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Abstract. This paper presents a novel framework for the automatic
recognition of Activities of Daily Living (ADLs), such as cooking, eat-
ing, dishwashing and watching TV, based on depth video processing and
Hidden Conditional Random Fields (HCRFs). Depth video is provided
by low-cost RGB-D sensors unobtrusively installed in the house. The
user’s location, posture, as well as point cloud -based features related
to gestures are extracted; a standing/sitting posture detector, as well as
novel features expressing head and hand gestures are introduced herein.
To model the target activities, we employed discriminative HCRFs and
compared them to HMMs. Through experimental evaluation, HCRFs
outperformed HMMs in location trajectories-based ADL detection. By
fusing trajectories data with posture and the proposed gesture features,
ADL detection performance was found to further improve, leading to
recognition rates at the level of 90.5 % for five target activities in a nat-
uralistic home environment.

Keywords: Adl recognition · User location trajectories · Posture · Ges-
tures · Point-cloud features · Hidden conditional random fields

1 Introduction

Automatic domestic activity recognition is a significant challenge, toward future
homes equipped with robotic applications capable to monitor the resident’s
behaviour, identify abnormalities and assist in the establishment of daily activ-
ities [8]. This is of particular importance for cases of Mild Cognitive Impair-
ments (MCI) or Alzheimer’s Disease (AD), whereas activity monitoring can
facilitate early diagnosis of cognitive decline [2]. Typically, the recognition of
Activities of Daily Living (ADLs) [12] such as cooking, eating, dishwashing,
has been approached through ambient sensors [3] monitoring the house environ-
ment [23], as well as locations visited from the monitored person [13][9]. During
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the last years, relevant research efforts have focused on RGB video processing
[6][5][18][31] or, especially after the emergence of the Kinect sensor, on RGB-D
images [30][4].

In practical applications, where the need for robust, continuous user tracking
and reduced obtrusiveness is of major importance, low-cost depth sensors (e.g.
Kinect) can play a vital role; they can provide the basis for simple, low-cost sen-
sor networks capable to track the user’s silhouette throughout the house. Such
networks can be rather unobtrusive in terms of input data (privacy-preserving
depth images), as well as in terms of installation set-up, since limited amount of
cameras (e.g. one per room) can be installed for e.g. at room roof-top corners.
Although computer vision for assistive robotic applications typically considers
input taken from a (depth) camera installed on the robot [29], such approaches
require the robot to continuously follow the user, maintaining an appropriate
view angle that allows user actions tracking. Although effective to some extent,
such approaches are rather difficult to guarantee continuous user tracking in real-
istic scenarios, where the monitored person moves freely throughout the house.
Thus, strategically and unobtrusively installed low-cost depth sensors could pro-
vide auxiliary input to the robotic system, so as to establish more detailed,
continuous user tracking.

Of course, reduced cost and installation complexity of such depth sensor net-
works comes at a cost; that of highly varying user viewing angle, noisy user
point-cloud data and occlusions that pose significant challenges in practical user
posture and gesture recognition for ADL detection. Since however user location
can still be robustly tracked through silhouette extraction from depth images,
past approaches for user location-based ADL detection, based however on com-
plex multi-sensorial networks [9] or RGB video [6] should be revisited, examining
the potential of their rationale to advance automatic ADL detection in this new
sensor context. Herein, unobtrusive continuous user location tracking is available
and can be fused with robust descriptors of user pose and gestures, capable to
operate under the limitations of realistic settings, toward advancing the effec-
tiveness of future, practically applicable ADL recognition systems.

The present work follows exactly this line, introducing an ADL recognition
framework based on user location trajectories and moreover, on posture and
novel descriptors of the user’s point cloud, capturing characteristics of head
and hand gestures. The proposed framework operates on the basis of Hidden
Conditional Random Fields (HCRFs), building upon the capacity of such dis-
criminative models to provide better recognition performance, compared to their
generative counterparts, i.e. Hidden Markov Model (HMM)-based models [9][24].

1.1 Related Work

As different activities typically involve different house regions that are visited by
the user, with different per-activity visit frequencies, several research works have
demonstrated the feasibility of detecting ADLs through the 2D trajectories gen-
erated in the house floor plan as the user moves around. Indicatively, [6] used a
two-layer Hidden Semi-Markov Model, to infer ADLs such as cooking or ironing,
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solely based on user location trajectories taken from RGB cameras. Moving away
from computer vision, in [9], state-change sensors were used, indirectly indicat-
ing among others user location, providing input to either HMMs or CRFs so
as to discriminate among ADLs such as brushing teeth or cooking - preparing
dinner. In [11], Semi-Markov HMM and CRF models were examined, again on
the basis of state-change sensors. The work of [7], used again ambient sensors to
recognize ADLs through a SVM-based detector. Although of potential toward
effective ADL recognition, the above approaches, apart from [6], were based on
complex multi-sensor systems. Thus, they need a large number of sensors to be
installed in the house, whereas approaches based on computer vision [6], once
their obtrusiveness is constrained and become privacy preserving, offer a major
appealing characteristic; the fact that user activities can be tracked through only
for e.g. one or two vision sensors installed in each monitored space.

Focusing on computer vision, toward incorporating apart from user loca-
tion, information extracted from the user’s silhouette, the work of [31] built on
RGB video taken from a fisheye camera to detect activities following a three-
level detection approach; the first level regarded user location and speed, the
second body shape information for estimating the level of body motion and the
third used primitive visual features to approach action recognition. A kNN-based
detector was used to recognize cooking, brushing teeth and exercise activities.
Building again upon RGB video, a system of two wide-field-of-view cameras and
two narrow-field-of-view ones was employed in [18] to capture both coarse-level
and fine-level activities respectively, utilizing a hierarchical Dynamic Bayesian
Network (DBN). Although of potential, this line of approaches builds upon
obtrusive RGB surveillance video processing.

Building upon posture and gestures, works such as [30][4] have explored RGB
and depth video information fusion toward the recognition of daily actions, such
as drink, pick up or sit down. In these works, features extracted from the depth
video -based user’s point cloud were proposed, toward 3D action representa-
tion; however, the RGB channel is still utilized, yielding privacy issues. Another
line of research builds upon the depth-based markerless skeletal joints estimation
method of [21]; in [28], skeleton-based body movement features were proposed for
ADL recognition. Nevertheless, Kinect-based markerless skeletal joints extrac-
tion still suffer from varying view angles, occlusions and clutter in practical
surveillance settings [30].

Focusing on the sole use of depth features for the detection of activities, a
diverse set of approaches have been adopted by the scientific community, trying
to increase the quality of the produced results while addressing specific experi-
mental limitations. In a recent literature review on human activity recognition
from 3D data [1], Aggarwall and Xia adopted a taxonomy of five types of features
extracted from depth images, namely: 3D silhouettes, skeletal joints/body parts,
local occupancy patterns, local spatio-temporal features and 3D optical flows.
All these categories have shown promising results for the recognition of human
activities but they were also found to be greatly influenced by difficulties found
in real-life situations. Noise, object occlusion and camera position are some of the
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parameters that can dramatically degrade the results of the first three categories
of features, whereas 3D optical flows and spatio-temporal features need colour
information for reliable results.

Methods such as [16] have been found effective in the discrimination among
different actions on rather controlled datasets (e.g. MSR Action 3D dataset [25]).
However, by relying on the extraction of surface normals from the user’s point
cloud, they can easily become problematic in practical settings, where the user’s
point cloud can be highly noisy. In the present work, we focus on the recognition
of daily activities in practical settings, where depth measurements are taken
from un-optimal angles compared to datasets like [25] and are typically prone
to occlusions and noise. In such settings, novel, more robust descriptors, capable
to provide useful information to the ADL recognition system even in cases of
significantly noisy user’s point cloud are a significant challenge.

In the past, diverse classifiers have been used for recognizing daily activities,
such as Bayesian networks [18] or SVMs [7]. As activity recognition is intrinsically
a temporal classification problem [24], emphasis have been paid on Markovian
state sequence models, such as HMMs [9] and their extensions employing either
explicit state duration modelling [6] or hierarchical structures [10]. Relatively
limited works have examined CRFs for ADL recognition [9], which can be seen
as the discriminative counterparts of HMMs [24].

Conditional Random Fields are discriminative models for labelling sequences
of observations. They condition on the entire observation sequence, while the
features used as input can violate independence assumptions between observa-
tions, contrary to HMMs [24]. CRFs have been extensively used in the past
toward gestures recognition [27][19] and motion tracking [22]. They have also
been found effective in ADL detection based on state-change ambient sensors
[9]. While CRFs generate per-observation labels, Hidden CRFs (HCRFs) [26]
incorporate hidden states to model the underlying structure of the observations,
providing a single label for the whole observation sequence. HCRFs have been
successfully used in the past for gesture recognition [26], while by definition,
they provide a potentially useful alternative to HMM-based approaches toward
ADL recognition. Although the study of [24] indicated the potential of CRFs to
drive location trajectories-based activity recognition by outperforming HMMs,
to the best of our knowledge, such discriminative models and especially HCRFs,
have still not been examined in the context of practical in-house ADL detection
that builds upon user location trajectories.

1.2 Contribution

The present study follows the line of [9], where discriminative models, i.e. CRFs
were found to have the potential to outperform generative HMMs in recogniz-
ing home ADLs through ambient state-change sensors. Considering that more
fine-grained information regarding the user location, i.e. user location 2D tra-
jectories on the house floor plan, has been found capable to drive ADL recog-
nition through generative HMM-based models [6], this work first examines the
capability of discriminative models, in particular Hidden CRFs (HCRF) [26], to
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advance effectiveness of ADL recognition, on the basis of user location trajecto-
ries that can be extracted from a small set of low-cost depth sensors installed
unobtrusively in the house. Moreover, extending this line of research, we also
incorporate user posture information in the recognition scheme, as well as novel
3D point-cloud features of the user’s silhouette that are herein introduced to
express head and hand gestures. Through experimental evaluation with data
derived from realistic house settings, HCRFs were found to outperform HMMs
in detecting the target activities from user location trajectories only. By fusing
trajectory-based features with user posture and our proposed gestural features,
ADL recognition performance was found to further increase, reaching precision
and recall at the level of 90.52% for five target activities.

1.3 Paper Outline

Section 2 presents our proposed method for detecting standing/sitting postures
and the descriptors of the user’s point-cloud, which capture information related
to head and hand gestures. Section 3 describes our HCRF-based activity recogni-
tion framework and Section 4 describes the process that was followed for exper-
imental evaluation and its findings. Conclusions are drawn in Section 5.

2 Depth Video-Based User Monitoring

In order to track user movement around the house and her/his posture and
actions, one must first extract the user’s silhouette from the depth input images.
To this end, a background image is captured prior to our system’s initialization,
with the monitored area empty of moving objects. For each captured frame i
during runtime, the binary user silhouette Si, i = 1...n is extracted, by subtract-
ing the depth value of each pixel (x, y) of the background image BG, from its
corresponding pixel in the current frame Ii. A pixel (x, y) is considered as fore-
ground (silhouette) if its depth value differs from the corresponding background
pixel’s value by more than a predefined threshold T :

Si(x, y) =
{

0 (Background) if abs(Ii(x, y) − BG(x, y)) ≤ T
1 (Foreground) otherwise (1)

After the silhouette is extracted, noise induced by small changes in the back-
ground, for e.g. movement of objects like chairs or tables, is removed through
post processing. This is achieved by performing connected component analysis
[20] on the foreground image and taking into account the position of the user in
previous frames. This way, only the area containing the user is kept.

2.1 User Location and Posture Tracking

User location with respect to the house floor plan is trivially estimated on
the basis of the relative position of the silhouette and the camera, as well as
the known in-house camera position. In order to estimate whether the user is
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standing or sitting, an approach similar to [15], albeit more robust to occlusions,
is followed. Using the silhouette image as a mask, the 3D point cloud of the
user is extracted and transformed from the camera coordinate system, to the
coordinate system of the user, using the calibration information of the camera.
Then, depending on the 3D point cloud’s bounding box ratio r = width/height
and height h, the user’s posture Pi for the frame i, is determined using a set of
experimentally defined thresholds h1, h2(with h1 > h2) and r1, r2(with r1 > r2)
for h and r respectively:

Pi =
{
Standing if ri < r2 & hi > h1

Seated if r1 > ri > r2 & h1 > hi > h2
(2)

Contrary to [15], the bounding box height is calculated in the proposed approach
as the distance between the upper part of the silhouette from the floor, in the
z axis of the building coordinate system. This allows robust estimation of the
silhouette height, even in cases where the silhouette is occluded by objects lying
between the user and the camera.

(a) Seated user (b) Standing user

Fig. 1. Example of posture detection algorithm output

2.2 Point-Cloud Features of Upper-Body Geometry and Gestures

The present study aims to address the difficulties of activity detection algorithms
when used in uncontrolled, real life environments. To this end, a robust and
privacy preserving algorithm is proposed that can provide input for recognizing
high-level activities, focusing on point-cloud descriptors capable to encapsulate
information related to the users posture and motion. Specifically, a set of six
features is defined, with special focus on the recognition of eating activity, given
its importance in MCI and AD patients; AD patients at later stages can have
difficulties to successfully establish eating, due to short-term memory problems.

The proposed method aims at extracting depth features that can approximate
the geometry of the user’s upper body but can also be minimally influenced by
occlusions, changes in the orientation of the user and capable to produce reliable
results independently of the camera position. The framework for the calculation
of these features is summarized in Fig. 2. First, the periods when the user is
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seated are kept and for each frame, a bounding box is defined to include the
majority of points of the user’s upper body and at the same time minimize the
influence of objects in the close proximity. Specifically, the horizontal dimensions
of the bounding box are defined to be equal to the 2/3 of the user’s arm length
whereas its vertical dimension is taken as the 1/4 of the user’s height. The
position of the box is dynamically defined in every frame so that the centre of
its upper side coincides with the highest point of the user’s cloud (Fig. 2(a)).

(a) Bounding box (b) Point cloud clustering (c) Definition of features

Fig. 2. Framework for the extraction of features

Following the extraction of the bounding box and in order to approximate
points relevant to the skeletal structure of the upper body, a modified version
of k-means is used to partition the point-cloud into five clusters; these clusters
are expected to approximate the position of the head, shoulders and hands.
It should be underlined that the produced cluster centroids do not necessar-
ily coincide with a specific anatomical part of the human body, and that they
depend on the subject’s posture, the position of his/her hands and the exis-
tence of objects inside the bounding box. Nevertheless, since we are interested
in obtaining information regarding the user motion and posture in uncontrolled,
real-life environments, the proposed tracking algorithm can eventually approxi-
mate to some extent the user’s head and hands. Therefore, from here on the five
clusters of the point cloud will be labelled as head, right-shoulder, left-shoulder,
right-hand and left-hand just as a naming convention for explanatory purposes.

Two are the main changes applied herein to the original k-means. First,
our clustering method is initialized at each frame using the cluster centroids as
produced in the previous frame, instead of using random points. This way, the
algorithm converges much faster, since our frame rate is high enough (30 frames
per second) to allow only small gesture changes between frames. On the other
hand, in order to minimize the effects of the camera’s position relatively to the
occupant and increase the possibility that the clustering will comply with the
expected structure of the human torso, our optimization scheme includes also
the position of five fixed points as shown in Fig. 2(b). These points were defined
based on the geometry of the human body in the seated position and correspond
to the expected positions of head, shoulders and hands. Equation 3 summarizes
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our clustering optimization scheme for the partitioning of the n points in the
cloud Xk = (xk

1 , x
k
2 , ...x

k
n) of frame k, into five clusters Sk = (Sk

1 ,S
k
2 , ...S

k
5) based

on their centroids μk = mean(xk ∈ Sk
i ) and the fixed points Y = (y1, y2, .., y5).

argmin
S

5∑
i=1

∑
xk
j ∈Sk

i

||xk
j − μk

i ||2 ∗ ||xk
j − yi||2 (3)

Indicative results of our method are shown in Fig. 3 (calculated point cloud
clusters and their centroids); here, it is shown how the calculated centroids follow
the movement of the right hand as it approaches the user’s head.
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Fig. 3. Indicative clustering output during eating activity

Finally, the calculated centroid coordinates are used for the definition of the
three first features proposed in this study, as shown in Fig. 2(c). The first feature
is defined as the average of the distances of the head centroid from the two hand
centroids: f1 = (d1 + d2)/2, whereas the second regards the distance of the two
hands: f2 = d3. The third feature is defined as the average of the angles between
the head, shoulder and hand centroids for both sides: f3 = (θ1 + θ2)/2. Finally,
and in order to represent the relative movement of the user’s upper body and
the dynamic changes in her/his gesture, three additional features are defined as
the standard deviation of 240 frame windows for each one of the above features.
In order to validate the potential of these features on discriminating among
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eating/non-eating activities, ten periods of 10s were randomly selected from the
Dataset C described at Section 4, half corresponding to eating activities and half
to seated, non-eating activities (e.g. Reading). From each period, the proposed
features were extracted and the Kruskal-Wallis test was employed to test the
differences of the feature values distributions between the two classes (i.e. eating
vs. non-eating); statistically significant (p < 0.001) difference was found for all
features.

3 Activity Detection Framework

The activity detector of the present work is based on the theory of Conditional
Random Fields; in particular, an HCRF is employed as our activity classifier.
Given a set of observations X, Conditional Random Fields compactly represent
the conditional probability of a particular label sequence Y through an undi-
rected graphical model, as [24]: P (Y |X) = (1/Z)

∏T
t=1 exp(w×f(t, yt−1, yt,X)),

where Z =
∑

Y

∏T
t=1 exp(w×f(t, yt−1, yt,X)) is a normalization constant and w

is the set of weights, representing the parameters that are fitted during training.
The weights are multiplied by a vector of computed features f(t, yt−1, yt,X),
which derive from the observations data. The weights-features set represent the
potentials ψ(t, yt−1, yt,X) = exp(w×f(t, yt−1, yt,X)) of the CRF cliques, which
consist of an edge between yt−1 and yt as well as the edges from these two labels
to the set of observations X [24].

At this point the basic difference between HMMs and CRFs becomes evident;
HMMs model the joint probability of both the labels and observations under the
independence assumption of observations, i.e. P (X,Y ), whereas CRFs model
directly the conditional probability P (Y |X), so as to discriminate between dif-
ferent labels on the basis of not conditionally-independent observations. In prac-
tice, CRFs can assign a label to the features derived from observations at each
time step. In our case, given for e.g. an one-minute long observation sequence,
with observations (i.e. user location) taken at a rate of 1 HZ, we need to find
a single label for the whole sequence that best describes the respective activity
(i.e. cooking, eating, etc.). Through CRFs, this problem can be approached by
finding the Viterbi path under the model and employing majority voting over
the labels sequence to assign the dominant label [26]. In [26] however, HCRFs
provided an alternative of significant potential to improve effectiveness in dis-
criminating among different gestures based on user hand trajectories. As a basic
aim in this work is to discriminate user trajectories on the house floor plan
among different daily activities, given the similarities of our problem to the one
of discriminating gestures from hand trajectories, it is reasonable to expect that
HCRFs could improve performance in our context, as is further explained below.

Hidden Conditional Random Fields employ a set of hidden states to capture
the certain underlying structure of each class. In particular, an HCRF models
the conditional probability of a class label given a set of observations by [26]:

P (y|X, θ) =
∑
s

P (y, s|X, θ) =
∑

s exp(ψ(y, s,X; θ))∑
y′∈Y,s∈Sm exp(ψ(y′, s,X; θ)

(4)
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where s = s1, s2, ..., sm, each si ∈ S captures a certain underlying structure of
each class and S is the set of hidden states in the model. The potential function
ψ(y′, s,X; θ) ∈ ρ, parametrized by θ (parameter values of the model), measures
the compatibility between a label, a set of observations and a configuration
of the hidden states. By definition, HCRFs provide a modelling solution that
directly addresses the needs of our problem’s formulation; given an observations
sequence, HCRFs build upon an underlying graphical model that captures tem-
poral dependencies among observations, so as to derive a single label that better
corresponds to the input sequence. Considering the simplest case of our specific
problem, where the classifier’s input is the user’s location trajectory during a
target activity, the HCRF employs hidden states so as to model dependencies
between observations, toward recognizing the target activity being performed.

As such, a HCRF can provide more direct inference for our problem, com-
pared to CRFs, but also to HMMs. For segmented observation sequences, each
corresponding to a given activity from a set of M target activities, a set of
M HMMs should be employed, each modelling trajectories of a given activity
through P (X,Y ) =

∏T
t=1 P (yt|yt−1) × P (xt|yt)); the first term corresponds to

pairs of labels and the second pairs each observation to its parent label. During
inference, by employing the forward-backward algorithm, the probability that
the respective model can produce the input trajectory can be calculated [6]. On
the other hand, a single HCRF can be used so as to directly identify the most
appropriate label given the input sequence, on the basis of hidden states that
formulate cliques on an undirected graph between the observations and labels.
Herein, a given hidden state can encode similar characteristics between two dif-
ferent activities that appear in segments of their observation sequences, whereas
the ensemble of hidden states corresponding to each full sequence will eventu-
ally produce the required differentiation among the different labels. Moreover,
long-range dependencies between observations can as well be incorporated in the
HCRF, by modifying for e.g. the potential function ψ in Eq. 4, so as to include
a window parameter ω that defines the amount of past and future history to
be used when predicting the hidden state at each time step [26]; in this study,
we follow [26], thus for window size ω, observations from t − ω to t + ω are used
to compute the input features of the HCRF.

4 Experimental Evaluation

In order to experimentally evaluate our HCRF-based activity recognition frame-
work in real-world activity monitoring scenarios, we first used the two datasets of
[17]. These datasets allowed a direct comparison of our HCRF-based framework
with the HMM-based approach that was followed in [17] to take place.

Moreover, in order to evaluate our approach of HCRF-based fusion of user
location trajectories with information regarding the user’s posture and gestures
in realistic house settings, we conducted a new data collection experiment, set
in a real apartment. More information regarding this dataset will be provided in
what follows.
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(a) Monitoring area (b) Kitchen depth image

Fig. 4. Apartment experiment setup (Dataset C)

4.1 Datasets Description

The 1st of the datasets from [17] (Dataset A) contained user location trajec-
tories data taken from a controlled kitchen environment, where two different
persons performed three target activities in the same sequence (cooking, eating,
dishwashing) for a total of nine different sessions, while being monitored from
a single Kinect camera located at a kitchen’s roof-top corner. In this case, four
sessions were used for system training and the remaining for evaluation.

The 2nd dataset of [17] (Dataset B) concerned 24/7 monitoring of the resi-
dent of a real apartment, through three Kinect sensors, covering the apartment’s
living-room, the corridor and the kitchen; the resident was monitored for three
days, while freely performing the target activities, i.e. cooking, eating, dishwash-
ing and watching TV. In each day, one instance of each target activity occurred.
As in the case of Dataset A, user location trajectories derived were available. In
this dataset, data from the first two days were used to train the activity detection
framework and the data of the third day were used for evaluation.

As mentioned earlier, a new dataset was recorded (Dataset C) from a real
apartment scenario, where the resident was monitored for a period of 12 days;
using 4 Kinect sensors monitoring the kitchen, corridor and living-room areas.
The floor plan of the specific setting is shown in Fig. 4(a), along with the monitor-
ing sensors’ location, whereas a sample depth image taken from the apartment’s
kitchen is shown in Fig. 4(b). The target activities were the ones of Dataset B,
with the addition of a non-eating activity, in order to describe different activities,
besides eating, that take place in the area of the kitchen table such as reading or
talking to the telephone. During the data collection period, 19 cooking, 10 eat-
ing, 7 non-eating, 28 dishwashing and 7 watching TV activity instances occurred.
From this dataset, we used 2/3 of the activity instances as the train set and the
rest were used for evaluation.

In order to train and test the examined classifiers, following the rationale
of [9], we split each activity instance of the dataset into one minute-long non over-
lapping intervals of observations. Each interval was annotated with the label of
the respective activity. With respect to each dataset, we obtained the amount
of intervals per activity that is shown in Table 1.
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Table 1. Number of activity intervals for training and evaluation in each dataset

Activity Dataset A Dataset B Dataset C
Training Evaluation Training Evaluation Training Evaluation

Cooking 20 25 48 24 37 22
Dish Washing 12 15 16 6 27 12
Eating 12 15 18 8 30 26
Non-Eating - - - - 22 20
Watching TV - - 110 51 40 36

Total 44 55 192 89 156 116

4.2 Results

Our framework’s evaluation consisted of three different steps, involving the above
datasets from the different settings. In the first step, the effectiveness of the
HCRF activity detector was compared to the HMM-based one of [17], in recog-
nizing the target activities by using solely user location trajectories data. There-
fore, observations consisted in this step solely of the (x, y) timeseries of user
location on the house floor plan. Evaluation at this step was performed on the
basis of datasets A and B [17], while the HCRF was trained through a L-BFGS
optimizer [14], using 10 hidden states and a 15sec. window.

Table 2. Detection results of the HCRF-based and HMM-based methods on datasets
A and B

Activity
Dataset A Dataset B

HCRF HMM HCRF HMM
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Cooking 93,48 82,70 99,34 76,15 92,00 95,83 66,07 92,50
Dish Washing 81,30 100,00 88,71 89,28 100,00 72,72 100,00 45,00
Eating 87,10 87,09 90,32 91,60 85,71 100,00 100,00 90,00
Watching TV - - - - 98,07 100,00 92,73 100,00

Average 87,30 89,93 92,79 85,67 93,95 92,14 89,70 81,88

As shown in Table 2, the HCRF was found to clearly outperform the HMM-
based approach on the B dataset, while both methods produced similar results
on the controlled A dataset . This was an expected result, in line with [26], given
the capability of HCRFs to better learn common structures among trajectory
classes and uncover the distinctive configuration that sets one trajectory class
uniquely against others. In fact, our results are also in line with [9], where per
timeslice ADL recognition performance was found to increase when discrimina-
tive models (CRF) were compared to generative (HMM) ones, in a state-change
sensors-based monitoring context. The fact that the HMM-based approach used
herein for comparison was already found in [17] to provide ADL recognition
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effectiveness at a better or similar level of past related works, such as [9][7]
and [6], further underlines the potential of HCRFs to lead into increased ADL
recognition effectiveness on the basis of user location trajectories.

Next, the HCRF-based approach was used on the C Dataset, which also
included non-eating activities around the kitchen table. As can be seen in Table 3,
our method performed fairly well, producing overall precision of 81.9%. However,
it is clear that using only the (x, y) timeseries is not sufficient to succesfully
discriminate between cooking, eating and non-eating activities that take place
in the area of the kitchen table; many non-eating activity instances were detected
as either cooking or eating activities.

Table 3. Detection results of the HCRF-based methods on dataset C, using only the
(x, y) timeseries of user location on the house floor plan

Activity Intervals Detected As Prec. Rec.
Cook Dish Eat Non-eat TV

Cooking 22 14 1 1 6 0 63,64 93,33
Dish Washing 12 1 9 1 1 0 75,00 81,82
Eating 26 0 0 18 8 0 69,23 85,71
Non-Eating 20 0 1 1 18 0 90,00 54,55
Watching TV 36 0 0 0 0 36 100,00 100,00

Overall 116 15 11 21 33 36 81,90 81,90

Table 4. Detection results of the HCRF on dataset C, using the (x, y) user location
trajectories, user posture and point cloud features of head and hand gestures (f3), (f5)

Activity Intervals Detected As Prec. Rec.
Cook Dish Eat Non-eat TV

Cooking 22 19 2 1 0 0 86,36 90,48
Dish Washing 12 2 10 0 0 0 83,33 71,43
Eating 26 0 0 25 1 0 96,15 86,21
Non-Eating 20 0 2 3 15 0 75,00 93,75
Watching TV 36 0 0 0 0 36 100,00 100,00

Overall 116 21 14 29 16 36 90,52 90,52

Finally, at the third step of evaluation, our proposed methods for estimating
(a) user posture and (b) point-cloud features of the user’s silhouette expressing
head and hand gestures were also involved, so as to provide further features in
the HCRF classifier. By trying different feature combinations, the use of the
average of the angles between the head, shoulders and hands centroids (f3),
the deviation of the distance between the hands (f5) and the user posture, in
addition to the (x, y) timeseries, produced the best results. As can be seen in
Table 4, the additional features increased the HCRF’s performance by 8.6%,
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leading to precision at 90.52%. It is clear that the additional features improved
the detection precision for eating, cooking and non-eating activities around the
kitchen table. Specifically, the user posture contributed to the improvement of
the discrimination rate between cooking and eating or non-eating activities, as
food preparation typically involves standing postures, while the point cloud fea-
tures of head and hand gestures helped in discriminating between eating and
non-eating activities.

A comparison of the three detection frameworks is presented in Table 5,
which shows that our proposed method produced significant increase in activity
recognition performance, over both the trajectory-only HMM and HCRF.

Table 5. Comparison of activity detection results on dataset C

Activity HMM HCRF (x,y) HCRF (x,y,f3,f5,pstr)
Prec. Rec. Prec. Rec. Prec. Rec.

Cooking 85,31 83,44 63,64 93,33 86,36 90,48
Dish Washing 50,04 88,59 75,00 81,82 83,33 71,43
Eating 81,96 58,24 69,23 85,71 96,15 86,21
Non-Eating 62,78 64,10 90,00 54,55 75,00 93,75
Watching TV 89,92 86,28 100,00 100,00 100,00 100,00

Overall 80,07 76,68 81,90 81,90 90,52 90,52

5 Conclusions

This paper introduced a novel framework for automatic detection of domestic
ADLs, such as cooking, dishwashing, eating and watching TV, based on the
user’s 3D point-cloud extracted through depth video recordings. In this con-
text, the contribution of the present study was two-fold. First, HCRFs were
introduced in the context of user location trajectories -based ADL detection
and were experimentally compared to HMMs. Taking a further step forward,
the present work introduced a novel approach to detecting standing-sitting user
postures and more importantly, novel features extracted from the user’s point-
cloud, related to user head and hand gestures. Through experimental evaluation,
it was found that HCRFs improved user location trajectories -based ADL recog-
nition effectiveness compared to HMMs, whereas the inclusion of our proposed
(a) standing/sitting posture detection method and (b) point cloud features of
head and hand gestures led to further significant (at the level of 8%) increase in
performance.
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