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Abstract. In the exemplar SVM (E-SVM) approach of Malisiewicz
et al., ICCV 2011, an ensemble of SVMs is learnt, with each SVM trained
independently using only a single positive sample and all negative sam-
ples for the class. In this paper we develop a multi-sample learning (MSL)
model which enables joint regularization of the E-SVMs without any
additional cost over the original ensemble learning. The advantage of
the MSL model is that the degree of sharing between positive samples
can be controlled, such that the classification performance of either an
ensemble of E-SVMs (sample independence) or a standard SVM (all pos-
itive samples used) is reproduced. However, between these two limits the
model can exceed the performance of either. This MSL framework is
inspired by multi-task learning approaches.

We also introduce a multi-task extension to MSL and develop a multi-
task multi-sample learning (MTMSL) model that encourages both shar-
ing between classes and sharing between sample specific classifiers within
each class. Both MSL and MTMSL have convex objective functions.

The MSL and MTMSL models are evaluated on standard benchmarks
including the MNIST, ‘Animals with attributes’ and the PASCAL VOC
2007 datasets. They achieve a significant performance improvement over
both a standard SVM and an ensemble of E-SVMs.
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1 Introduction

A number of recent papers in computer vision [11,15] have explored the use of a
mixture of linear SVM classifiers [13,30] and locally linear SVMs [12,19]. In cases
where there is a large diversity in positive training samples, for example artic-
ulations of a human [15] or viewpoints of an object [11], superior performance
is achieved by multiple linear classifiers, compared to limiting the classifier to a
single linear SVM. This is because each linear SVM can learn a template for a
tight cluster (‘components’ or ‘aspects’) of visual appearances. Motivated by this
success, Malisiewicz et al. [23] investigated the limit of the idea and introduced
the exemplar SVMs (E-SVMs), where a SVM is trained for each positive sample
together with all the negative samples, and the final classifier is defined as an
ensemble of exemplar SVMs.
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In this paper we introduce models to explore the spectrum between a sin-
gle linear SVM and an ensemble of E-SVMs. The single linear SVM may not
have the capacity to model all per sample variations, but has the possibility of
generalizing across multiple positive samples. At the other end of the spectrum,
an ensemble of E-SVMs can certainly accommodate sample specific variation,
but has no possibility of learning across positive samples, since each E-SVM is
a sample specific classifier learnt independently from a single positive sample.
We introduce here multi-sample learning (MSL), for jointly learning multiple
E-SVMs. This has the flexibility to travel between the two ends of the learning
spectrum (i.e. single SVM and ensemble of E-SVMs) without any extra cost over
E-SVMs. The advantages of MSL are that (i) a sweet spot can be chosen between
the two ends which improves classification performance, and (ii) compared to a
mixture of linear SVMs, the formulation is convex.

The MSL formulation is inspired by multi-task learning (MTL) [5,10,26]
approaches. In MTL, different classification tasks are jointly regularized, though
in general only a loose relation between tasks is encouraged as the tasks might be
very different from each other. In contrast, in MSL, sample specific classifiers for
the same class are learnt simultaneously and the classifiers can be very close to
one another. Thus, depending on the amount of similarity (or diversity) between
the positive samples, the coupling between the classifiers can be encouraged more
strongly. While diversity in the positive training samples are modeled with the
sample specific classifiers, common features are favoured by joint regularization
of these classifiers.

Moreover, we also introduce a multi-task extension to MSL which is termed
multi-task multi-sample learning (MTMSL). This model encourages the sharing
between classes and between sample specific classifiers within each class.

First, we present the formulations for MSL and MTMSL. Then, we describe
the optimization procedure and implementation details. Finally, we illustrate
the power of MSL and MTMSL on three example datasets, and discuss possible
extensions to these methods.

2 Multi-Sample Learning

In this section we define the MSL objective for learning sample specific classi-
fiers in a joint regularization framework. Assume we have a binary classification
problem where N is the number of training samples, X = {xi}Ni=1 are the fea-
tures, and Y = {yi}Ni=1 are the corresponding binary labels chosen from the set
yi ∈ {−1, 1}. Then the standard SVM objective for solving this classification
problem is:

min
w

λ||w||2 +
N∑

i

max
(
0, 1 − yi(wTxi)

)
(1)

where w is the classifier vector, λ controls the trade off between the hinge loss and
regularization, and the bias term is included by appending a constant number
to the end of each xi and extending the w vector accordingly.
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In contrast to the ‘classical’ SVM, where all positive samples are used to train
a single vector w, MSL increases the capacity of the model by defining sample
specific classifiers for each positive sample. However, unlike exemplar SVMs [23],
in order to enable sharing between classifiers, MSL jointly regularizes the sample
specific classifiers such that the objective can be tuned to behave as an SVM or
ensemble of exemplar SVMs, or any point in between. The formulation is:

min
u,w

λ||u||2 + β

N∑

i | yi=1

||wi − u||2 +
N∑

i | yi=1

Le(wi;X,Y ) (2)

where Le(wi;X,Y ) = max
(
0, 1 − wT

i xi

)
+

1
N+

N∑

j | yj �=1

max
(
0, 1 + wT

i xj

)
, (3)

N+ is the number of positive samples, u is the shared base vector, and the wi’s
are sample specific classifiers defined for each positive sample. Le represents the
hinge loss for the given exemplar SVM. The hyperparameters λ and β control
the trade off between the hinge loss and regularization, as well as the balance
between individual sample specific regularization and joint regularization. With
the appropriate setting of the hyperparameters (2) will converge to a classical
SVM or an ensemble of exemplar SVMs.

As β → ∞, the regularizer
∑N

i ||wi − u||2 acts as the hard constraint wi =
u, ∀i. Thus each wi is forced to be same as u and equation (2) becomes the
classical SVM formulation (1). Note that in the loss function (3) the loss coming
from negative samples are multiplied with 1

N+ , this ensures exact equivalence
with the SVM formulation in (1) since Le is summed over each positive sample
exactly N+ times.

As λ → ∞, u will be forced to a zero vector, the regularization term
∑N

i ||wi−
u||2 will become

∑N
i ||wi||2, and the formulation is equivalent to learning each

sample specific classifier individually (i.e. an ensemble of exemplar SVMs). In
this case the multiplier 1

N+ for the negative loss terms becomes a balancing
factor between a single positive and many negative samples. Stronger weighting
for the positive loss term is also applied in the ensemble of exemplar SVMs [23]
setting and is noted as a factor for improving the success of E-SVMs.

Note that the formulation (2) is convex and the global optimum can be
found through standard convex optimization methods (section 4). [18] also uses
a similar convex formulation, though targeting dataset bias.

Discussion. There are two main types of formulations for multi-task learning.
In the first group, classifier vectors for each task are coupled by minimizing
the Frobenius norms of the classifier vector differences [10,22,25] or by sharing a
common prior [7,21,27]. In the second, the model parameters are generated from
a common latent feature representation which is provided by different forms of
nuclear norm regularization [1–5,24].



Multi-Task Multi-Sample Learning 81

MSL encourages joint learning over samples through a shared vector u, in
a similar manner to the multi-task learning framework of [10] from the first
group. Different forms and anaysis of this particular type of regularization are
investigated in [9,10] thoroughly including analysis of the dual form and the
kernelization.

Considering that wmean = 1
N+

∑
i wi = arg minu

∑
i ||wi − u||2, the regular-

izer that encourages the sharing in MSL, i.e. the term
∑

i ||wi −u||2, can also be
written as

∑
i ||wi − wmean||2 if there is no penalization on the norm of u (i.e.

λ = 0). Since:

∑

i

||wi − wmean||2 =
1

2N+

∑

i,j

||wi − wj ||2 (4)

it can be seen that this corresponds to a fully connected pairwise regularization
structure between the sample specific classifiers, Therefore we can also write
the regularization term as

∑
i,j ||wi − wj ||2, however in this form we lose the

flexibility of imposing additional penalization on the shared vector (since there
is no longer a term in u).

Convex approaches [1,3,4,24] from the second group, which are based on
nuclear norm regularization, can also be used for encouraging the task related-
ness. However, this is not suitable for our problem as we now discuss. The nuclear
norm regularization induces low rank solutions and encourages the classifiers to
be composed from a smaller set of latent basis vectors. It can be applied to softly
enforce joint learning between the sample specific classifiers using a formulation
such as:

min
W

λ||W ||∗ +
N∑

i | yi=1

Le(wi;X,Y ) (5)

where the columns of the matrix W are sample specific classifiers wi, and λ
controls the trade off between regularization and hinge loss. Since the nuclear
norm encourages low rank solutions for the matrix W , with a sufficiently strong
regularization (i.e. very large λ) a rank 1 solution for W can be obtained. If W
is rank 1, then each wi will have the same direction in the feature space (their
magnitudes may differ but this does not effect the ranking order of test sam-
ples). Thus by a heavy nuclear norm penalization of W , each wi will converge
to a single classifier vector, in a similar manner to the convergence of MSL (2)
to the classical SVM limit as β → ∞. However, since ||W ||F ≤ ||W ||∗, heavily
penalizing ||W ||∗ also imposes a strong l2 regularization on each wi. The out-
come is that wi becomes over regularized (i.e. a very small magnitude vector),
and consequently the performance drastically decreases. Therefore, using nuclear
norm regularization, it is not possible to converge to a single classifier solution
without a substantial loss in performance. This is the reason that we based the
MSL on the first type of multi-task learning, rather than the second.
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3 Multi-Task Multi-Sample Learning

In this section multi-task learning is incorporated with MSL in a joint formula-
tion. This method again builds on the regularized multi-task learning approach
of [10] which encourages sharing between tasks by minimizing the squared l2
norms of classifier vector differences.

Unlike the binary classification problem, here we have multiple classes and
the objective is to solve either a multi-class classification problem or multi-
ple one-versus-all classification tasks trained simultaneously. In the first place
we introduce a multi-class classification formulation and then describe learning
multiple one-versus-all classifiers jointly.

In the multi-class classification setting, each sample belongs to a single
class and the goal is to classify test samples into one of the existing classes. In
the MSL formulation we have a single u which is shared across all sample specific
classifiers wi. In multi-task multi-sample learning (MTMSL), we have multiple
u’s, one for each class denoted as ut. In addition to regularizing sample specific
classifiers with the shared base vector ut as in (2), we additionally regularize all
the ut’s with another shared vector v which encourages sharing between ut’s.
The formulation for MTMSL for the multi-class classification problem is:

min
v,u,w

γ||v||2 + λ

T∑

t

||ut − v||2+ (6)

β
N∑

i

||wi − uc(i)||2 +
T∑

t

N∑

i | yt
i=1

Le(wi;X,Y t)

where the wi’s are the sample specific classifiers, T is the number of classes, c(i) is
the class index of the ith training sample, yt

j is the binary label of the jth sample
for the class t, and similarly Y t = {yt

j}Nj=1 is the set of binary labels for class t.
The hyperparameters γ, λ and β determine the behavior of the formulation:

– As γ → ∞, v will be forced to a zero vector, consequently the regularization
term

∑T
t ||ut − v||2 becomes

∑T
t ||ut||2 and the formulation (6) is equivalent

to T separate MSL (2) formulations each learning a classifier independently
(i.e. there is no sharing across classes).

– As β → ∞, each wi will be forced to be equal to its class level shared vec-
tor uc(i), thus the formulation converges to the multi-task learning objective
introduced in [10] (i.e. there is no multi-sample sharing).

– As both γ → ∞ and β → ∞, formulation learns T individual SVMs (1), one
for each particular class (i.e. no multi-task or multi-sample sharing).

In the multiple one-versus-all classification setting, each training sample
can have none (i.e. background) or several class labels, and the target is to classify
the test sample as positive or negative for each class separately. With a slight
change in the formulation MTMSL can support this setting:
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min
v,u,w

γ||v||2 + λ

T∑

t

||ut − v||2+ (7)

β

T∑

t

N∑

i | yt
i=1

||wt
i − ut||2 +

T∑

t

N∑

i | yt
i=1

Le(wt
i ;X,Y t)

where wt
i is the sample specific classifier of the ith sample for class t. Note that

both formulations (6) and (7) are convex.

Discussion. In the multi-task setting, unlike MSL where we might need strong
coupling between E-SVMs, a nuclear norm based regularization [1,3,4,24] can
also be used for encouraging the class-level task relatedness since we don’t need
very strong coupling between class level classifiers.

4 Optimization and Implementation Details

In this section we describe the optimization procedure used for minimizing our
objective functions and the calibration of E-SVMs.

Since both MSL (2) and MTMSL (6, 7) are convex problems they can be
minimized globally using convex optimization techniques. Particularly we use
stochastic subgradient descent algorithm for optimizing our objectives. The opti-
mization procedure will be described on the formulation (6) and it can be easily
adapted to the other described formulations.

For convenience we cast the objective in (6) as:

min
v,Δu,Δw

γ||v||2 + λ
T∑

t

||Δut||2 + β
N∑

i

||Δwi||2+

T∑

t

N∑

i | yt
i=1

Le(v + Δuc(i) + Δwi;X,Y t) (8)

At each iteration an E-SVM wi and a sample xj are randomly selected and
the parameters v,Δut,Δwi are updated using the subgradients below:

v′ = γv − Lijxj , Δu′
t = λΔut − Lijxj ,

Δw′
i = βΔwi − Lijxj

Lij =

⎧
⎨

⎩

−1, if yj = −1 and wT
i xj > −1

1, if i = j and wT
i xj < 1

0, otherwise

A decreasing learning rate is used inverse proportional to the iteration number.
One important step for the success of ensemble of E-SVMs [23] is the post

calibration of sample specific classifiers. Even though learning E-SVMs jointly in
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Fig. 1. The effect of the hyperparameter β in MSL on the MNIST dataset.
The hyperparameter λ is fixed and the performance on both validation and test sets
are shown. The multi-class classification accuracy as a function of the hyperparameter
β is displayed. With a large enough β, the MSL gives the same result as the single
class SVM. Moving towards the single class SVM (from left to right) the performance
increases and then decreases back. Thus for an optimum β MSL outperforms both
ensemble of E-SVMs and single class SVM.

the MSL framework provides a certain level of calibration, we also apply a post
calibration step on a validation set such that the responses of each wi on the
validation set has zero mean and unit variance. The final classification score for
any sample x is then obtained by a max over the calibrated E-SVMs weighted
by the individual confidences:

f(x) = maxN+

i ci
wT

i x − μi

σi
, (9)

where μi is the mean and the σi is the standard deviation of the scores of wi

on the validation set, and ci is the confidence of the wi measured as the average
precision (AP) of wi evaluated on the validation set.

5 Experiments

In this section we present evaluation of our methods on three datasets: (a)
MNIST digits dataset, (b) Animals with Attributes dataset [20], (c) PASCAL
VOC 2007 dataset [8]. Datasets are separated into training, validation and test
sets. The methods are trained on the training set and the hyperparameters λ, β,
γ and calibration are determined using the validation set. The following meth-
ods are compared: SVM, ensemble of exemplar SVMs (EE-SVM), the proposed
multi-sample learning (MSL), multi-task learning of [10] (MTL), and the pro-
posed multi-task multi-sample learning (MTMSL)

In the first two experiments (i.e. MNIST and Animals with Attributes), the
methods are evaluated on a multi-class classification setting, where the task is to
classify each test sample into one of the existing classes. All the experiments are
conducted 5 times with 5 different random selections of training, validation and
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test sets from the entire dataset. The mean multi-class classification accuracy
and one standard error (i.e. defined as standard deviation of accuracies scaled
by 1/

√
5) is reported for each method. The PASCAL VOC 2007 dataset is par-

ticularly used for category detection experiments, where the task is to identify
if each test sample belongs to the target category or not.

Since SVM, EE-SVM and MSL are binary classifiers, in order to use them in
a multiclass classification setting, a one against all classifier is trained for each
class using each method. The SVM classifiers are calibrated such that each one
will give zero mean unit variance score on the validation set. For EE-SVM and
MSL, each sample specific classifier is calibrated as described in (9) and class
level scores are obtained. The final classification is performed by classifying each
test sample into the maximum scoring class.

5.1 MNIST Dataset

MNIST dataset consists of 70K samples of 10 handwritten digits and the task is
to classify each test sample into one of the digit classes. We extracted two subsets
from this dataset. The first subset is extracted using the exact same setting
described in [16]. The images are preprocessed with PCA and the dimensionality
is reduced to 64 so as to retain ∼ 95% of the total variance. This subset, referred
as MNIST-100, consists of 100 training, 50 validation and 50 test samples per
class. In order to observe the results for larger number of training samples we also
evaluated on a second subset, referred as MNIST-1K, which uses 1000 training,
500 validation and 500 test samples per class.

Table 1 displays the classification accuracy results comparing all the methods
on MNIST dataset. Using the same setting with [16] on MNIST-100, our SVM
baseline is slightly better than their reported results. Since the randomizations
might be different slight variations are expected. Among the binary classifica-
tion methods MSL performs significantly better than the SVM and EE-SVM. It
achieves at least 2% improvement over the other two methods on both subsets.
In order to better visualize the behavior of MSL, we display the performance
of the method as a function of the β parameter. Note that as β → ∞, MSL
converges to the SVM solution, and for very small β values it behaves closer to
EE-SVM (it would behave exactly as EE-SVM if λ = ∞). As is shown in figure 1
on both of the subsets, moving from EE-SVM to SVM (from left to right) the
performance increases and then decreases, finally reaching the SVM solution
(large β values). This result demonstrates that combining the generalization of
SVM and specification of EE-SVM can lead to much better results. With only
100 positive training samples per class, MSL reaches the accuracy of an SVM
trained with 1000 positive samples (see table 1).

Note that the EE-SVM performance is not as good as SVM. In [23] it is clearly
stated that in order to obtain a good performance from EE-SVM method each
E-SVM needs to be trained against a very large number of negative training
samples. Unfortunately in the classification problems we don’t have as many
negative samples as we have in object detection tasks where the negatives are
unlimited (i.e. any subwindow of any image). This observation from [23] explains
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Table 1. The multi-class classification accuracy comparison of methods on
MNIST dataset. Note that MSL with 100 positive samples per class (MNIST-100)
performs as well as SVM with 1000 positive samples per class (MNIST-1K). Note, the
first row shows the individual task learning results from [16], and the MTL result in
the first row is the learned grouping MTL of [16].

SVM EESVM MSL MTL MTMSL

Animal-19 33.25±0.29 13.54±0.48 34.60±0.25 34.64±0.28 34.82±0.27

Animal-43 15.52±0.35 5.79±0.23 16.56±0.31 16.38±0.18 16.71±0.36

Table 2. The multi-class classification accuracy comparison of methods on Animal
dataset

SVM EESVM MSL MTL MTMSL

MNIST-100 of [16] 84.10±0.30* n/a n/a 84.80±0.30* n/a

MNIST-100 85.84±0.55 78.12±0.99 89.68±0.22 85.72±0.47 89.44±0.16

MNIST-1K 89.57±0.37 82.70±0.40 92.10±0.32 89.55±0.34 92.04±0.32

the inferior behavior of EE-SVM method in our experiments. Nevertheless when
learnt jointly, as in MSL, ensemble of these sample specific SVMs manages to
outperform SVM solution.

As [16] noted as well, multi-task learning for MNIST dataset doesn’t help
much for improving the classification accuracy. Nevertheless, MTMSL method
clearly outperforms the MTL approach for both of the subsets of MNIST dataset.

5.2 Animal Dataset

Animals with Attributes dataset [20], which will be referred as Animal dataset
from here on, consists of 50 animal classes and ∼ 30K samples in total. For
each sample, 2000 dimensional SIFT bag of words (BOW) features are kindly
provided by the dataset creators [20]. As a preprocessing step we reduced the
dimensionality of the features from 2000 to 500 using PCA. Some classes in the
dataset have a small number of samples. In order to analyse the performance
with different number of classes and samples we extracted two subsets from
the Animal dataset. Animal-43 subset consists of 43 classes which have more
than 300 samples, and Animal-19 consists of 19 classes which have more than
700 samples. Animal-43 organized as 100 training, 100 validation and 100 test
samples per class, and Animal-19 organized as 500 training, 100 validation and
100 test samples per class. Similar to the previous problem the task is a multi-
class classification problem and the same settings are used for calibration and
evaluation.

The results on the Animal dataset is shown in table 2. Similar to the MNIST
experiments MSL approach significantly outperform the EE-SVM and SVM by
a margin of at least 1% improvement. Figure 2 shows the performance of MSL
as a function of β parameter. It shows a similar behavior to MNIST experiments
and gives an optimum result somewhere in between EE-SVM and SVM. Note
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Fig. 2. The effect of the hyperparameter β in MSL on the Animal dataset.
Note the increase in performance before reaching to the single class SVM limit (i.e.
β = 1e + 2). See caption of figure 1.

the performance gap between the validation and test sets in figure 2. This gap
suggests that we need more training samples for more stable results. Nevertheless
it doesn’t change the behavior of β parameter. Since calibration is performed
on the validation set, MSL gives a better performance on the validation set
compared to the test set. EE-SVM has a similar performance behavior as in
MNIST experiment due to the reason explained in the previous section.

MTMSL only had a small gain over MSL for this dataset. As shown in table 1,
MTL improves the results ∼ 1% over the SVM result on both of the subsets. And
MSL, which doesn’t even use the multi-task learning or task relations, performs
as well as MTL in the Animal-19 subset and better than MTL in the Animal-43
subset. Similar to the MNIST experiments, the multi-task extension of MSL, i.e.
MTMSL, outperforms MTL on both of the subsets.

5.3 PASCAL VOC Category Detection

These experiments are performed on PASCAL VOC2007 dataset which con-
tains 9,963 images. The dataset is arranged as 2501 training, 2510 validation
and 4952 testing images. We picked bicycle, motorbike, horse and cow classes
for our detection experiments as their side-facing examples have similar aspect
ratios. For each category the mean bounding box(BB) is computed by taking
the mean of each coordinate seperately across all the positive BBs belonging
to the category. Then all the positive BBs are warped to the mean BB as we
need the training samples to have same feature dimensionality. Histogram of
oriented gradients (HOGs) [6] are used as the features. Training and validation
is performed using all positive side-facing examples of the category together
with 5000 random negative BBs cropped from the negative images. Similarly
tests are performed on all positive side-facing examples and 20K negative BBs
from the test set of PASCAL VOC2007 dataset. In these experiments MSL is
compared against SVM and EE-SVM. As is shown in table 3, MSL constantly
outperformed EE-SVM and SVM results.
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Table 3. Average Precision results on side-facing category detection experiments. Eval-
uations are performed on all positive (side-facing) instances of the particular class and
20K negative instances extracted from PASCAL VOC 2007 test set.

SVM EESVM MSL

bicycle 84.25 61.88 85.09

motorbike 75.81 18.56 76.36

horse 82.97 15.29 83.77

cow 70.14 14.53 70.84

Fig. 3. Different models of joint regularization can be explored via reg-
ularization graphs. Each node represents a sample specific classifier and the links
represent the weights of the joint regularization terms ||wi − wj ||2 ∀i, j This paper
particularly explores a type of fully connected regularization displayed in (a) with dif-
ferent levels of uniform weights on the edges which can be thought as springs. As the
weight of edges increase classifiers are all forced to be as close as possible which in
the limit reaches to a single class SVM, or if the weights become looser the classifiers
become independent and in the limit reaches to the ensemble of exemplar svms dis-
played in (d). However, in between these two ends there are many other structural
choices of the regularization graph to be explored as displayed in (b) and (c).

6 Conclusion and Future Directions

In this paper we introduced the multi-sample learning framework which combines
the generalization ability of SVM with specialization property of EE-SVMs and
provides a balanced learning framework which can travel between the two ends
of the learning spectrum (i.e. SVM and EE-SVM).

We extended our approach to multi-task multi-sample learning which enables
sharing between the classes as well as the sample specific classifiers within each
class. By setting the hyperparameters appropriately, MTMSL can be tuned
to behave as multiple SVMs, multiple EE-SVMs, multiple SVMs with MTL,
multiple EE-SVMs with MTL or any sweet spot between these endpoints. We
presented significant performance improvements in two datasets with varying
sample sizes for both the MSL and MTMSL approaches.



Multi-Task Multi-Sample Learning 89

Some recentMTLapproaches take account of the task relationships in theMTL
formulation [9,14,16,17,28,29] using the structure between tasks in the regulariza-
tion. Relationships of this type can also be applied to MSL, We can define a joint
regularization graph via defining relations between classifier pairs, and regularize
the sample specific classifiers accordingly. We sketch this extension here.

Assuming that there is no penalization on the norm of u, then, as already
mentioned in section 2,

∑
i ||wi − u||2 can be re-cast as pairwise difference

regularizations 1
2N+

∑
i,j ||wi − wj ||2. If we represent the joint regularization rela-

tions as a graph whose nodes are the sample specific classifiers, then the regulariza-
tion term

∑
i,j ||wi − wj ||2 corresponds to a fully connected graph structure (see

figure 3). Furthermore, if we introduce weights for the joint regularization terms as∑
i,j Aij ||wi − wj ||2 where A encodes the graph structure, then the fully connected

regularization becomes a special case of this new regularization term where Aij =
1, ∀i, j. Subsequently we can encode any graph structure (e.g. clusters, hierarchies,
orarbitraryregularizationrelations)bysettingtheadjacencymatrixAaccordingly.
A few example structural choices of A are displayed in figure 3. Assuming that the
relation matrix A is non-negative, then the regularizer will be convex. A regulariza-
tion term can also be represented in the spectral form as below:

∑

ij

Aij ||wi − wj ||2 = trace(WLWT) (10)

where L = D − A, Dii =
N+∑

j | i�=j

Aij

where L is the graph laplacian of the regularization graph and the columns of the
matrix W are sample specific classifiers wi. The regularizer (10) is biconvex in L
and W and it can be optimized by fixing one and optimizing the other iteratively.

Learning both classifiers and the graph structure from the data by addition-
ally imposing regularizers on L opens many other possibilities of joint regulariza-
tion. For instance, if we perform nuclear norm regularization on L it will provide
us sparsity in the eigenvalues (same with the singular values in this case) of
L. Since it is known that the number of zeros in the eigenvalues of the graph
laplacian L defines the number of connected components in the graph, we natu-
rally obtain a convex regularizer that encourages automated clustering of sample
specific classifiers that will be jointly regularized.
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