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Abstract. A novel approach to visual leaf identification is proposed.
A leaf is represented by a pair of local feature histograms, one computed
from the leaf interior, the other from the border. The histogrammed local
features are an improved version of a recently proposed rotation and scale
invariant descriptor based on local binary patterns (LBPs).

Describing the leaf with multi-scale histograms of rotationally invari-
ant features derived from sign- and magnitude-LBP provides a desirable
level of invariance. The representation does not use colour.

Using the same parameter settings in all experiments and standard
evaluation protocols, the method outperforms the state-of-the-art on all
tested leaf sets - the Austrian Federal Forests dataset, the Flavia dataset,
the Foliage dataset, the Swedish dataset and the Middle European Woods
dataset - achieving excellent recognition rates above 99%.

Preliminary results on images from the north and south regions of
France obtained from the LifeCLEF’14 Plant task dataset indicate that
the proposed method is also applicable to recognizing the environmental
conditions the plant has been exposed to.

1 Introduction

Recognition of plants is a challenging computer vision problem that requires
dealing with irregular shapes and textures with high intraclass variability. Inter-
est in methods for visual classification of plants has grown recently [4,5,13,18]
as devices equipped with cameras became ubiquitous, making intelligent field
guides, education tools and automation in forestry and agriculture practical.
Belhumeur et al. [4] discuss, how using such a system in the field a botanist can
quickly search entire collections of plant species - a process that previously took
hours can now be done in seconds.

Plant recognition has been posed, almost without exceptions [3], as recog-
nition of specific organs such as flowers, bark, fruits or leaves or their com-
bination [1,4,5,7–15,18,19,26,28,32,33]. Leaf recognition has been by far the
most popular and a wide range of methods has been reported in the literature
[1,4,5,7–15,19,26,28,32,33].

We propose a novel approach to leaf recognition. It achieves excellent recog-
nition rates above 99% on a number of public datasets, outperforming the state-
of-the-art. The method uses neither color nor an explicit shape model, focusing
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on leaf texture, which is represented by a pair of local feature histograms, one
computed from the leaf interior, the other from the border. Experimental eval-
uation of the proposed method shows the importance of both the border and
interior textures and that global point-to-point registration to reference models
is not needed for precise leaf recognition.

The histogrammed local features are an improved version of the recently pro-
posed rotation and scale invariant descriptor [29] which is based on local binary
patterns (LBPs). Describing the leaf with multi-scale histograms of powerful
rotationally invariant features derived from sign and magnitude LBPs provides
a desirable level of invariance. It avoids the need for registration of the leaf stem,
axis and boundary. Compound leaves are handled naturally.

The leaf recognition task is commonly understood as the identification of
plant species and several leaf datasets have been collected [5,7,9,19,28,33] con-
taining images of leaves labeled by plant species. While the leaf species is deter-
mined by its genotype, its appearnace is influenced by environmental conditions.
We provide preliminary results on binary classification of leaves from different
locations (south and north regions of France), assuming that the plants are
exposed to different environmental conditions while having similar genotypes
and show the Ffirst representation is capable of fairly accurate prediction of the
collection site location.

The rest of this paper is organized as follows: Section 2 reviews the art in
automatic plant identification from images of leaves or combinations of leaves
with other images. Section 3 describes the texture recognition method called
Ffirst (Fast Features Invariant to Rotation and Scale of Texture). Section 4
explains how the Ffirst descriptor is used for the leaf region. Experiments and
results are presented in Section 5. Section 6 concludes the paper.

2 State of the Art

Recognition of leaves usually refers only to recognition of broad leaves, needles
are treated separately. Several techniques have been proposed for leaf description,
often based on combining features of different character (shape features, colour
features, etc.).

The leaf recognition method by Fiel and Sablatnig [5] is based on a Bag
of Words model with SIFT descriptors and achieves 93.6% accuracy on a leaf
dataset of 5 Austrian tree species. This dataset denoted as AFF is also used in
our experiments in Sections 5.3.

Kadir et al. compare several shape methods on plant recognition [8]. Of the
compared methods - geometric features, moment invariants, Zernike moments
and Polar Fourier Transform - Polar Fourier Transform performed best achiev-
ing 64% accuracy on a database of 52 plant species. The dataset has not been
published.

Kumar et al. [13] describe Leafsnap, a computer vision system for automatic
plant species identification, which has evolved from the earlier plant identifica-
tion systems by Agarwal et al. [1] and Belhumeur et al. [4]. Compared to the
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earlier versions, they introduced a pre-filter on input images, numerous speed-
ups and additional post-processing within the segmentation algorithm, the use
of a simpler and more efficient curvature-based recognition algorithm instead of
Inner Distance Shape Context (IDSC); a larger dataset of images, and a new
interactive system for use by non-expert users. Kumar et al. [13] introduce the
Leafsnap database of 184 tree species, however at the time of writing this paper
it was not publicly available. On this database, 96.8% of queries have a species
match within the top 5 results shown to the user with the used method. The
resulting electronic field guide, developed at Columbia University, the Univer-
sity of Maryland, and the Smithsonian Institution, is available as a free mobile
app for iOS devices. Although the app runs on iPhone and iPad devices, the
leaf images are processed on a server, internet connection is thus required for
recognition, which might cause problems in natural areas with slow or no data
connection. Another limit is the need to take the photos of the leaves on a white
background.

Wu et al. [33] proposed a Probabilistic Neural Network for leaf recognition
using 12 commonly used Digital Morphological Features (DMFs), derived from 5
basic features (diameter, physiological length, physiological width, leaf area, leaf
perimeter). The authors collected a publicly available database of plant leaves
called Flavia, containing 1907 images of leaves from 32 species. The average
accuracy on the current version of the dataset is 93%1. The Flavia dataset is
discussed in Section 5.1. In Section 5.3 our results are compared to the best
reported by Kadir et al. [7,10] and Lee et al. [14,15], as well as to the results in
Novotný and Suk [19], and Karuna et al. [11], who used a different evaluation
protocol.

Kadir et al. [9] prepared the Foliage dataset, consisting of 60 classes of leaves,
each containing 120 images. Results on the Foliage dataset are compared in
Section 5.3. The best reported result by Kadir et al. [10] was achieved by a
combination of shape, vein, texture and colour features processed by Principal
Component Analysis before classification by a Probabilistic Neural Network.

Söderkvist [28] proposed a visual classification system of leaves and col-
lected the so called Swedish dataset containing scanned images of 15 classes
of Swedish trees. Wu et al. [32] introduced a visual descriptor for scene cate-
gorization called the spatial Principal component Analysis of Census Transform
(spatial PACT), achieving a 97.9% recognition rate on the Swedish dataset. Qi et
al. achieve2 99.38% accuracy on the Swedish dataset using a texture descriptor
called Pairwise Rotation Invariant Co-occurrence Local Binary Patterns (PRI-
CoLBP) [26] with SVM classification. In Section 5.3 we provide experimental
results on the Swedish dataset.

Novotný and Suk [19] proposed a leaf recognition system, using Fourier
descriptors of the leaf contour normalised to translation, rotation, scaling and
starting point of the boundary. The authors also collected a new large leaf dataset
called Middle European Woods (MEW) containing 153 classes of native or

1 http://flavia.sourceforge.net
2 http://qixianbiao.github.io

http://flavia.sourceforge.net
http://qixianbiao.github.io
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frequently cultivated trees and shrubs in Central Europe. Their method achieves
84.92% accuracy when the dataset is split into equally sized training and test
set. Section 5.3 contains the comparison to our results.

One possible application of leaf description is the identification of a disease.
Pydipati et al. [25] proposed a system for citrus disease identification using Color
Co-occurrence Method (CCM), achieving accuracies of over 95% for 4 classes
(normal leaf samples and samples with a greasy spot, melanose, and scab).

Kim et al. [12] proposed a tree classification method using a combination
of leaf, flower and bark photos of the same tree. The description consists of 20
features of wavelet decomposition with 3 levels for a grey and a binary image for
description of bark, 32 features of Fourier descriptor for leaves and 72 features
in the HS colour space for flowers. The results were obtained on an unpub-
lished dataset consisting of 16 classes. Recognition accuracy of 31%, 75% and
75% is reported for individual leaf, flower and bark classification and 84%, 75%
and 100% accuracy for combinations of leaf+flower, leaf+bark and bark+flower.
However, in all cases only a single image per class was tested. The statistical
significance of such result is questionable and may be prone to overfitting and
unreliable.

Pl@ntNet3 [3] is an interactive plant identification and collaborative infor-
mation system providing an image sharing and retrieval application for plant
identification. It has been developed by scientists from four French research orga-
nizations (Cirad, INRA, INRIA and IRD) and the Tela Botanica network. The
Pl@ntNet-identify Tree Database provides identification by combining informa-
tion from images of the habitat, flower, fruit, leaf and bark. The exact algorithms
used in the Pl@ntNet-identify web service4 and their accuracies are not publicly
documented.

3 The Ffirst Method

In order to describe the leaf texture independently of the leaf size and orienta-
tion in the image, a description invariant to rotation and scale is needed. For
applications like intelligent field guides, the recognition method also has to be
reasonably fast.

In this section we describe a novel texture description called Ffirst (Fast
Features Invariant to Rotation and Scale of Texture), which combines several
state-of-the-art approaches to satisfy the given requirements. This method builds
on and improves a texture descriptor for bark recognition introduced in [29].

3.1 Completed Local Binary Pattern and Histogram Fourier
Features

The Ffirst description is based on the Local Binary Patterns (LBP) [20,22]. The
common LBP operator (further denoted as sign-LBP) computes the signs of
3 http://www.plantnet-project.org/
4 http://identify.plantnet-project.org/en/

http://www.plantnet-project.org/
http://identify.plantnet-project.org/en/
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differences between pixels in the 3× 3 neighbourhood and the center pixel. LBP
have been generalized [21] to arbitrary number of neighbours P on a circle of
radius R, using an image function f(x, y) and neighbourhood point coordinates
(xp, yp):

LBPP,R(x, y) =
P−1∑

p=0

s(f(x, y) − f(xp, yp))2p, s(z) =
{

1 : z ≤ 0
0 : else . (1)

To achieve rotation invariance5, Ffirst uses the so called LBP Histogram
Fourier Features (LBP-HF) introduced by Ahonen et al. [2], which describe the
histogram of uniform patterns using coefficients of the discrete Fourier trans-
form. Uniform LBP are patterns with at most 2 spatial transitions (bitwise 0-1
changes). Unlike the simple rotation invariants using LBPri [21,23], which assign
all uniform patterns with the same number of 1s into one bin,

LBPri
P,R = min {ROR (LBPP,R, i) | i = 0, 1, .., P − 1} , (2)

the LBP-HF features preserve the information about relative rotation of the
patterns.

Denoting a uniform pattern Un,r
p , where n is the number of ”1” bits and r

denotes the rotation of the pattern, the DFT for given n is expressed as:

H(n, u) =
P−1∑

r=0

hI(Un,r
p )e−i2πur/P , (3)

where the histogram value hI(Un,r
p ) denotes the number of occurrences of a given

uniform pattern in the image.
The LBP-HF features are equal to the absolute value of the DFT magnitudes

(which are not influenced by the phase shift caused by rotation):

LBP-HF(n, u) = |H(n, u)| =
√

H(n, u)H(n, u). (4)

Since hI are real, H(n, u) = H(n, P − u) for u = (1, .., P − 1), and therefore
only

⌊
P
2

⌋
+ 1 of the DFT magnitudes are used for each set of uniform patterns

with n ”1” bits for 0 < n < P . Three other bins are added to the resulting
representation, namely two for the ”1-uniform” patterns (with all bins of the
same value) and one for all non-uniform patterns.

The LBP histogram Fourier features can be generalized to any set of uniform
patterns. In Ffirst, the LBP-HF-S-M description introduced by Zhao et al. [34] is
used, where the histogram Fourier features of both sign- and magnitude-LBP are
calculated to build the descriptor. The combination of both sign- and magnitude-
LBP called Completed Local Binary Patterns (CLBP) was introduced by Guo
and Zhang [6]. The magnitude-LBP checks if the magnitude of the difference of

5 LBP-HF (as well as LBPri) are rotation invariant only in the sense of a circular
bit-wise shift, e.g. rotation by multiples 22.5◦ for LBP16,R.
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the neighbouring pixel (xp, yp) against the central pixel (x, y) exceeds a thresh-
old tp:

LBP-MP,R(x, y) =
P−1∑

p=0

s(|f(x, y) − f(xp, yp)| − tp)2p. (5)

We adopted the common practice of choosing the threshold value (for neigh-
bours at p-th bit) as the mean value of all m absolute differences in the whole
image:

tp =
m∑

i=1

|f(xi, yi) − f(xip, yip)|
m

. (6)

The LBP-HF-S-M histogram is created by concatenating histograms of LBP-
HF-S and LBP-HF-M (computed from uniform sign-LBP and magnitude-LBP).

3.2 Multi-Scale Description and Scale Invariance

A scale space is built by computing LBP-HF-S-M from circular neighbourhoods
with exponentially growing radius R. Gaussian filtering is used6 to overcome
noise.

Unlike the MS-LBP approach of Mäenpää and Pietikäinen [17], where the
radii of the LBP operators are chosen so that the effective areas of different
scales touch each other, Ffirst uses a finer scaling with a

√
2 step between scales

radii Ri, i.e. Ri = Ri−1

√
2.

(a) Scale space of Mäenpää and
Pietikäinen [17]

(b) Scale space from [29] used
in Ffirst

Fig. 1: The effective areas of filtered pixel samples in a multi-resolution LBP8,R

operator

6 The Gaussian filtering is used for a scale i only if σi > 0.6, as filtering with lower σi

leads to significant loss of information.
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This radius change is equivalent to decreasing the image area to one half.
The finer sampling uses more evenly spaced information compared to [17], as
illustrated in Figures 1a, 1b. The first LBP radius used is R1 = 1, as the LBP
with low radii capture important high frequency texture characteristics.

Similarly to [17], the filters are designed so that most of their mass lies within
an effective area of radius ri. We select the effective area diameter, such that the
effective areas at the same scale touch each other: ri = Ri sin π

P .
LBP-HF-S-M histograms from c adjacent scales are concatenated into a sin-

gle descriptor. Invariance to scale changes is increased by creating nconc multi-
scale descriptors for one image. See Algorithm 1 for the overview of the texture
description method.

Algorithm 1. The Ffirst description method overview
R1 := 1
for all scales i = 1...(nconc + c − 1) do

σi := Ri sin π
P

/1.96
if σi > 0.6 then

apply Gaussian filter (with std. dev. σi) on the original image
end if
extract LBPP,Ri -S and LBPP,Ri -M and build the LBP-HF-S-M descriptor
for j = 1...nconc do

if i ≥ j and i < j + c then
attach the LBP-HF-S-M to the j-th multi-scale descriptor

end if
end for
Ri+1 := Ri

√
2

end for

3.3 Support Vector Machine and Feature Maps

In most applications, a Support Vector Machine (SVM) classifier with a suitable
non-linear kernel provides higher recognition accuracy at the price of signifi-
cantly higher time complexity and higher storage demands (dependent on the
number of support vectors). An approach for efficient use of additive kernels
via explicit feature maps is described by Vedaldi and Zisserman [31] and can be
combined with a linear SVM classifier. Using linear SVMs on feature-mapped
data improves the recognition accuracy, while preserving linear SVM advantages
like fast evaluation and low storage (independent on the number of support vec-
tors), which are both very practical in real time applications. In Ffirst we use
the explicit feature map approximation of the χ2 kernel.

The “One versus All” classification scheme is used for multi-class classifica-
tion, implementing the Platt’s probabilistic output [16,24] to ensure SVM results
comparability among classes. The maximal posterior probability estimate over
all scales is used to determine the resulting class.

In our experiments we use a Stochastic Dual Coordinate Ascent [27] linear
SVM solver implemented in the VLFeat library [30].
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4 Describing the Leaf Region

Before a description of a leaf is calculated, it has to be segmented. All datasets
used in our experiments contain images of leaves on a white background, thus
simple segmentation by thresholding is applicable. The threshold value is set
automatically using the Otsu’s method. Hole-filling is applied after the thresh-
olding in order to ensure that even lighter spots in the leaf are labeled as fore-
ground. This paper does not address the problem of leaf segmentation on a
complicated background.

The Ffirst description is computed on the segmented region A. One option
is to describe only such points that have all neighbours at given scale inside A.
This description is less dependent on segmentation quality. However describing a
correctly segmented border, i.e. points in A with one or more neighbours outside
A, can add additional discriminative information.

In total there will be 5 variations of the leaf recognition method used in our
experiments in Section 5, differing in the processing of the border region:

1. Ffirsta describes all pixels in A. Classification maximizes the posterior prob-
ability estimate (i.e. SVM Platt’s probabilistic output) over all nconc scales.

2. Ffirsti describes the leaf interior, i.e. pixels in A with all neighbours in A.
Classification maximizes the posterior probability estimate over all nconc

scales.
3. Ffirstb describes the leaf border, i.e. pixels in A with at least one neighbour

outside A. Classification maximizes the posterior probability estimate over
all nconc scales

4. Ffirstib∑ combines the description from Ffirsti and Ffirstb. Classification max-
imizes the sum of posterior probability estimates over all nconc scales.

5. Ffirstib∏ combines the description from Ffirsti and Ffirstb. Classification max-
imizes the product of posterior probability estimates over all nconc scales.

5 Experiments

5.1 Datasets

The following leaf databases are used for results evaluation in Section 5.3, all of
them being public with the exception of the Austrian Federal Forest dataset.

(a) Original image (b) Segmentation for R=2.8 (c) Segmentation for R=11.3

Fig. 2: Examples of leaf interior (blue) and border region (red) at different scales
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The Austrian Federal Forest (AFF) Datasets were used by Fiel and
Sablatnig [5] for recognition of trees based on images of leaves, bark and nee-
dles. The datasets are not publicly available, the Computer Vision Lab, TU
Vienna, kindly made them available to us for academic purposes, with courtesy
by Österreichische Bundesforste/Archiv. In this paper we use the AFF dataset
of leaves, which contains 134 photos of leaves (on white background) of the 5
most common Austrian broad leaf trees. The results are compared using the
protocol of Fiel and Sablatnig, i.e. using 8 training images per leaf class.

(1) Ash (2) Hornbeam (3) Beech (4) Mountain oak (5) Sycamore maple

Fig. 3: Examples from the AFF leaf dataset

The Flavia Leaf Dataset contains 1907 images (1600x1200 px) of leaves from
32 plant species on white background, 50 to 77 images per class.

Even though in the original paper by Wu et al. [33] 10 images per class are
used for testing and the rest of the images for training, most recent publications
use 10 randomly selected test images and 40 randomly selected training images
per class, achieving better recognition accuracy even with the lower number of
training samples. In the case of the two best result reported by Lee et al. [14,15],
the number of training samples is not clearly stated7. Some papers divide the
set of images for each class into two halves, one being used for training and the
other for testing.

(a) Castor aralia (b) Deodar (c) Southern magnolia (d) Tangerine

Fig. 4: Examples of 4 classes from the Flavia leaf dataset

The Foliage Leaf Dataset [7,9] contains 60 classes of leaves from 58 species.
The dataset is divided into a training set with 100 images per class and a test
set with 20 images per class.

7 In [15], the result presented as “95.44% (1820 / 1907)” seems to be tested on all
images



194 M. Sulc and J. Matas

(a) Hibiscus
rosa-sinensis

(b) Bauhinia
acuminata (c) Ipomoea

lacunose
(d)

Tradescantia
spathacea ”Vittata”

Fig. 5: Examples of 4 classes from the Foliage dataset

The Swedish Leaf Dataset was introduced in Söderkvist’s diploma thesis [28]
and contains images of leaves scanned using 300 dpi colour scanner. There are
75 images for each of 15 tree classes. The standard evaluation scheme uses 25
images for training and the remaining 50 for testing.

(a) Ulmus carpinifolia (b) Acer (c) Salix aurita (d) Quercus

Fig. 6: Examples of 4 classes from the Swedish dataset

The Middle European Woods (MEW) Dataset was recently introduced
by Novotný and Suk [19]. It contains 300 dpi scans of leaves belonging to 153
classes (from 151 botanical species) of Central European trees and shrubs. There
are 9745 samples in total, at least 50 per class. The experiments are performed
using half of the images in each class for training and the other half for testing.

(a)
Acer
campestre

(b)
Actinidia
arguta

(c)
Berberis
thunbergii

(d) Zelkova
serrata

Fig. 7: Examples of 4 classes from the MEW dataset

5.2 Parameters

In all following experiments, we use the same setting of our method: nconc = 3
multi-scale descriptors per image are used, each of them consisting of c = 6



Texture-Based Leaf Identification 195

scales described using LBP-HF-S-M. The final histogram is kernelized using
the approximate χ2 feature map. In the application, the data are only trained
once and the training precision is more important than the training time. Thus
we demand high accuracy, setting SVM parameters to: regularization parameter
λ = 10−7, tolerance for the stopping criterion ε = 10−7, maximum number of
iterations: 108. We use the unified setting in order to show the generality of
the Ffirst description, although setting the parameters individually for a given
dataset might further increase the accuracy.

5.3 Experimental Results

Table 1 shows our classification results on all available datasets, using the stan-
dard evaluation schemes. To reduce the effect of random training and test data
choice, the presented results are averaged from 10 experiments.

Table 1: Evaluation of Ffirst on available leaf datasets: Austrian Federal Forests,
Flavia, Foliage, Swedish, Middle European Woods

AFF
Flavia

10 × 40

Flavia
1
2

× 1
2

Foliage Swedish MEW

Num. of classes 5 32 32 60 15 153

Ffirsta 97.8±1.0 98.9±0.6 98.4±0.3 98.6 99.7±0.2 97.7±0.3

Ffirsti 97.6±1.4 98.1±0.8 97.9±0.4 96.7 99.6±0.4 96.9±0.3

Ffirstb 98.9±1.6 98.9±0.4 98.4±0.3 96.1 98.8±0.5 96.0±0.4

Ffirstib∑ 99.8±0.5 99.6±0.3 99.5±0.2 98.8 99.8±0.3 98.7±0.1

Ffirstib∏ 100.0±0.0 99.7±0.3 99.4±0.2 99.0 99.8±0.3 99.2±0.1

Fiel, Sablatnig [5] 93.6 – – – – –

Novotný, Suk [19] – – 91.5 – – 84.9

Karuna et al. [11] – – 96.5 – – –

Kadir et al. [10] – 95.0 – 95.8 – –

Kadir et al. [7] – 94.7 – 93.3 – –

Lee et al. 8 [15] – 95.4 – – – –

Lee et al. 8 [14] – 97.2 – – – –

Wu et al. [32] – – – – 97.9 –

Qi et al. 9 [26] – – – – 99.4 –

8 the evaluation schemes in [14,15] are not clearly described, as discussed in Section
5.1

9 according to the project homepage http://qixianbiao.github.io

http://qixianbiao.github.io
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5.4 Species Retrieval

In some applications, even results which are not correctly classified may be useful
if the correct species is retrieved among the top results. For example, in an
intelligent field guide it is enough to show the correct result in a shortlist of
possible results, allowing the user to make the final decision.

We conducted a species retrieval experiment, performed using the Ffirstib∏
method on the MEW dataset, the largest available, containing 153 classes.
Half of the images were used for training and half for testing. The results are
presented in Figure 8.

Fig. 8: Retrieval precision for different lengths of shortlist, MEW leaf dataset
(153 classes)

5.5 Classifying Leaf Collection Sites

Leaf phenotype, and thus its appearance, is not only determined by the plant
species, but also by the influence of the environment. In the experiment, we test
whether the Ffirst representation is sufficiently rich to allow determining, besides
the leaf species, the location where the leaf was collected.

The experiment was conducted on the publicly available training images from
the LifeCLEF’14 Plant identification task10. We selected species that have at
least 10 specimen collected from different trees in the north of France and 10
specimen in the south of France, as illustrated in Figure 9.

10 http://www.imageclef.org/2014/lifeclef/plant

http://www.imageclef.org/2014/lifeclef/plant
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Fig. 9: Two classes of leaf collection sites

Table 2: Enviromental conditions recognition, 10-fold cross validation.
Betula pendula Roth Corylus avellana L. Castanea sativa Mill. Acer campestre L.

Ffirsta 90.0±21.1 90.0±21.1 90.0±21.1 70.0±42.2

Ffirsti 85.0±33.8 95.0±15.8 85.0±24.2 70.0±35.0

Ffirstb 90.0±31.6 80.0±25.8 80.0±25.8 75.0±35.4

Ffirstib∑ 90.0±31.6 85.0±24.2 90.0±21.1 85.0±33.8

Ffirstib∏ 90.0±31.6 85.0±24.2 90.0±21.1 85.0±33.8

The resulting material contained 80 leaf images of 4 species - Betula pendula
Roth, Corylus avellana L., Castanea sativa Mill. and Acer campestre L. For each
species, a kernelized SVM was trained on the binary North-South classification
task. The parameters and the SVM training used the Ffirst method with 10-fold
cross validation, exactly as in the species classification. The results presented
in Table 2 show that the recognition rate is well above chance, ranging from
85%-90% for the Ffirsti,b∏ . It is important to note that factors beyond phenotype
changes due to the environment might facilitate the classification task, e.g. sys-
tematic differences in the cameras, dates of acquisition and lighting conditions.

Fig. 10: Examples of misclassified leaves from the Foliage dataset with wrong seg-
mentation (Original image, Segmentation for R=2.8, Segmentation for R=11.3)
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6 Conclusions

A new method for leaf classification has been proposed. Its novelties include the
use of a pair of histograms representing the texture on the border and in the
interior of the leave, the application of Ffirst, the Fast Features Invariant to
Rotation and Scale of Texture, and the χ2 kernel to leaf recognition.

Best results were obtained by the new Ffirsti,b∏ method, which combines the
classifiers for the leaf border and leaf interior, achieving more than 99% recog-
nition accuracy on all used leaf datasets using the same setting and describing
only the gray-scale image texture information. The species retrieval experiment
on the largest dataset containing 153 classes shows that the correct result will
be displayed among the top 4 results in more than 99.9% of cases.

Even Ffirsta, the simple, less accurate variant not distinguishing the leaf
border and interior that is more robust to small errors in leaf segmentation and
to leaf border damage, outperforms the state-of-the-art on all tested datasets.

A robust segmentation method might further improve the results. It will also
broaden the applicability to leaf picture taken on unconstrained backgrounds.
Examples of misclassified leaves with wrong segmentation are shown in Figure 10.
Further improvements might be achieved by combining the proposed method
with complementary features, such as color or the global leaf shape.

An experiment in plant location classification based on leaf appearance indi-
cates that the Ffirst methods can be used for classification of environmental
conditions and, more generally, for the study of phenotype plasticity.
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