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Abstract. We present a mathematical framework and algorithm for
characterizing and extracting partial intrinsic symmetries of surfaces,
which is a fundamental building block for many modern geometry pro-
cessing algorithms. Our goal is to compute all “significant” symmetry
information of the shape, which we define as r-symmetries, i.e., we
report all isometric self-maps within subsets of the shape that contain
at least an intrinsic circle or radius r. By specifying r, the user has
direct control over the scale at which symmetry should be detected.
Unlike previous techniques, we do not rely on feature points, voting or
probabilistic schemes. Rather than that, we bound computational efforts
by splitting our algorithm into two phases. The first detects infinites-
imal r-symmetries directly using a local differential analysis, and the
second performs direct matching for the remaining discrete symmetries.
We show that our algorithm can successfully characterize and extract
intrinsic symmetries from a number of example shapes.

Keywords: Symmetry · Shape analysis · Shape matching · Intrinsic
geometry · Slippability analysis

1 Introduction

Shape symmetry is beneficial for many applications such as shape segmenta-
tion, geometry completion, beautification, shape synthesis, scan denoising and
shape matching. A symmetry, or symmetric mapping of a shape, refers to a self-
mapping that does not alter the geometry of the shape. Extrinsic geometry refers
to properties of the shape, which depend on the coordinate space in which the
shape is embedded. Intrinsic geometry refers to properties that can be measured
on the surface, which are invariant to the embedding.

To detect extrinsic symmetries, i.e. self-mappings that do not alter the extrin-
sic geometry of the shape, one looks for rigid transformations, which map the
shape to itself. However, in many applications we are interested in shapes that
deform non-rigidly such that the surface does not tear or stretch significantly,
such as locomotion of humans and animals, or folding of cloth. The symme-
tries present in such shapes in general cannot be detected extrinsically due to
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asymmetry of the embedding. We can circumvent this problem by considering
intrinsic geometry, which is invariant to isometric deformations. A self-mapping
that does not alter the intrinsic geometry describes an intrinsic symmetry.

We can further distinguish between global and partial symmetries. A global
intrinsic symmetry maps the entire shape to itself, whereas a partial intrinsic
symmetry maps a part of the shape to another part of the shape, in a way that
does not alter the intrinsic geometry of the part. In this work, we address the
problem of detecting and characterizing partial intrinsic symmetries on a given
shape. Shapes can be symmetric at various scales, and the desired symmetry
scale may be application dependent. To model this, we use a symmetry scale r.
For every geodesic disk of radius r on the shape, we aim to find whether there
is a mapping of the disk on the shape, which does not induce any (significant)
stretching. We call such a mapping an intrinsic r-symmetry.

The goal of our work is to report all r-symmetries, i.e., all mappings of
large enough subsets of the shape to itself that are perfect isometries. The key
challenge is that the space of partial intrinsic symmetries might be too large
to systematically explore and report [24], [28]. Following Brunton et al. [6], we
define partial correspondences by sets that are mapped with preservation of the
local metric. Unlike Xu et al. [28], we do not require that the shortest geodesic
paths to be maintained outside the mapped region, which leads to a much higher
combinatorial complexity due to the global dependency on topology and bound-
aries of the subsets. In contrast, metric-preserving maps can be parametrized
by only five degrees of freedom (two out of which do not even need fine sam-
pling) [6], which makes an approximate enumeration of all isometries feasible in
polynomial time. Our paper follows this idea but factors out infinitesimal sym-
metries, which dominate the run-time otherwise, and uses local descriptors to
further narrow down the search.

Most methods that detect partial discrete intrinsic symmetries try to reduce
the search space by computing features on the shape and further detect par-
tial intrinsic symmetries in the feature space. While this approach reduces the
complexity of the problem, it might miss some intrinsic r-symmetries. Further,
existing methods have focused on either detecting partial infinitesimal symme-
tries [8], [26] or partial discrete symmetries [24], [28], [22], [13], [4], [12], [18], [23],
[9], [15] but not both.

In contrast, we propose a method that finds discrete intrinsic r-symmetries
and characterizes infinitesimal intrinsic r-symmetries of a shape in an efficient
way. The search space is reduced by a mathematical analysis on infinitesimal
r-symmetries, assuring that no information is thrown away, but simultaneously
making the computations feasible. To our knowledge, this is the first method
which provides a full characterization of intrinsic r-symmetries of a shape.

We provide a characterization of both infinitesimal and discrete partial point-
wise intrinsic symmetries on 3D shapes, and present an algorithm for detect-
ing such symmetries. Given as input a 3D shape and a radius r, our method
tests first each point for infinitesimal r-symmetry and then for the ones with no
infinitesimal r-symmetry it tests them for discrete r-symmetry since now we can
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enumerate the finite discrete r-symmetries. As a last step, for all the points that
belong to discrete r-symmetries we compute approximate equivalence classes.
We evaluate our method on a standard symmetry dataset.

1.1 Definitions and Problem Statement

We consider a shape to be a smooth, orientable 2-manifold M ⊂ R
3 embedded

in three-dimensional space, and denote the tangent space of M at point s ∈ M
by TsM. In practice, M is discretized by a set of points that are connected
by a neighborhood graph. We denote the geodesic distance between two points
s, t ∈ M by dM(s, t).

Definition 1. The points s and t on M are called r-symmetric if there is a
mapping function f : U → M, where U is the geodesic disk of radius r centered
at s, with f(s) = t such that for all point pairs (xi,xj) ∈ U , it is

|dM(xi,xj) − dM(f(xi), f(xj))| = 0. (1)

Note that, for small enough r, dU (xi,xj) = dM(xi,xj) as U is convex.

Consider mapping functions of the type f : M → M. If Equation (1) is
satisfied under such a mapping, then s and t define a global intrinsic symmetry.
We consider partial intrinsic symmetries with mapping functions of the type
f : U → M, where parts are defined as geodesic neighborhoods of points with
fixed radius. The set of r-symmetric points form an equivalence relation.

We have guarantees only for exact symmetries and as these occur rarely in
practice, we relax the symmetry condition by allowing for a stretching up to a
fixed threshold ε.
Definition 2. The points s and t are called (ε, r)-symmetric if there is a map-
ping function f : U → M with f(s) = t such that for all point pairs (xi,xj) ∈ U ,
it is

|dM(xi,xj) − dM(f(xi), f(xj))| ≤ ε. (2)

The set of (ε, r)-symmetric points no longer form an equivalence relation.
When the mapping f encodes infinitesimal movements of points xi in U and

Equations (1) or (2) are satisfied, then s and t define an infinitesimal (ε, r)-
symmetry. Note that in the literature, infinitesimal symmetries are often also
called continuous symmetries because the isometries involved form a continu-
ous set.

When the mapping f encodes movements by fixed geodesic distances of points
xi in U and Equations (1) or (2) are satisfied, then s and t define a discrete (ε, r)-
symmetry. The reason for the term discrete is that the set of discrete global
symmetries form a discrete set.

1.2 Overview

We now give a coarse outline of our algorithm for detecting intrinsic (ε, r)-
symmetries. We start by detecting and factoring out all (possibly infinitely many)
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Fig. 1. Illustrative example. Left to right: size of r, point slippability, symmetry-
factored embedding distance from a corner of the cube.

infinitesimal (ε, r)-symmetries. We adapt methods that find infinitesimal sym-
metries in the extrinsic case [7], [10] to our scenario. Once the infinitesimal sym-
metries are factored out (e.g. leaving the white regions in Fig. 1, middle), there
remain only a finite, and often manageable, number of discrete (ε, r)-symmetries.
To extract these we use the fact that point-wise (ε, r)-symmetries arise from an
ε-approximate isometric mapping (correspondence) between two regions U and
f(U), as defined in (2). Isometric mappings have a low number of degrees of free-
dom, which has been recently used to develop a direct region growing method for
partial isometric correspondence [6]. We exploit this method, initialized with a
sampling strategy based on spectral descriptors, to find the discrete symmetries.
These steps are shown as illustration for a cube in Fig. 1, and explained in detail
in the subsequent sections.

2 Related Work

There is a considerable amount of research on detecting extrinsic symmetry on
3D shapes and for an overview, we refer the reader to the survey from Mitra
et al. [16]. Here we focus on research on detecting intrinsic symmetry.

To compute infinitesimal intrinsic symmetries, Ben Chen et al. [3] propose a
method to compute approximate Killing vector fields on triangle meshes, which
are tangent vector fields on the surface that generate isometric transformations.
There are two methods that allow for the computation of partial infinitesimal
symmetries. Solomon et al. [26] partition the shape into intrinsically symmetric
building blocks and can be thought of as an extension of the method by Ben Chen
et al. [3] to the partial case. While this method allows to “untangle” the global
information into parts, it does not allow the detection of symmetries on a specific
scale. Grushko et al. [8] find infinitesimal symmetries as the ones that lead to
small stress of the generalized multi-dimensional scaling (MDS) energy [5]. It
requires as input the target location of one point as boundary condition. Our
method to detect infinitesimal partial symmetries can be seen as similar in spirit,
but more general. We can find all directions by which a sample can move by an
infinitesimal amount while its geodesic neighborhood stays symmetric, without
the need for an initial target point location.

To compute global discrete intrinsic symmetries, several methods based on
isometric invariants have been proposed. Kim et al. [11] use the average geodesic
function to find feature points and compute global discrete symmetries as Möbius
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transformations generated by these feature points. Possible symmetries gener-
ated by non-feature points will not be reported. Methods that use the Laplace-
Beltrami operator embed the surface into a space where the global discrete
symmetry detection has a reduced search space. Ovsjanikov et al. [21] reduce
the space further by only considering non-repeating eigenvalues and by finding
global intrinsic symmetries by transforming the problem to extrinsic symme-
try detection in the embedding space. Ovsjanikov et al. [20] identify and factor
out symmetries before finding correspondences between a pair of near isometric
shapes and require a symmetry map on one shape from the user.

After detecting approximate global symmetries, it remains to recover the
symmetry group from the approximate information. Lipman et al. [13] propose
an embedding where symmetry is factored out to recover approximate cliques
in the embedding space, which correspond to equivalence classes of symmetric
points. Wang et al. [27] extend this approach by introducing an embedding
where repeating eigenvalues of the Laplace-Beltrami operator are used to capture
symmetry transformations. In this work, we modify the method of Lipman et
al. to find approximately equivalent parts for visualization purposes.

As the complexity of the space of all partial symmetries is believed to be
large [24], [28], existing methods proceed by reducing the search space after
sampling the surface.

Some methods find partial discrete symmetries by minimizing a MDS energy.
Raviv et al. [24] define as partial discrete symmetry a self-isometric part that
minimizes the generalized MDS energy, and find symmetries by comparing pairs
of samples that pass a pruning method. Raviv et al. [23] extend the previous
approach by using a diffusion distance metric. Mitra et al. [15] detect intrinsically
symmetric blocks on a given surface by flattening the surface using MDS, by
solving the problem on the embedded image, and by projecting the computed
patterns back to the original surface. This method is restricted to surfaces that
are topologically equivalent to a plane.

Berner et al. [4] reduce the search space of possible partial discrete symme-
tries by using features. This method might miss possible symmetry candidates
because of the feature selection. To overcome this problem, Lasowski et al. [12]
find partial intrinsic symmetries by modeling a probability distribution over all
possible correspondences. This method is sensitive to topological noise.

Partial discrete symmetries can alternatively be detected by a voting proce-
dure. Xu et al. [28] decouple the problem into the two problems of symmetric
point pair detection and symmetry scale detection. The specific difficulty of this
method is the preservation of all shortest geodesic paths after a partial mapping
to a larger context. This makes the solution space too large for a low-level, sys-
tematic exploration. Our model avoids this by removing these global guarantees
for indirect effects due to geometry outside the region identified as symmet-
ric. Mukhopadhyay et al. [18] detect overlapping intrinsically symmetric regions
by a voting procedure of symmetric point pairs and characterize the computed
symmetries. Jiang et al. [9] extend this type of voting procedure by coupling
it with a robust skeleton extraction method. All of these methods require com-
plex optimizations before the voting step, and are sensitive to topological noise.



272 A. Shehu et al.

Furthermore, in all of these methods, the scale(s) of the detected symmetries
cannot be controlled by the user. Our method gives direct control of the scale of
symmetry to be detected to the user.

To summarize, existing methods reduce the resulting search space, commonly
using features, pruning, or voting techniques. In contrast, we observe that the
space of all partial symmetries can be modeled explicitly as follows. There may be
infinitely many infinitesimal partial symmetries, and points that have infinites-
imal partial symmetries need to be detected and factored out to make partial
symmetry detection feasible. Additionally, there may be finitely many discrete
partial symmetries, each of which can be parameterized by a pair of point and
tangent direction matches in a low-dimensional search space. This observation
allows us to systematically detect infinitesimal and discrete partial symmetries
in a way that is similar in spirit to work on detecting extrinsic partial symmetries
for a micro-tile decomposition of a shape [10].

3 Infinitesimal r-Symmetry Detection

This section presents our approach to detect and characterize infinitesimal (ε, r)-
symmetries.

3.1 Detecting r-Symmetries

We aim to find all directions d, such that all points xi ∈ U can move by an
infinitesimal amount in direction d without inducing any stretching. In contrast
to the method of Ben-Chen et al. [3], we constraint the measured stretching to
the shape part U instead of the entire shape. Here, d = [δT

1 . . . δT
n ]T is a vector

of length 2n that defines how each point xi moves in its local tangent plane
Txi

M. We extend the notation from works on extrinsic symmetry detection [7]
and call the directions d r-slippage directions.

To find the r-slippage directions d, we construct a matrix A that has all r-
slippage directions as eigenvectors with corresponding eigenvalue zero. This can
be seen as a direct extension of the extrinsic slippage analysis of Gelfand and
Guibas [7] to the intrinsic case. The main challenge in extending the slippage
analysis to the intrinsic case is that the degrees of freedom that control the
movement a part U increases from 6 in the extrinsic case (3 for rotation, 3 for
translation) to 2n in the intrinsic case, where n denotes the number of samples
in U (2 to indicate the movement of each sample in its tangent plane).

We start by considering the stretching of a mapping f : U → M. Given a
uniform sampling of the manifold M, the stretching is

ESD(f) =
1

n2

n∑

i=1

n∑

j=1

(dM(f(xi), f(xj)) − dM(xi,xj))
2
, (3)

where n is the number of samples in U and serves as an approximation of the
area AU of U .
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The energy expressed in Equation (3) is similar to the energy used in Gen-
eralized Multi-Dimensional Scaling (GMDS) [5]. GMDS tries to fit a surface X
to a surface Y without distorting the intrinsic metric of X . In our case, we try
to fit the geodesic disk U to f(U) without distorting the intrinsic metric of U .

To find the r-slippage directions, we aim to minimize the energy given in
Equation (3). Consider the identity mapping f0(x) = x, x ∈ U . This mapping
obviously minimizes ES(f0) = 0 and ESD(f0) = 0. Since f0 minimizes ESD, the
gradient ∇f0ESD(f) is zero as well. We write the gradient with respect to the
mapping f(xk) of a particular sample xk as

∇f(xk)ESD(f) =
∂ESD

∂f(xk)
=

4

n2

n∑

i=1

(dM(f(xk), f(xi)) − dM(xk,xi))∇kpik, (4)

with ∇kpik = ∂
∂f(xk)

(dM(f(xi), f(xk))) , which, from the Eikonal equation, is
a unit-vector in Tf(xk)M.

Consider updating f0 by an infinitesimal amount in direction d. We are
interested in finding directions d, such that the mapping f0 + d has a gradient
of zero, which means ∇f(xk)ESD(f0 + d) = 0.

The second derivative of ESD with respect to the mapping f gives the rate of
change of the first derivative under the mapping. Let A denote the second-order
derivative matrix of f0 that contains the block matrices

Aki = ∇f(xk)∇f(xi)ESD(f0)

Akk = ∇f(xk)∇f(xk)ESD(f0). (5)

For small d, we can find the r-slippage directions d of U as the eigenvectors
of A with corresponding eigenvalues zero, which means vectors d with

∇f(xk)ESD(f0 + d) ≈ Ad = 0. (6)

The matrix A is symmetric, which implies that all its eigenvalues are real.
It remains to compute the second derivatives of ESD with respect to the

mapping. Taking the derivative of ∇f(xk)ESD(f) with respect to f(xk) we get

∇f(xk)∇f(xk)ESD(f) =
4

n2

n∑

i=1

(
∇kpik∇kp

T
ik + (dM(f(xk), f(xi)) − dM(xk,xi))∇k∇kp

T
ik

)
.

(7)
Taking the derivative of ∇f(xk)ESD(f) with respect to f(xi), i �= k, we get

∇f(xk)∇f(xi)ESD(f) =
4

n2

(
∇ipik∇kp

T
ik + (dM(f(xk), f(xi)) − dM(xk,xi))∇i∇kp

T
ik

)
. (8)

In the following, we make the assumption that M is approximated locally by
its tangent planes, which causes the second order derivative terms ∇k∇kpik and
∇i∇kpik in Equations (7) and (8) to vanish and lead to the following simplified
derivatives

∇f(xk)∇f(xk)ESD(f) =
4

n2

n∑

i=1

∇kpik∇kp
T
ik

∇f(xk)∇f(xi)ESD(f) =
4

n2
∇ipik∇kp

T
ik. (9)
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3.2 Detecting (ε, r)-Symmetries

We now aim to compute all directions, by which a sample s can move by an
infinitesimal amount while staying (ε, r)-symmetric. We call these directions
(ε, r)-slippage directions in the following.

From the previous section (Equation (6)) we know that for ε = 0, the r-
slippage directions can be found by finding all eigenvectors d of the second
derivative matrix A of f0 with associated eigenvalues zero. In this section, we
show that the (ε, r)-slippage directions of s can be found by finding all eigen-
vectors d of the second derivative matrix A of f0 with associated eigenvalues λ
with |λ| ≤ ( 2

n2 ε2). Note that there is no derivation of an upper bound in previous
work related to slippage analysis [7].

In practice, we are not looking for the null space of A, but we consider all
eigenvectors d with associated eigenvalues λ with |λ| at most some threshold to
be (ε, r)-slippage directions.

By integrating both sides of Equation 6, and using that the eigenvector d of
A has at most unit length, we obtain

∫ d

x=0

∇f(xk)ESD(f0 + x)dx =

∫ d

x=0

Axdx

ESD(f0 + d) ≤ 1

2
|λ| (10)

Hence, using Equation 3, we can obtain the following loose upper bound
on any individual stretch |dM(xi + δi,xj + δj) − dM(xi,xj)| ≤ n√

2

√|λ|,∀i, j,

where δi is the part of the offset vector d in the tangent space of xi. This
implies that by finding all eigenvectors d of A with associated eigenvalues λ
with |λ| ≤ ( 2

n2 ε2), we can find the (ε, r)-slippage directions.

3.3 Characterization of Samples

With the results from the previous section, we can find all linearly independent
(ε, r)-slippage directions for a sample s on M. It is known that M can have
at most three linearly independent (global) slippage directions [25]. Hence, we
can characterize the sample s according to how many linearly independent (ε, r)-
slippage directions s has. In the following, we call s t-slippable for t = 0, 1, 2, 3 if s
has t linearly independent (ε, r)-slippage directions. Furthermore, we call s slip-
pable if it has at least one (ε, r)-slippage direction, and non-slippable otherwise.
Consider the illustrative example of a cube shown in the middle of Fig. 1, where
white is 0-slippable, red 1-slippable, green 2-slippable and blue 3-slippable. A
disk of radius r is shown in blue in the left of Fig. 1. As shown, a cube is
3-slippable almost everywhere except at the corners, where it is 0-slippable.

4 Discrete r-Symmetry Detection

In the previous section we presented our approach to detect infinitesimal (ε, r)-
symmetries. In the following, we can factor out slippable points from further
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analysis, thereby reducing the search space for discrete discrete (ε, r)-symmetries
to all oriented matches of only the non-slippable points.

4.1 Discrete r-Symmetries by Isometric Region Growing

To test if two points have a discrete (ε, r)-symmetry, we use the method proposed
by Brunton et al. [6]. Based on the observation that a map of a single point pair
and its tangent space is sufficient to recover an isometry, they propose a low-
dimensional representation to efficiently compute a mapping f : V → M that
minimizes the stretch given in Equation (3). Here, V is grown to the largest
possible size that allows a mapping with metric stretching at most ε.

From a conceptual point of view, detecting all discrete (ε, r)-symmetries
would involve trying all possible point pairs with all possible direction align-
ments, and to check if the tangent spaces are related by an isometry up to a
threshold ε. As suggested by Brunton et al. [6], one may compute features in
order to reduce the search space. However, feature detection methods may miss
certain symmetries. To reduce this risk, we sample a subset of the surface points
that are left after removing all slippable points, and we test all pairs of samples.

To reduce the search space, we do not test point pairs that are close-by in
terms of geodesic distance for symmetry. Furthermore, we prune the remain-
ing point pairs and directions using an isometry-invariant shape descriptor. We
choose the state of the art Wave Kernel Signature (WKS) [2] as descriptor, and
disregard point pairs whose WKS do not agree up to a threshold τ . Comput-
ing the WKS globally over the entire surface is not consistent with our par-
tial symmetry model. To remedy this, we compute the WKS over the geodesic
r-neighborhood U of a point. This step is to speed up on exact data, i.e. shapes
that contain exact isometric parts. In this case, all r-symmetries will be discov-
ered but the method will try not to investigate the least promising ones.

For every point pair that passed the point pruning step, we proceed by
pruning the direction pairs. Direction pairs pruning is done with the help of
a descriptor, which we call Wave Kernel Map (WKM) in the following and is
defined based on the wave kernel signature [2] in a similar way that the heat
kernel map is defined based on the heat kernel signature [19]. Given that the

wave kernel signature is defined as WKSe(x,x) = Ce

∑
k φ2

k(x)e− (e−logEk)2

2σ , we
define the wave kernel map as

WKMe(x,y) = Ce

∑

k

φk(x)φk(y)e
− (e−logEk)2

2σ . (11)

Let s, t ∈ M be a point pair which passed the point pruning step, where U
is a geodesic disk centered at s, f(U) is the corresponding patch of U under the
mapping function f and f(s) = t. For all x ∈ U we compute WKMe(s,x) and
for all y ∈ f(U) we compute WKMe(t,y). Let smax and tmax be

smax = max
x

WKMe(s,x)

tmax = max
y

WKMe(t,y). (12)
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We consider as direction pairs the union of the direction matches dirs based on
smax and the direction matches dirt based on tmax where

dirs = {(smax, tdir)|tdir : |WKMe(t, tdir) − WKMe(s, smax)| ≤ τd}
dirt = {(tmax, sdir)|sdir : |WKMe(s, sdir) − WKMe(t, tmax)| ≤ τd} (13)

and where τd is a direction pair threshold. These point pairs are used to encode
the direction pairs from the point pair s, t. By disregarding all other possible
direction matches, we can eliminate alignments that are not near-isometric.

After pruning the point and direction pairs, we use the method proposed
by Brunton et al. [6] for each pair of points plus directions to find a mapping
f : V → M that is isometric up to threshold ε. From this output, we can detect
all points that are (ε, r)-symmetric by reporting every point s ∈ V whose geodesic
r-neighborhood U is entirely contained in V along with its corresponding point
t and vice versa.

4.2 Approximate Equivalence Classes

Finally,wewould like to detect classes of equivalent points under (ε, r)-symmetries.
In the case of exact data, we look for r-symmetries (ε = 0) and this step is not
necessary since we can directly find exact equivalence classes. Considering ε > 0,
this problem is ill-posed as the set of all (ε, r)-symmetries do not form equivalence
classes in general. However, since we assume that a threshold of ε is only required
to counteract noise, there is an underlying equivalence class. To find this, we detect
fuzzy equivalence classes of (ε, r)-symmetries using an approach similar to the one
proposed by Lipman et al. [13]. In this way, transition consistencies will be ampli-
fied and everything else diminished.

We use our detected discrete (ε, r)-symmetries to construct a dissimilarity
matrix S ∈ R

n×n as

Sij = min{min
i′ dM(i, i

′
),min

j′ dM(j, j
′
)}, (14)

where (i, j′) and (j, i′) define a discrete (ε, r)-symmetry and n is the number
of samples on M. We now can compute the symmetry correspondence matrix

C as proposed by Lipman et al. [13] as C̃ij = e
−
(

Sij
σ diam

)2
, where diam is twice

the intrinsic radius of the manifold M. The symmetry correspondence matrix
is derived from C̃ by making each row sum up to one. After applying eigende-
composition to the matrix C, we compute the symmetry factored embedding by
using the eigenvalues and the eigenvectors of C.

To visualize the approximate equivalence classes, we compute the symmetry-
factored embedding (SFE) distance as Euclidean distance in embedding space
and color the points based on the distance, where blue is small and red is large.
Consider again the illustrative example of a cube in Fig. 1. The right of Fig. 1
shows the SFE distance from one of the corners of the cube. All of the corners
have a small SFE distance to each other, and are therefore colored blue. The
farther away a point is from the corner, the more red is its color.
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5 Experiments

We evaluate our method on a common intrinsic symmetry dataset that is avail-
able from Xu et al. [28]. Our method requires as input a uniformly sampled
manifold mesh. Therefore, as a preprocessing step, we resample the meshes uni-
formly using ReMesh [1]. Since most models do not consist of a single mesh, we
assemble them into a single manifold mesh. We simplify scale invariance for our
algorithm by normalizing the surface area to AM = 100.

5.1 Implementation Details

In our implementation, we encode the tangent directions in an arbitrary but
fixed coordinate system in R

3. Hence, the matrix A used in Equation (6) has
dimensionality 3n×3n, and we encode ∇ipik and ∇kpik in R

3. To prevent non-
tangent directions to show up as (ε, r)-slippage directions, we add quadratic-
constraints in the normal direction to the blocks of A.

Both infinitesimal and discrete r−symmetry detection algorithms require
geodesic distance information and we compute them as in Brunton et al. [6].
For efficiency, we detect symmetry on a subset of the vertices computed using
Poisson disk sampling. The sample spacing s is fixed as 0.1r in our experiments.

In our experiments, the threshold used to characterize slippability is fixed to
0.03AM for r = 0.1R, where R =

√
AM/π is the intrinsic radius of the surface.

As r increases, we decrease the threshold quadratically to account for the change
in area AU (as in Fig. 2). Note that the threshold can be updated interactively.

Discrete symmetry characterization includes the computation of the wave
kernel descriptor in order to prune out points which might not lead to symmetric
parts. The parameters used for the wave kernel descriptor computations are M
= 100 energy scales and number of eigenvalues equal to the rank of matrix being
decomposed. To compute the discrete Laplace-Beltrami operator, the approach
by Meyer et al. [14] is adopted resulting in a generalized eigenvalue problem
which is solved with the Arnoldi method of ARPACK. To project original to
subsampled mesh points, an approximate nearest neighbor search [17] is used.

5.2 Infinitesimal Symmetry

We color-code the slippability as follows: white is 0-slippable, red 1-slippable,
green 2-slippable and blue 3-slippable. Fig. 2 shows the influence of r on point
slippability. As expected, for larger r, points become less slippable.

Fig. 3 shows the influence of the threshold used to characterize slippability. As
expected, for larger thresholds, points become more slippable. Note that for all
thresholds, some points near the tips of all tentacles are found to be non-slippable,
while the eyes are only classified as non-slippable for smaller thresholds. Consider
for example a geodesic disk centered at a point between the octopus eyes. It can
be thought of as topologically equivalent to a flat plane with two bumps. When
big threshold is used then the stretching induced from the bumps is tolerated and
therefore is evaluated by the method as a flat plane and colored hence blue. As we
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Fig. 2. Each pair shows symmetry size and resulting slippability. From left to right: r =
0.1R, 0.2R and 0.3R with thresholds 0.03AM, 0.0075AM and 0.0033AM, respectively.
Color scheme: white (0), red (1), green (2), blue (3).

decrease the threshold, the stretching is tolerated less and the eyes start getting
colored white and characterized as non-slippable.

Fig. 3. Left to right: symmetry size r, point slippability for thresholds 0.03AM,
0.003AM and 0.0003AM. Color scheme: white (0), red (1), green (2), blue (3).

Fig. 4 shows infinitesimal symmetry detection results for different meshes for
r = 0.1R. Note that symmetric parts receive the same color and that at this
scale, very smooth surfaces only contain slippable points (see top left), while
fine scale details of size below r result in 0-slippable points (see palm leaves).

5.3 Discrete Symmetry

We color-code the discrete symmetry results using the symmetry factored embed-
ding distance from a marked point from blue (small distance) to red (large dis-
tance). For all of the following experiments, the symmetry radius is r = 0.1R,
and the threshold for the infinitesimal symmetries is set to 0.03AM. The thresh-
olds used to prune point and direction pairs using the wave kernel descriptor
were set manually per model to ensure that not too many point and direction
matches are processed. We set the thresholds to τ = 1e − 3 and τd = 1e − 3 for
the octopus model and to τ = 1e − 18 and τd = 1e − 10 for the ballet model.
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Fig. 4. For each model, left: symmetry size r, and right: point slippability. Color
scheme: white (0), red (1), green (2), blue (3).

Fig. 5 shows the symmetry-factored embedding distance from the marked
point on the octopus and the ballet models. For the octopus model, the non-
slippable points are all near the tips of the tentacles, as shown in Fig. 3 (second
from left). Note that for the discrete symmetry result, pairs of points close to
the tips of all pairs of tentacles are correctly found to be (ε, r)-symmetric and
hence, parts of all tentacle tips are shown in blue. For the ballet model, all dancer
limbs that are not attached to other parts of the ballet model are found to be
non-slippable, as shown in Fig. 4 (last row). Note that for the discrete symmetry
result, pairs of points close to the tips of limbs that are not attached to other
parts are correctly found to be (ε, r)-symmetric and shown in blue.

5.4 Discussion

Our method aims to detect partial infinitesimal and discrete symmetries and
hence has different characteristics and applications than prior work that detects



280 A. Shehu et al.

Fig. 5. Symmetry factored embedding distances from marked points.

such symmetries globally [3], [20]. Considering partial symmetries significantly
increases the space of possible solutions. We have found that intrinsic slippabil-
ity is an ill-posed problem, and even more so than extrinsic slippability: Small
perturbations in the intrinsic geometry do not cause a large change in the eigen-
values of the corresponding matrix of second derivatives. This in particular makes
the slippability results strongly dependent on the threshold.

The presented algorithm requires a number of input parameters. We were able
to fix most parameters for our experiments by normalizing the mesh areas. For
infinitesimal symmetry detection, the slippage threshold needed to be adjusted
manually for few models, which is supported at interactive rates. For discrete
symmetry detection, the thresholds for pruning point and direction pairs needed
to be adjusted manually per model to ensure computational efficiency.

6 Summary

For an orientable surface in R
3, intrinsic r-symmetries are partial intrinsic sym-

metries: mappings of geodesic disks of radius r to other parts of the surface, which
do not distort the intrinsic geometry of the disk. We have presented a method
to extract discrete intrinsic (ε, r)-symmetries and characterize the infinitesimal
intrinsic (ε, r)-symmetries of a shape. The algorithm is motivated by the obser-
vation that in the ideal case (no approximation), the set of symmetries can be
exhaustively computed by direct sampling. Such symmetries are invariant to
isometric deformations of the shape and topological changes such as contacts or
holes, which are recognized as boundaries of partiality (see Fig. 5, right).

We have shown that our method can extract discrete intrinsic (ε, r)-sym-
metries and characterize infinitesimal (ε, r)-symmetries at each point on a stan-
dard symmetry dataset. We leave a large scale evaluation for future work.
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