
Domain Adaptation with a Domain Specific
Class Means Classifier

Gabriela Csurka(B), Boris Chidlovskii, and Florent Perronnin

Xerox Research Centre Europe, 6 chemin Maupertuis, 38240 Meylan, France
{Gabriela.Csurka,Boris.Chidlovskii,Florent.Perronnin}@xrce.xerox.com

Abstract. We consider the problem of learning a classifier when we dis-
pose little training data from the target domain but abundant training
data from several source domains. We make two contributions to the
domain adaptation problem. First we extend the Nearest Class Mean
(NCM) classifier by introducing for each class domain-dependent mean
parameters as well as domain-specific weights. Second, we propose a
generic adaptive semi-supervised metric learning technique that itera-
tively curates the training set by adding unlabeled samples with high
prediction confidence and by removing labeled samples for which the
prediction confidence is low. These two complementary techniques are
evaluated on two public benchmarks: the ImageClef Domain Adaptation
Challenge and the Office-CalTech datasets. Both contributions are shown
to yield improvements and to be complementary to each other.

Keywords: Domain adaptation · Self-adative metric learning · NCM

1 Introduction

The shortage of labeled data is a fundamental problem in machine learning appli-
cations. While huge amounts of unlabeled data is generated and made available
in many domains, the cost of acquiring data labels remains high. Domain adap-
tation addresses this problem by leveraging labeled data in one or more related
domains, often referred as ”source” domains, when learning a classifier for unseen
data in a ”target” domain.

The domains are assumed to be related but not identical and when we apply
directly models learned on source domains the performance can be often very
poor on the target. This is especially true in computer vision applications as
existing image collections used for e.g . object categorization present specific
characteristics which often prevent a direct cross-dataset generalization. The
main reason is that even when the same features are extracted in both domains,
the underlying cause of the domain shift (changes in the camera, image resolu-
tion, lighting, background, viewpoint, and post-processing) can strongly affect
the feature distribution and thus violate the assumptions of the classifier trained
on the source domain. Therefore it is important during the learning process to
infer models that adapt well to the test data they will be deployed on.
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part III, LNCS 8927, pp. 32–46, 2015.
DOI: 10.1007/978-3-319-16199-0 3

Domain Adaptation with a DSCM and SaMLDa 33

Fig. 1. Exploiting class and domain-related labels to decreased interclass distances and
increase intraclass distances independently of the domain

Hence one of the main issues of domain adaptation is how to deal with data
sampled from the different distributions and how to compensate this mismatch
by making use of information coming from both source and target domains
during the learning process to adapt automatically.

Our contributions, aiming to address these issues, are therefore two-fold:
- We extend the nearest class mean (NCM) classifier and its metric learning app-
roach [14] to the problem of domain adaptation by introducing domain specific
class means (DSCM) with domain specific weights. While this method yields
surprisingly good results without any learning procedure (besides computing
the per-class and per-domain means), we also show that metric learning yields
further improvement. This involves learning a such transformation of the fea-
ture space that decreases interclass distances and increases intraclass distances
independently of the domain (see illustration for two domains in Fig.1).
- Inspired by [19], we propose a self-adaptive metric learning domain adap-
tation (SaMLDa) framework where we exploit the available unlabeled target
instances to better adjust the learned metric to the target domain. The idea is
to use the DSCM classifier 1) to select and label unlabeled target instances to
enrich the training set and 2) to remove the more ambiguous source examples
from the training set. This dynamically updated training set is used to iteratively
refine the learned transformation by forcing the learning process to exploit the
characteristics of the unlabeled target instances. While naturally our SaMLDa
framework uses the DSCM based metric learning approach, we show that other
metric learning approaches can be used in the framework in order to improve
the classification on the target instanced in the transformed space.

The rest of the paper is organized as follows. In section 2 we review the
relevant literature. Then, in section 3 we describe the DSCM classifier and the
corresponding metric learning and in section 4, the self-adaptive metric learning
domain adaptation (SaMLDa) framework. Section 5 provides details about the
datasets and our evaluation framework and section 6 details the results of our
experiments. Finally we conclude the paper in section 7.

34 G. Csurka et al.

2 Related Work

The domain adaptation literature is very vast. We refer the interested reader
to [12] for a survey of domain adaptation methods with a focus on learning
theory and natural language processing applications, and to [2] for a survey
focusing on computer vision applications. As for [15], it provides a review on the
related topic of transfer learning.

We will limit our review on the most related works, i.e. those that focus
on transforming the feature space in order to bring the domains closer. This
class of methods can be further split into methods that do an unsupervised
transformation, generally based on PCA projections, such as the subspace based
domain adaptation methods in [1,6,7,9].

In contrast to these unsupervised learning of the transformation matrix, there
are a set of metric learning based methods that exploits class labels (in general
both in the source and in the target domain) to learn a transformation of the
feature space such that in this new space the instances of the same class become
closer to each other than to instances from other classes and this independently
of the domain they belong to [10,13,17,21]. While the Domain Invariant Pro-
jections (DIP) in [1] are also learned without using class labels, the extended
DIP+CC search for invariant projections that encourages samples with the same
class labels to form a more compact cluster. The proposed DSCMML method
can also be placed in this subgroup.

In addition we exploit unlabeled target instances and refine the metric accord-
ingly. The proposed framework is inspired by [19], but the idea of using unlabeled
target instance in an active supervised domain adaptation can be also found in
[18]. Similarly, [5] proposes to use unlabeled target data, however they are used to
measure the data distribution mismatch between the source and target domain.
Their Domain Transfer SVM generalizes the sample re-weighting of Kernel Mean
Matching [11] by simultaneously learning the SVM decision function and the ker-
nel such that the difference between the means of the source and target feature
distributions (including the unlabeled ones) are minimized.

3 Domain Specific Class Means Classifier

The Domain Specific Nearest Class Means (DSCM) classifier extends the NCM
by considering domain based class means and it was inspired by the Nearest
Class Multiple Centroids (NCMC) classifier proposed in [14]. In what follows,
we first review the NCM and NCMC and then introduce the proposed DSCM.

The nearest class mean (NCM) classifier assigns an image to the class
c∗ ∈ Yc = {1, . . . , C} whose mean is the closest:

c∗ = argmin
c∈Yc

dW (xi,µc), with µc =
1
C

∑

i:yi=c

xi, (1)

Domain Adaptation with a DSCM and SaMLDa 35

where yi is the ground-truth label of the image xi, N c is the number of train-
ing examples from the class c and dW (xi,µc) = ||W (xi − µc)||2 is the squared
Euclidean distance between an instance xi and the class mean µc in some pro-
jected feature space given by the transformation matrix W . If W is the identity
(I), this corresponds to the Euclidean distance in the original feature space.

We can easily reformulate Eq. 1 as a multi-class softmax assignment using
a mixture model (with equal weights), where the probability that an image x
belongs to the class c is defined as follows (see also [14]):

p(c|xi) =
exp

(
− 1

2dW (xi,µc)
)

∑NC

c′=1 exp
(

− 1
2dW (xi,µc′)

) . (2)

and the final assignment is done by c∗ = argmaxc∈Yc
p(c|xi). This definition may

also be interpreted as the posterior probabilities of a Gaussian generative model
p(xi|c) = N (xi,µ

c, |Σ) with the mean µc and class independent covariance
matrix Σ = (W�W)−1.

Note that, once the metric dW is known, learning the mean parameters of
this classifier is very efficient as it only involves summing the image descriptors
for each class and domain. A great advantage is that, if the metric is fixed,
we can easily add new classes, new domains or new training images to existing
classes and domains at almost zero cost [14].

The Nearest Class Multiple Centroids (NCMC) classifier [14] extends
the NCM classifier by representing each class by a set of centroids {mj

c}kj=1

obtained by clustering images within each class, instead of a single class mean
(NCM corresponds to k = 1 and m1

c = µc). The posterior probability for the
class c is then defined as:

p(c|x) =
1
Z

k∑

j=1

exp
(

− 1
2
dW (x,mj

c)
)
, (3)

where Z =
∑

c

∑
j exp

(
− 1

2dW (x,mj
c)

)
is the normalizer and the model for

each class becomes an equal weighted Gaussian mixture distribution with mj
c as

means and Σ = (W�W)−1 being the shared covariance matrix.

The Proposed Domain Specific Class Means (DSCM) Classifier. The
NCMC classifier can be naturally extended to the case of multiple domains
where instead of selecting centroids in an unsupervised manner, for each class
we consider domain specific class means:

µc
d =

1
N c

d

∑

i:yi=c,xi∈Dd

xi, (4)

where N c
d is the number of images from class c in domain Dd. In such a case,

the class assignment can be written as:

p(c|xi) =
∑

d wd exp
(

− 1
2dW (xi,µ

c
d)

)
∑

c′
∑

d wd exp
(

− 1
2dW (xi,µc′

d)
) =

∑
d wdp(xi|c, d)∑

c′
∑

d wdp(xi|c′, d)
(5)

36 G. Csurka et al.

This model also corresponds to a generative model, where the probability for an
image xi to be generated by class c is given by a Gaussian mixture distribution
p(xi|c) =

∑
d wdp(xi|c, d) =

∑
d wdN (xi, μ

c
d, |Σ), with the mixing weights wd,

the domain specific class means μc
d and the class and domain independent covari-

ance matrix Σ = (W�W)−1. Again, if W = I, the distances are computed in
the original feature space, and Σ = I.

Domain specific weights wd in Eq. 5 allows to express different importance of
different domains. These weights can be manually fixed (if we have some prior
knowledge about the sources), learned (e.g . cross validated) or deduced directly
from the data. If we denote the target domain by T and the source domains by
Si, one possibility to define wsi is to measure how well the source domain Si

is aligned with the target domain T in the space projected by W . This can be
done by e.g . using target density around source (TDAS) proposed in [6]:

TDAS =
1

Ns

∑

xs
i∈S

|{xt|dW (xt,xs
i)| ≤ ε|, (6)

where ε is set to the half of the mean distance between the source sample and
the nearest target sample.

Alternatively, in the semi-supervised setting, where a small set of labeled
instances are available from the target domain (denoted by Tl), we can proceed
as follows. We consider the class means for each source Si individually and
use them within Eq. 2 to predict the labels for instances in Tl. The average
classification accuracy of this classifier can be used directly as wsi .

Note that in the case of large datasets, Eq. 5 can be further extended by
considering a set of domain specific prototypes for each class by clustering the N c

d

domain specific images from class c and domain d. Another possible extension
is to consider domain and class specific weights wc

d in Eq. 5, where both, the
TDAS measure and the NCM accuracy can be also computed for each class
individually. However these extensions being more suitable for larger datasets
will not be considered in the paper.

3.1 Metric Learning for DSCM

The aim of metric learning is to find a projection matrix W , such that the
log-likelihood of the correct DSCM class predictions are maximized on X:

L =
∑

xi∈X ln p(c = yi|xi) =
∑

xi∈X

[
ln

∑
d wdp(xi|yi, d) − ln Zi

]

where Zi =
∑

c′
∑

d wdp(xi|c′, d)
Similarly to [14], we optimize this log-likelihood with mini-batch stochastic

gradient descend (SGD) using a fixed learning rate (η), and randomly sampled
small batch, Xb ⊂ X of the training data to update W with the gradient:

∇WL =
∑

xi∈Xb

[∑

c′

∑

d

(gc
′

i,d

Zi
− [[c′ = yi]]

gc
′

i,d

p(xi|c′)

)
W (µc′

d − xi)(µc′
d − xi)�

]

Domain Adaptation with a DSCM and SaMLDa 37

where gc
′

i,d = wdp(xi|c′, d) and [[·]] is one if its argument is true and zero other-
wise. Note that we initialize W with principal component analyses, keeping the
number of eigenvectors corresponding to the desired dimension of the projected
space, generally, much smaller than the initial feature space.

4 Self-adaptive Metric Learning for Domain Adaptation

Two main cases are in general distinguished in domain adaptation. Unsupervised
DA refers to the case where no labeled data is available from the target domain
and semi-supervised DA where there are a few labeled images from the target
domain to guide the learning process. Let denote by Tl the set of labeled target
instances (that can be empty) and by Tu the set of unlabeled target set. Let
S1, . . . ,SNS

denote NS source domains and Xr a current training set containing
labeled instances (that can be ground truth labels or predicted ones) from differ-
ent sources. We denote by Yc the class labels, by Yd = {s1, . . . sNS

, t} the domain-
related labels, where t refers to the target domain and by wd = (ws1 , . . . , wt)
the set of domain-specific weights.

We propose a Self-adaptive Metric Learning Domain Adaptation framework
(SaMLDa) inspired by the method proposed in [19] where, similarly, we add
iteratively unlabeled images from the target domain and remove images from
the source to refine W . The proposed framework assumes a metric learning
component fW (Xr,Wr,w

r
d) that gets as input an initial transformation Wr,

a set of labeled training instances Xr and optionally a set of domain-specific
weights wr

d. Then, using either only the class labels Yc or also the domain-
related labels Yd of the instances in Xr, it outputs an updated transformation
Wr+1 = fW (Xr,Wr,w

r
d).

The DSCMML described in section 3.1 is one particular case of the metric
learning component, but the algorithm can use any other metric learning app-
roach (and improve its performance as we will see in section 6). Indeed, in the
case of metric learning methods not designed to handle multiple sources, the
domain-related labels Yd and weights wd are simply ignored by fW .

The main steps of our self-adaptive metric learning based domain adaptation
algorithm (see Algorithm 1) are the followings:

– Using the initial labeled set X1 (including labeled target instances if available),
we set W0 as the first PCA directions on the training set and compute W1 =
fW (X0,W0,w

0
d). One advantage of the dimensionality reduction is that we

have fewer parameters to learn, which is especially important when only a
relatively small amount of training examples are available; it also generally
leads to a better performance.

– Then, we iteratively refine Wr by adding at each iteration to the current
training set Xr unlabeled instances from the target with their predicted class
labels and removing the less confident source instances1. In contrast to [19],

1 Improving in general the domain specific class means as the relevant source data
becomes better clustered around these means.

38 G. Csurka et al.

Algorithm 1. The SaMLDa approach
Require: The initial training set X0 = {S1, . . . ,SNS , Tl}.
Require: Domain-specific weights w0

d and an initial transformation W0.
Ensure: A metric learning component fW .
1: Get W1 = fW (X1,W0,w

0
d).

2: for r = 1, . . . , NR do
3: Set Xr = Xr−1, w

r
d = wr−1

d and compute µc
d.

4: Optionally, update wr
d using TDAS or NCM with Wr.

5: For each xi ∈ Xr−1 and each class cj compute p(cj |xi) using Eq. 5 with Wr.
6: For each class cj , add xt

i ∈ Tu to Xr for which p(c∗|xt
i) − p(c†|xt

i) is the largest.
7: For each class cj , remove xs

j ∈ Xr−1 � T from Xr for which p(c∗|xs
j) − p(c†|xs

j)
is the smallest.

8: Set Wr+1 = fW (Xr,Wr,w
r
d).

9: If stopping criteria is met (classification accuracy degraded or no more data
available to add or remove), quit the loop.

10: end for
11: Output Wr∗ where r∗ + 1 is the iteration at stopping criteria (or r∗ = NR).

where added or removed images are selected by the distances between low-level
features2, we use the DSCM class probabilities defined in Eq. 5.

1. For each class cj , we add the unlabeled target example xt
i ∈ Tu to Xr

for which p(c∗|xt
i) − p(c†|xt

i) is the largest where c∗ = cj is the pre-
dicted label of xt

i and p(c†|xt
i) is the second largest score. Note that

as
∑C

j=1 p(cj |x) = 1, these are the images for which the classifier is the
most confident about the prediction c∗, which however does not mean
that the label is correct.

2. Similarly, for each class we remove the source image from Xr for which
p(c∗|xs

j) − p(c†|xs
j) is the smallest, i.e. the classifier finds it the most

ambiguous example. Note that we use one element from all sources, but
alternatively we could consider one per source decreasing more rapidly
the amount of source data in Xr.

3. We compute Wr+1 = fW (Xr,Wr,w
r
d) and optionally we update wr

d as
described in section 3.

– We iterate these steps until no more target data can be added, source data
can be removed or the maximum iteration is achieved. However, adding train-
ing images with predicted labels comes with the risk of adding noise (incor-
rect labels). Therefore we also add the following stopping criteria. At each
iteration, we evaluate the classification accuracy on the original labeled set
and if the classification performance in step r incurs a stronger degradation
than a predefined tolerance threshold (we used 1%) compared to the accuracy
obtained in step r we stop iterating and retain Wr, the metric obtained before
degradation. Note that other criteria can also be considered such as measuring
the variation between iterations of the TDAS.

2 Their image-to-class distance is computed as a sum of distances between low level
features extracted from the image and their closest low level feature within a class.

Domain Adaptation with a DSCM and SaMLDa 39

5 Datasets and Evaluation Framework

We used four datasets to test our framework: ICDA1 and ICDA2 from the Image-
Clef Domain Adaptation Challenge3 as well as the OffCalSS and OffCalMS built
on the Office dataset + Caltech10 used in several DA papers [1,6,8,9].

ICDA2. We denote by ICDA2 the dataset that was used in the challenge to
submit the results. It consists of a set of image features4 extracted by the orga-
nizers on randomly selected images collected from five different image collec-
tions: Caltech-256, ImageNet ILSVRC2012, PASCAL VOC2012, Bing and SUN
denoted by C,I,P,B and S for simplicity. The organizers selected 12 common
classes present in each datasets, namely, aeroplane, bike, bird, boat, bottle, bus,
car, dog, horse, monitor, motorbike, people. Four collections (C, I, P and B)
are proposed as source domains and for each of them 600 image feature and
the corresponding labels were provided. The SUN dataset served as the target
domain with 60 annotated and 600 non-annotated instances. The task was to
provide predictions for the non-annotated target data. Neither the images nor
the low-level features were accessible by the participants.

ICDA1. The ImageClef Domain Adaptation Challenge had two phases where
in the first phase the participants were provided with a similar configuration as
ICDA2, but with different features. We will denote this set with ICDA1. While
in the case of ICDA2 we used only the provided train/test configuration and
show the results obtained on the provided test set, in the case of ICDA1 we
show the average results of an 11 fold cross-validation setting, where the 600
test documents were split into 10 folds and the train set added as 11th fold. At
each time one of the 11 folds was added to the source sets to train the classifier
and tested on the 600 remaining target documents.

OffCalSS. The OffCalSS dataset was built following the semi-supervised set-
tings used in [6,8,9], i.e. 10 common classes (backpack, touring-bike, calculator,
head-phone, computer-keyboard, laptop-101, computer-monitor, computer-mouse,
coffee-mug and video-projector) were selected from four domains Amazon,
Caltech-10, DSLR and Webcam (denoted by A,C,D and W). To build the training
set 8 images from each class (when the source domain was D or W) and 20 images
(when the source was A or C) was considered, to which 3 target instances per class
were added. The training source and target examples were randomly selected and
the experiment was repeated 20 times.

OffCalMS. In OffCalSS we evaluate only one domain (source) versus one
domain (target). Also, the source domain considered is relatively small, which
is, in some sense, a bit contradictory to the general assumption of domain adap-
tation, where it is in general assumed that large labeled source instances are
3 http://www.imageclef.org/2014/adaptation
4 SIFT based bag-of-visual words [3].

http://www.imageclef.org/2014/adaptation

40 G. Csurka et al.

available to support the learning process. Therefore, using the same dataset and
features as for OffCalSS, we build a multi-source setting similar to ICDA1 to
which we will refer to as OffCalMS. In this case we fix one of the dataset as
target (e.g . A) and use several or all the others (C,D and W) as source to eval-
uate our multi-source framework (AMLDA). In this case, all the labeled sources
documents are used to which we add 3 randomly sampled target examples per
class. We repeated this experiment 10 times and report average results.

In the case of multi-source datasets (ICDA1, ICDA2 and OffCalMS), we con-
sider different source combinations by an exhaustive enumeration of all possible
subsets. For instance, in the case of ICDA1, we have SCi, i = 1, . . . , NSC , where
NSC = 2NS − 1 = 15 and NS is the number of sources, e.g . in the case of ICDA1,
SC1 = {C}, SC6 = {C,P} and SC15 = {C, I,P,B}. Then for each source com-
bination, we concatenate the target training set Tl with the selected sources SCj

to build the training set X1. If we denote the corresponding classifier by fSCj , to
improve the final classification accuracy we can further combine the predictions
of all these classifiers either using a majority vote or when available by averaging
the class prediction scores. In both cases we used an unweighted combination in
our experiments, but weighted fusion can also be used if there is enough data to
learn the weights for each SCi combination on a validation set. As we are in a
semi-supervised setting we also consider fSC0 in the combination, the classifier
learned using only the labeled target set Tl. We will denote the final prediction
obtained as the combinations of all NSC + 1 classifier by FusAll in the tables.

6 Experimental Results

Our first set of experiments were done on ICDA1 and ICDA2 in the semi-
supervised setting. We consider all the available labeled source datasets (given
a configuration) and the labeled target set grouped together as a single training
set allowing us to consider different, not necessary multi-domain, classifiers to
predict labels for the unlabeled target instances.

First, we consider the original feature space, meaning that we did not apply
any metric learning procedure (W = I) and we evaluate classification perfor-
mance of labeling the target examples of different source combinations.

Note that when we refer to the original features, they are different from the
provided features as the latter were from the beginning power normalized5 [16]
using α = 0.5. This allows already to an increase of 3-5% in accuracy on the
baseline SVM and on the distance based classifiers, which explains why our
baseline on OffCalSS is higher than in the literature.

As the SVM main baseline, for each configuration we considered the multi-
class SVM from the LIBSVM package6 trained in the original feature space.
Using an initial 11 fold cross validation on ICDA1, we found that the linear
kernel with ν = 0.12, C = 0.01, and μ = 0.5 performed the best. As only few
5 As the original features are L1 normalized, we ended up with L2 normalized features.
6 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Domain Adaptation with a DSCM and SaMLDa 41

Table 1. Classification performances on ICDA1 (left) and ICDA2 (right) in the original
feature space, meaning that W = I in the Eqs. 2, 3 and 5

ICDA1 SVM KNN NCM NCMC DSCM

C 26.32 22.79 25.08 23.83 32.33
I 31.85 25.92 23.71 21.71 32.21
P 27.32 18.91 23.83 21.06 32.89
B 33.92 27.98 27.83 27.23 33.36
C,I 29.08 22.7 23.48 21.21 30.85
C,P 27.29 20.09 23.03 21.36 31.94
C,B 30 26.52 26.94 25.2 31.64
I,P 29.88 19.33 24.42 20.68 30.86
I,B 36.89 27.85 24.91 23.14 30.94
P,B 30.12 22.48 26.83 23.02 32.03
C,I,P 28.67 20.05 24.65 20.52 30.33
C,I,B 33.42 25.79 24.44 21.55 30.17
C,P,B 28.05 22.44 26.26 22.74 30.85
I,P,B 32.48 22.91 25.59 22.39 30.59

C,I,P,B 29.39 22.38 24.89 22.06 29.48
Mean 30.31 23.21 25.06 23.21 31.37

ICDA2 SVM KNN NCM NCMC DSCM

C 23 22.5 11.67 13.17 26
I 26.67 25.5 13.00 16.33 25.5
P 25.5 20.67 19.50 15.17 24.83
B 30.5 24.17 15.33 14.83 24.67
C,I 22.67 23.50 13.5.0 13.17 25.33
C,P 21.83 21.67 16.00 11.33 26.33
C,B 26.00 23.00 12.50 13.83 26.17
I,P 26.50 17 14.33 20.33 26.67
I,B 30 23.33 15.67 13.83 27.17
P,B 29.83 22.17 15 22.17 26.5
C,I,P 22 22 14.17 12.5 27.33
C,I,B 27.5 21.5 14.67 18.67 24.33
C,P,B 24.17 22.67 15.83 18.67 26.83
I,P,B 28.17 21.33 15.5 15.83 27.67

C,I,P,B 24.5 21.5 16 17.5 26.67
Mean 25.92 22.44 14.84 22.44 26.13

target examples are in general available for each dataset, we used these fixed
values for all datasets. Other parameters, such as the learning rate and number
of iterations of the metric learning, were also cross-validated on ICDA1 and used
on all datasets.

Evaluation in the Original Feature Space. First, we compare the SVM with
distance based classifiers, namely KNN, NCM, NCMC and DSCM. As the first
three are not domain adaptation specific methods they do not use the domain
specific labels Yd but consider the union of the labeled target and source instances
as a single domain training set. In contrast, the Domain Specific Class Means
(DSCM) classifier considers distances to class and domain specific class means,
hence it is able to take advantage of domain specific labels Yd. In this first set
of experiments we use fixed weights (where wt = 2 and wsi = 1). In the NCMC
classifier, we use the same number of cluster means per class as the number of
domains (NS + 1) to fairly compare7 with DSCM. The classification results are
shown in Table 1. We can see that DSNCM outperforms all three distance based
non parametric classifiers (KNN, NCM and NCMC) for all source combinations;
it even outperforms for most configurations (and in average) the multi-class
SVM. This already shows that DSCM applied without any learning is a suitable
classifier for domain adaptation.

Evaluation in the Projected Feature Space. For experiments in the pro-
jected space, we consider metric learning approaches that optimizes W for the
corresponding classifiers. For KNN we consider the metric learning where the
ranking loss is optimized on triplets [4,20]:

Lqpn = max(0,
[
1 + dW (xq,xp) − dW (xq,xn)

]
), (7)

7 The unsupervised clustering being does not guarantee the correspondence between
clusters and domains. While different number of cluster centers might have yielded
to better results, the training target dataset is rather small for cross-validation.

42 G. Csurka et al.

Table 2. Distance based classification performances on ICDA1 and ICDA2 using the
features projected with W learned by the corresponding metric learning method

ICDA1 KNN NCM NCMC DSCM

+ML +ML +ML +ML

C 26.74 26.03 24.77 28.41
I 29.33 27.11 28.52 32.88
P 25.94 25.27 23.88 26.5
B 33.21 33.08 32.48 34.85
C,I 29.62 26.47 25.5 30.89
C,P 25.48 25.86 23.92 30.32
C,B 30.36 30.92 29.5 32.92
I,P 26.62 26 26.89 31.86
I,B 33.45 32.86 33.48 35.23
P,B 28.29 31.41 27.29 33.68
C,I,P 25.98 27.48 25.53 31.67
C,I,B 31.15 31.33 28.89 34.68
C,P,B 28.27 29.98 28.92 32.67
I,P,B 29.82 30.33 29.56 34.58

C,I,P,B 29.21 29.85 28.74 33.24
Mean 28.9 28.93 27.86 32.29

ICDA2 KNN NCM NCMC DSCM

+ML +ML +ML +ML

C 24.67 18.17 16.83 25.17
I 28.33 25.5 24.17 30.33
P 26.33 22.83 23.67 25.33
B 30.17 29 30.17 34.17
C,I 25.83 19.83 18 25.67
C,P 24.83 16.17 15 23.33
C,B 27.83 20.5 18.5 24.5
I,P 27.17 15 22.17 29.67
I,B 30.17 25.17 21.17 33.5
P,B 28.17 25.17 22.5 30.67
C,I,P 25 15.5 16.67 27.17
C,I,B 28.33 18.83 23.83 28.5
C,P,B 25.17 19.5 27.5 27.83
I,P,B 29.67 22 27.33 31.83

C,I,P,B 27.83 21.5 24.83 27.67
Mean 27.3 20.98 22.16 28.36

where xp is an image from the same class as the query image xq, and xn an image
from any other class. The Nearest Class Mean Metric Learning (NCM+ML)
optimizes W according to Eq. 2 and the Nearest Class Multiple Centroids clas-
sifier based metric learning (NCMC+ML) according to Eq. 3 (see details in
[14]). Finally, we consider the Domain Specific Class Means based Metric Learn-
ing (DSCM+ML) described in section 3.1. We report results in Table 2. SVM
results in the projected space are not included as we observed in general a drop8.
in performance compared to Table 1. From these results, we can see that:

– Metric learning significantly improves the classification in the target domain
in all cases, even when we apply methods which are not domain specific as
ML for KNN, NCM and NCMC. The reason is that on the merged dataset the
learning approach is able to take advantage of the class labels to bring closer
the images from the same class independently of the domains and hence the
final classifier is able to better exploit labeled data from the sources in the
transformed space than in the original one.

– When we compare the different metric learning approaches, DSCMML out-
performs all other methods on ICDA1 and in most cases on ICDA2. The few
exceptions are when KNN+ML performs better than DSCM+ML on ICDA2.
Note however that for ICDA2 we have a single test set, while on ICDA1 we
average on 11 folds hence we can assume that DSCM+ML is consistently
better than KNN+ML. Comparing to the SVM baseline (see Table 1) we
see that DSCM+ML is almost always significantly better than the results
obtained with the linear multi-class SVM.

Evaluation of SaMLDa with Different Metric Learning Algorithms.
The aim of these experiments is to show that the Self-adaptive Metric Learning
8 Reducing interclass and increasing intraclass distances does not mean improving

linear separability between classes, especially when we decrease the dimensionality.
Testing different non-linear kernels was out of the scope of the paper.

Domain Adaptation with a DSCM and SaMLDa 43

Table 3. Showing the improved accuracy for each metric learning when we refine the
metric with the SaMLDa algorithm

ICDA1 KNN + KNN + NCM + NCM + NCMC + NCMC DSCM+ DSCM+

ML SaMLDa ML SaMLDa ML + SaMLDa ML SaMLDa

C 26.74 27.41 26.03 27.45 24.77 25.7 28.41 28.67
I 29.33 29.67 27.11 27.89 28.52 28.56 32.88 32.68
P 25.94 26.59 25.27 26.41 23.88 24.79 26.5 27.92
B 33.21 33.83 33.08 34.35 32.48 33.12 34.85 35.55
C,I 29.62 30.09 26.47 28.42 25.5 25.98 30.89 31.21
C,P 25.48 26.42 25.86 27.79 23.92 24.86 30.32 32
C,B 30.36 31.03 30.92 32.97 29.5 29.95 32.92 34.59
I,P 26.62 27.77 26 26.92 26.89 26.65 31.86 32.33
I,B 33.45 34.02 32.86 35.27 33.48 34.02 35.23 37.42
P,B 28.29 28.58 31.41 33.32 27.29 27.8 33.68 35.3
C,I,P 25.98 27.15 27.48 29.27 25.53 26 31.67 33.77
C,I,B 31.15 31.77 31.33 32.91 28.89 29.74 34.68 36.52
C,P,B 28.27 28.21 29.98 32.03 28.92 29.15 32.67 34.8
I,P,B 29.82 30.88 30.33 33.18 29.56 31.03 34.58 36.52

C,I,P,B 29.21 30.06 29.85 32.12 28.74 29.64 33.24 35.74
Mean 28.9 29.57 28.93 30.69 27.86 28.47 32.29 33.67

Domain Adaptation (SaMLDa) described in section 4 can be used to further
improve the performance of any of the previously mentioned metric learning
approaches by iteratively updating the metric with unlabeled target examples.
Note that in our algorithm the metric yielding the results in Table 2 correspond
to the results obtained with W1. We also tested the performance with W0 cor-
responding to the PCA projection, but the results were far below the results
obtained with W1. In Table 3 we compare the classification accuracies between
a given metric learning W1 using only the initial training set X1 and the metric
Wr∗ refined with SaMLDa, where fW is the corresponding metric learning. We
only show results on ICDA1, but similar behavior was observed on ICDA2.

The results show that if we integrate any of these metric learning approaches
with the proposed SaMLDa algorithm, we are able to improve the classification
accuracy in 58 out of 60 cases and for the two remaining cases the drop is not
significant. When we compare SaMLDa with different metrics, best results are
obtained when ML for DSCM is used.

Comparing Different Weighting Strategies. In Table 4 we compare dif-
ferent weighting strategies: fixed weights, weights obtained using TDAS and
weights using NCM accuracies. In the top 3 rows we show results when the
weighting strategy was used in SaMLDa, i.e. we updated wr

d at each iteration,
while on the bottom 3 lines we show results when we used the manually fixed
weights during the learning and used the TDAS or NCM based weights with
the learned metric W only at test time. In all cases we show the mean of all
configuration results (as in the tables above), the results for all four sources and
the results obtained as a late fusion of all SCi source combinations (including
SC0). From Table 4 we can draw the following conclusions:

– The best weighting strategy is in general using the NCM accuracies. Using
TDAS actually decreases the performance in most cases.

– Using the weighting strategy only at test time and using fix weight at training
time seems to be a good compromise as the results are relatively similar and

44 G. Csurka et al.

Table 4. Different weighting strategies on ICDA1 (left) and ICDA2 (right) used during
both training and test (top 3 rows) and test only (bottom 3 rows)

ICDA1 fix TDAS NCM

Mean 32.29 31.75 32.67
C,I,P,B 33.24 31.83 34.53
FusAll 39.18 39.29 39.86
Mean 32.29 31.69 32.88
C,I,P,B 33.24 32.73 34.56
FusAll 39.18 38.74 39.56

ICDA2 fix TDAS NCM

Mean 27.06 28.39 27.17
C,I,P,B 30.67 29 27.67
FusAll 38 37.17 37.5
Mean 27.06 26.72 27
C,I,P,B 30.67 28.83 33
FusAll 38 37.83 37.67

Table 5. Results on OffCalSS compared with [6] and [1], where for D1 → D2, the
domain D1 was used as source and D2 was the target

SVM DSCM DSCM + SA [6] DIP+CC [1] KNN KNN + SA [6]

(ours) SaMLDa +SVM +SVM (ours) SaMLDa + KNN

C→A 53.66 50.64 54.14 44.7 61.8 42.01 53.02 45.3
D→A 46.37 48.76 46.77 41.6 56.9 43.08 47.34 45.8
W→A 44.72 48.43 45.66 39.3 53.4 40.33 46.52 44.8
A→C 44.6 34.89 44.21 40.6 47.8 33.75 43.96 38.4
D→C 38.5 34.24 38.62 34.8 44.2 31.58 38.73 35.8
W→C 36.79 33.42 36.59 32.6 43.6 29.19 36.8 34.1
A→D 50.94 62.05 53.07 40.9 67.5 50.87 54.09 55.1
C→D 54.57 61.57 56.97 41.1 65.8 50.71 55.51 56.6
W→D 76.81 64.65 73.27 77.6 92.6 71.65 77.2 82.3
A→W 53.68 66.08 56.81 38.2 72.5 56.77 59 60.3
C→W 54.42 65.06 59.58 82.2 69.9 58.17 58.74 60.7
D→W 83.74 71.47 81 87.1 89.1 78.79 83.53 84.8

in this way we can keep the training costs lower (no need to estimate the
weights at each step).

– Notefinally, thataveraging thepredictions fromall sourcecombinations (FusAll)
improvesthefinal results significantly inall casescomparedtousingtheC, I, P,B
source combination alone.

Evaluation on OffCalSS. We consider the OffCalSS dataset where in contrast
to the other datasets we have only a single source and only a relatively small
amount of training source images (20 or 8 instances from each class) to which
3 labeled target images per class were added from the target domain. For each
source-target pair, we consider in the original feature space the multi-class SVM,
the DSCM (with the NCM accuracy based weighting) and the KNN classifiers
(with k = 1 as 1NN is used in general with this dataset in the literature).
In addition, both for KNN and DSCM we show in Table 5 the results of the
SaMLDa framework with the corresponding metric learning. As a comparison
we show that our results are slightly better than the results of the unsupervised
subspace alignment (SA) in [6], but they are below the current state-of-the art
results on this dataset (DIP+CC) [1]. The latter also exploits the idea of bringing
closer instances from the same class in the projected (latent) space, but exploits
jointly with the empirical distance between the source and target domains when
they learn the latent space.

Evaluation on OffCalMS. We finally evaluate the proposed methods on the
OffCalMS where each dataset serve as target in turn and the others as sources

Domain Adaptation with a DSCM and SaMLDa 45

Table 6. Results on OffcalMS considering different dataset as target domains

A SVM DSCM DSCM + KNN KNN +

SaMLDa SaMLDa

A 47.53 47.07 48.38 43.32 43.32
C 56.76 50.78 59.19 43.18 54.62
D 44.11 50.54 46.24 42.46 47.35
W 41.63 47.39 42.13 39.83 44.66

C,D,W 57.22 52.59 59.44 43.5 53.79
FusAll 73.27 80.57 79.46 60.84 71.27

C SVM DSCM DSCM + KNN KNN +

SaMLDa SaMLDa

C 33.39 32.66 33.39 28.04 28.04
A 46.76 35.21 46.74 35.66 45.57
D 37.93 34.19 38.53 30.67 39.79
W 38.08 36 36.77 30.7 39.21

A,D,W 50.84 38.59 49.86 36.8 47.22
FusAll 66.4 61.48 73.9 46.44 64.85

D SVM DSCM DSCM + KNN KNN +

SaMLDa SaMLDa

D 56.61 58.82 59.45 56.06 56.06
A 46.38 60.31 50.71 52.52 47.87
C 47.48 61.5 50.87 51.26 49.84
W 87.64 68.19 85.04 88.82 88.82

A,C,W 70.71 70.47 70.16 77.95 65.04
FusAll 89.69 84.49 95.28 91.02 87.95

W SVM DSCM DSCM + KNN KNN +

SaMLDa SaMLDa

W 63.92 62.98 64.6 61.62 61.62
A 51.21 67.58 51.66 57.58 49.47
C 47.7 66.57 56.3 53.02 48.08
D 86.24 73.89 84.04 87.36 88.15

A,C,D 62.15 72.15 67.51 78.68 59.7
FusAll 90.64 92.34 95.36 96 89.74

where the whole dataset is considered for training. In Table 6 we show the results
for 1) using only the labeled target set as training SC0, 2) using each source
individually (SCi, i = 1..3) as training where Tl was added to the source, 3) using
the set of all sources (SCNS

), and finally 4) the fusion of all combination results
(FusAll). In all cases we show similarly to OffCalSS the SVM, DSCM and KNN
results in the original space and the results of the SaMLDa framework with the
corresponding metric learning. Note that the test sets are the same as in Table 5
(up to the randomly selected small Tl set) so we can observe an important gain
in performance due to adding more source instances and especially considering
more than a single source domain (FuseAll).

7 Conclusion

Targeting multi-source domain adaptation we extended the Nearest Class Mean
(NCM) classifier by introducing, for each class, domain-dependent mean parame-
ters as well as domain-specific weights. We have shown that the proposed Domain
Specific Class Means (DSCM) classifier is already suitable for domain adaptation
without any learning and its performance can be further improved by appropri-
ately designed metric learning. As a second contribution, which is orthogonal
to the first one and therefore complementary, was a generic self-adaptive metric
learning technique that iteratively curates the training set by adding unlabeled
samples for which the prediction confidence was high and removing the labeled
samples for which the prediction confidence was low. We have shown on two
public benchmarks, the ImageClef Domain Adaptation Challenge and the Office-
CalTech datasets, that the proposed self-adaptive metric learning approach can
bring improvement to various metric learning approaches in the domain adap-
tation framework.

References

1. Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised
domain adaptation by domain invariant projection. In: ICCV (2013)

46 G. Csurka et al.

2. Beijbom, O.: Domain adaptations for computer vision applications. University of
California, San Diego (June (2012)

3. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: SLCV (ECCV Workshop) (2004)

4. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: ICML (2007)

5. Duan, L., Tsang, I.W., Xu, D., Maybank, S.J.: Domain transfer SVM for video
concept detection. In: CVPR (2009)

6. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual
domain adaptation using subspace alignment. In: ICCV (2013)

7. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: CVPR (2012)

8. Gong, B., Grauman, K., Sha, F.: Reshaping visual datasets for domain adaptation.
In: NIPS (2013)

9. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: An
unsupervised approach. In: ICCV (2011)

10. Hoffman, J., Kulis, B., Darrell, T., Saenko, K.: Discovering Latent Domains for
Multisource Domain Adaptation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato,
Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 702–715. Springer,
Heidelberg (2012)

11. Huang, J., Smola, A., A., Borgwardt, K., Schoelkopf, B.: Correcting sample selec-
tion bias by unlabeled data. In: NIPS (2007)

12. Jiang, J.: A literature survey on domain adaptation of statistical classifiers. Tech.
rep. (2008)

13. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms. In: CVPR (2011)

14. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Distance-based image classi-
fication: Generalizing to new classes at near zero cost. PAMI 35(11), 2624–2637
(2013)

15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering 22(10), 1345–1359 (2010)

16. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-
Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.)
ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

17. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting Visual Category Models
to New Domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010,
Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)

18. Saha, A., Rai, P., Daumé III, H., Venkatasubramanian, S., DuVall, S.L.: Active
Supervised Domain Adaptation. In: Gunopulos, D., Hofmann, T., Malerba, D.,
Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 97–112.
Springer, Heidelberg (2011)

19. Tommasi, T., Caputo, B.: Frustratingly easy nbnn domain adaptation. In: ICCV
(2013)

20. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor
classification. JMLR 10, 207–244 (2009)

21. Zha, Z.J., Mei, T., Wang, M., Wang, Z., Hua, X.S.: Robust distance metric learning
with auxiliary knowledge. In: IJCAI (2009)

	Domain Adaptation with a Domain Specific Class Means Classifier
	1 Introduction
	2 Related Work
	3 Domain Specific Class Means Classifier
	3.1 Metric Learning for DSCM

	4 Self-adaptive Metric Learning for Domain Adaptation
	5 Datasets and Evaluation Framework
	6 Experimental Results
	7 Conclusion
	References

