics and vice-versa. But what about objects close in the space and in the
semantics? For example, a wheel of a car could be close to the bodywork of a
motorbike and the clustering algorithm clusters together the two objects. This
is a still open problem, a possible solution will be to exploit further low-level
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features. We have a partial solution. After the abduction process of creating new
individuals in the ABox we start the reasoner in order to: (i) infer knowledge
about the new individuals and (ii) to check the consistency of O with the new
assertions in the ABox. This second step allows us to discard wrong clusters. For
example, if there is an axiom where cars have only one bodywork and there is a
cluster with two of them with some wheels there will have inconsistency. Thus,
that cluster will be discarded with the generation of a new one.

5 Experimental Results

We evaluated the task of discovering part-whole relations by defining a gold
standard: given the single parts we want to discover the whole object underlying
such parts. This evaluation has been achieved by constructing a small dataset of
15 labelled images where every image has been labelled using the tool LabelMe
[25]; labels are taken from an ontology O similar to the one described in Section
4. We concentrated on two image domains: houses with trees and street vehicles,
but the method is general and can be easily extended to whatever domain. We
obtained our ground truth labelling the single parts composing an object, such
as foliages and tree trunks, and the object itself, the tree. Moreover, we also
linked the singles parts to the corresponding object according to the part-whole
relation. Parts are linked together using only one level of part-whole relation,
i.e. we do not have chains of parts connected by the relation.

The next step was to compare the ground truth with the output of our frame-
work: a partial model of O, i.e. a predicted ABox Ap consistent with the axioms
of O. As described in the Section 4, Ap contains the individuals correspond-
ing to the parts and to the whole objects, this process has been carried out
using clustering techniques. Specifically, the experiments were conducted using
the Java-ML library [1] with a clustering technique based on Kohonen’s Self-
Organizing Maps [15]. Such a technique was the one with better performance.

Ap is a set of assumptions over O, so the goal is to compare such state-
ments with the ground truth. Thus, we converted every labelled image into an
ABox Agr with the corresponding part-whole relations instantiated. In both the
ABoxes we used the same identifiers for the individual names of the single parts,
while the whole objects have different individual names. This is obvious because
our goal is to predict the whole objects, so we cannot use the corresponding name
of the ground truth. The idea is to compare the two ABoxes by individualizing
groups of parts corresponding to the same object, i.e. in part0f relation with it.
We are not interested in the name of such an object but only on its parts. Thus,
for both the ABoxes we extracted pairs of individuals corresponding to parts of
the same object. For Ap the set of these pairs is called positive prediction (P),
the pairs coming from Agr are the ground truth (7') and their intersection are
the true positives (T'P). Table 1 shows the performance of our framework, for
every image in the ground truth, in terms of precision, recall and F-measure.
The mean of these metrics are, respectively, 0.89, 0.87 and 0.84.

The results show a high F-measure, and for the 46.7% of the images we
generate a fully correct interpretation. Nonetheless, there are problematic cases.
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Table 1. Evaluation of the framework in terms of precision, recall and F-measure

Domain Image |P| |T| |T P| Precision Recall F-measure
Street Vehicles 1 18 18 18 1.00 1.00 1.00
Street Vehicles 2
Street Vehicles 3
Street Vehicles 4
Street Vehicles 12
Street Vehicles 13
Street Vehicles 14 . . .
Street Vehicles 15 12 12 12 1.00 1.00 1.00

5
6
7
8
9
10
11

Houses, Trees
Houses, Trees
Houses, Trees
Houses, Trees
Houses, Trees
Houses, Trees
Houses, Trees

This is due to the fact that the clustering algorithm cannot correctly group the
parts of an object. In the cases of low precision (e.g. image 7) the algorithm
generates less clusters w.r.t. the ground truth; in the cases of low recall (e.g.
image 14) the algorithm generates more clusters w.r.t. the ground truth.

6 Conclusions

In this work we addressed the semantic image interpretation as a procedure to
extract structured information from images using an ontology. A possible use
of such a structure is semantically querying images about their content. The
novelty of this work is a fully formalization of the problem in terms of partial
logical model of the ontology based on a simple intuition: as an image is a partial
view of the world it has to be formalized as a partial model. Moreover, we stated
that a partial model should adhere, as much as possible, to the image, so we need
a heuristic to guide its construction towards the most plausible partial model.
We applied the framework to a specific subtask: the extraction of part-whole
relations between objects in an image. The heuristic guiding the construction of
the partial model was based on a simple principle: the parts of an object are close
in the space. We implemented this idea with a clustering technique that exploits
both low-level and semantic features of the image. The method was tested on a
built dataset obtaining, in average, good results.

As future work we aim to find a more efficient method for discriminating
objects near in the space and in the semantics. In order to better evaluate the
soundness of our framework we want to extend the experiments to a larger
dataset. Furthermore, we want to generalize our method to patches with more
weighted labels, exploring, for example, fuzzy DL approaches. An important
open problem is finding heuristics guiding the construction of plausible partial
models for other relations. This can be address, for example, using supervised
learning techniques o probabilistic graphical models.
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