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Abstract. Modern face recognition approaches target successful person
identification in challenging scenarios, where uncooperative subjects are
captured under unconstrained imaging conditions. With the introduc-
tion of a new generation of 3D acquisition devices capable of dynamic
acquisitions, this trend is now emerging also in 3D based approaches.
Motivated by these considerations, in this paper we propose an origi-
nal and effective framework to address face recognition from 3D tem-
poral sequences acquired in adverse conditions, including internal and
external occlusions, pose and expression variations, and talking. Due to
the novelty of the proposed scenario, a new database has been collected
using a single-view structured light scanner with a large field of view,
which allows free movement of the acquired subjects. The 3D temporal
sequences are divided into fragments each modeled as a linear subspace
in order to embody the shape and the motion of the facial surfaces. In
virtue of the Riemannian geometry of the space of real k-dimensional
linear subspaces, called Grassmann manifold, a new formulation of the
matching between 3D temporal sequences has been developed. An unsu-
pervised clustering over the Grassmann manifold is also introduced for
efficient recognition. The proposed approach achieves promising results,
without requiring any prior training or manual intervention.

Keywords: Face recognition · 3d dynamic face sequences · Grassmann
manifold

1 Introduction

Early biometric solutions using the face for recognizing persons’ identity were
based on the face appearance in 2D still images acquired in controlled ambi-
ent, with ideal illumination conditions and with cooperative subjects. However,
these over constrained solutions are of limited utility in real contexts, such
as law enforcement, surveillance systems and access control, where occlusions,
pose variation, illumination changes and facial expressions are present. Limita-
tions of methods based on 2D still images have stimulated the investigation of
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new solutions, which also exploit the temporal dimension of 2D-videos acquired
with 2D cameras. In fact, it is a shared conviction that motion information
can improve the recognition rate, especially under uncontrolled viewing condi-
tions [1,5,10]. However, evaluations on unconstrained face recognition (FR) from
2D still images and videos, such as the Multiple Biometric Grand Challenge [16]
showed that FR under pose variations is still a distant goal [1]. This boosted a
large corpus of ongoing work focusing on FR in the “wild” [19,21,23].

Recently, the availability of 3D acquisition systems opened the way to 3D
face recognition solutions. Since these approaches use the 3D geometry of the
face, they have the advantage of being robust against illumination and pose vari-
ations [2,3]. However, most of the existing solutions are tested on datasets col-
lected under well-controlled settings using static acquisition systems [17], though
some methods have recently appeared that account for pose variation, facial
expressions and occlusions [7,15]. Most recent advancements of 3D technologies,
like structured-light and time-of-flight scanners, made 3D dynamic acquisition
systems available in the market at lower cost. These devices have still optical
capabilities that are far from those exhibited by 2D cameras and often differ
in terms of operating distance and resolution (for example, Kinect-like devices
operate up to some meter, but with low resolution). Despite of these limitations,
they make possible real-time capturing of a continuous flow of 3D scans, thus
opening the way to solutions capable of performing face and facial expression
recognition from dynamic sequences of 3D face scans. Apart for its technical
practicability, adding the temporal dimension to 3D acquisitions is motivated
by the observation that the face is a deformable 3D surface changing over time,
so that using the temporal component can be essential to improve recognition,
especially under adverse acquisition conditions. A clear example of this is given
by spoofing attacks that can be difficult to detect in 2D still images or even in
2D videos, but result much more evident when the 3D temporal component is
considered.

Works addressing FR from temporal sequences of 3D scans are still a few,
with some of them restricted to RGB-D Kinect-like sensors [12,14]. For example,
Min et al. [14] proposed a real-time 3D face recognition system using multiple
RGB-D instances. The approach does not exploit temporal correlation; however,
it shows that exploiting majority voting between multiple instances provides
better recognition rate than using static scans. Similarly, working on RGB-D
acquisitions, Li et al. [12] proposed an algorithm for face recognition under vary-
ing poses, expressions, illumination and disguise. To the best of our knowledge,
the only approach addressing FR from dynamic sequences of 3D face scans is
that proposed by Sun et al. [20], where a 3D dynamic spatio-temporal approach
is derived by computing a local descriptor based on the curvature values at ver-
tices of 3D faces. Spatial and temporal Hidden Markov Models are used for the
recognition process, using 22 landmarks manually annotated and tracked over
time. As an important achievement of this work it is also evidenced that 3D face
dynamics provides better results that 2D videos and 3D static scans. However,
the applicability of this work remains limited, since it requires 3D high resolution
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scans in the sequences. In addition, the method requires scans in frontal pose,
without pose variation or occlusions.

In this work, a new FR approach from temporal sequences of 3D scans
acquired in adverse conditions, including internal and external occlusions, large
and free pose variations, facial expressions and talking is proposed. To the best
of our knowledge, this is the first work proposing this new paradigm to over-
come the 2D video and 3D static based limitations. A subspace-based modeling
approach is introduced, where the spatial-temporal data are modeled as a finite-
dimensional linear subspace. Thus, each linear subspace is considered as an ele-
ment on a Grassmann manifold. This formulation has some interesting aspects:
(i) Comparing two subspaces is cheaper than comparing two 3D dynamic frag-
ments; (ii) It is more robust to noise and missing data, which are common in
realistic scenarios. In addition, this approach uses a holistic descriptor based
on shape normals, without requiring any manual/automatic landmarking. The
facial motion is also modeled and exploited in the recognition process.

According to the proposed representation, each subject in the gallery is rep-
resented by several 3D subsequences as instances, thus resulting in a large gallery
set. Therefore, to optimize the efficiency of recognition, an unsupervised cluster-
ing approach over the Grassmannian of the gallery instances is applied. Due to
the absence of databases collecting 3D dynamic sequences for FR under adverse
conditions, we constructed a new database, which includes scans exhibiting free
pose variations, facial expressions, talking, internal and external occlusions. In
so doing, our dataset differs from the few existing 3D dynamic face databases
(also called 4D datasets) [6,13,24], which are collected for facial expressions
and/or action units recognition under highly conditioned settings and using
high-resolution 3D acquisition.

In summary, the main contributions of this work are:

– A new FR scenario, where 3D dynamic sequences of the face are compared
in order to permit FR under occlusions, pose variations and expressions;

– A new representation of 3D dynamic face sequences, which exploits relevant
geometry tools on Grassmannian manifold, and unsupervised clustering of
3D temporal sequences;

– A new 3D dynamic face database, which includes well-known FR challenges
in realistic scenarios.

The rest of the paper is organized as follows: Our FR approach between
3D dynamic sequences is presented in Sect. 2; In Sect. 3, the gallery clustering
strategy for optimizing the efficiency of recognition is described; Experiments on
the BU-4DFE database and the new 3D dynamic face dataset we collected are
reported in Sect. 4; Discussion and conclusions are given in Sect. 5.

2 Face Recognition From 3D Temporal Sequences

In the proposed scenario, we consider 3D scans of the face that are acquired
continuously through a 3D camera, thus constituting a temporal 3D sequence
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with dynamic variations of the geometry of the face. Using these data, the pro-
posed approach is designed to exploit the spatio-temporal information available
in 3D dynamic sequences of the face. To achieve this goal, a subspace modeling
framework is applied. The basic idea of this solution is to extract a set of 3D
temporal subsequences (fragments) from each 3D full temporal sequence, each
constituted by a predefined number of 3D frames, and model each fragment f as
a linear subspace Pf , which can be represented as an element on a Grassmann
manifold. According to this, given a 3D temporal sequence G in the gallery con-
stituted by the concatenation of N 3D temporal fragments gi indexed by i, so
that G = {gi,(i=1,...,N)}, and a probe 3D temporal fragment f with m successive
frames fprobe = [f1, . . . , fm], the process of comparing a probe fragment with a
gallery sequence can be formulated as follows:

g∗ = arg min
i

d(Pfprobe ,Pgi) , (1)

where d(., .) denotes the geodesic distance between two linear subspaces, and
g∗ is the 3D temporal fragment of the gallery closer to the probe fragment
according to the used distance. The complete recognition process is then obtained
by extending this analysis to all the gallery sequences.

In order to apply the above representation and matching strategy, several
steps are required for the scan preprocessing and subspace modeling, as illus-
trated in Fig. 1. After the acquisition, the face region of each frame in a 3D
temporal sequence is cropped. Due to pose variations and the scanner technol-
ogy, the number of vertices representing the surface of the face mesh varies in
the same session and from one session to another. For the subspace modeling
approach, it is important to have the same number of vertices representing the
face in each frame of a sequence. To this end, a down-sampling is applied to each
frame, so as to produce a constant number of n vertices per frame. Then, the
normal at each vertex is estimated based on the neighborhood vertices included
in a sphere of radius R around the vertex [18]. The set of estimated normals at
the vertices of each frame capture the shape of the face, and is used as a spatial
holistic descriptor of the face surface.

However, 3D frames constituting the 3D temporal sequences do not show
a correspondence between their respective vertices, which is indeed necessary
to develop the proposed linear subspace representation. In order to establish a
rough and fast correspondence between frames, a normal shooting technique [4]
is used between each two successive frames. As a result of this process, each 3D
temporal fragment can be modeled as a matrix S of size n × ω, where n is the
number of vertices, and ω is the number of frames in the 3D temporal fragment.
Each column of S is given by the z component of the estimated normals at each
vertex of one frame, so that each row embodies the motion information originated
from the variability over time of the z component of the normal of one vertex
of the face surface. The main reason for using only the z component, rather
than x and/or y of the estimated normal is that z provides a discriminative
signature between faces of different subjects, whereas the other two components
are more similar in inter-class cases, thus leading to less discrimination in the
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Fig. 1. Overview of the proposed approach

feature vector. Finally, a k-Singular Value Decomposition of the obtained matrix
is performed S = UΣV t. The eigenvectors matrix U is an orthonormal basis of
the subspace P = span(U), which is an element on the Grassman manifold
Gk(Rn). As a result of this pipeline, each 3D temporal fragment is viewed as an
element of the Grassmannian manifold, and the original problem of comparing
temporal sequences of 3D face scans is turned into a distance measurement
between the elements over the Grassmannian manifold corresponding to the 3D
temporal fragments.

2.1 Matching of 3D Temporal Fragments on the Grassmann
Manifold

Let Gk(Rn) be the Grassmann manifold of a set of k-dimensional linear subspaces
of Rn, and X , Y denote a pair of subspaces on Gk(Rn). Formally, the Riemannian
distance between X and Y is the length of the shortest path connecting the two
points on the manifold (i.e., the geodesic distance), as it is depicted in Fig. 2.

Golub and Loan [9] introduced an intuitive and computationally efficient way
of defining the distance between two linear subspaces using the principal angles.
In fact, there is a set of principal angles Θ = [θ1, . . . , θk] (0 ≤ θ1, . . . , θk ≤ π/2),
between the subspaces X and Y of size n × k, recursively defined as follows:

θk = cos−1

(
max
uk∈X

max
vk∈Y

〈ut
k, vk〉

)
, (2)

where uk and vk are the vectors of the basis spanning, respectively, the subspaces
X and Y, subject to the additional constraints: (1) 〈ut

k, uk〉 = 〈vt
k, vk〉 = 1, being

〈., .〉 the inner product in R
n; and (2) 〈ut

k, ui〉 = 〈vt
k, vi〉 = 0 (i = 1, . . . , k − 1).

In other words, the first principal angle θ1 is the smallest angle between all pairs
of unit basis vectors in the two subspaces. The rest of the principal angles are
defined in a similar manner.

Based on the definition of the principal angles, the geodesic distance between
X and Y can be defined as [8]: d2(X ,Y) =

∑
i θ

2
i . This distance is used to mea-

sure the similarity between two 3D temporal fragments, permitting to smooth
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Fig. 2. Principal angles Θ = [θ1, .., θk] computed between two linear subspaces Pi and
Pj of the Grassmannian manifold Gk(R
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the effect of noisy data, at the same time showing robustness with respect to
acquisition variations.

However, the combination of free pose variations of the subjects, and the use
of a single-view 3D scanner for acquisition can result in many frames with miss-
ing parts of the face due to self occlusions. As a consequence, it is not possible to
find correspondence and track vertices throughout successive frames of the whole
3D video. The proposed solution for this problem is to consider a sliding window
of size ω containing an affordable pose variation. According to this, each sub-
sequence of size ω, called 3D temporal fragment, represents approximately one
pose of the moving face. In this way, each subject in the gallery is represented by
multiple instances. Besides, this step helps to solve the problem of pose variation,
in that it keeps the motion information coming from the variability of the face
surface embodied in the linear subspace of each instance. The same procedure
is applied to the probe sequence, where each ω successive frames are modeled as
one probe to be recognized. According to this, the matching between probe and
gallery is modeled as a multiple instance matching, with the final recognition
decision based on majority voting. Figure 3 summarizes this process, showing
how each subject in the gallery can be represented by several instances. In addi-
tion, it is also shown how using majority voting to accumulate the recognition
decision coming from several successive instances can improve the accuracy of
the final recognition decision. In particular, the recognition rate increases over
time since more instances from the probe session give more chance to find similar
poses in the gallery session of the subject.

3 Gallery Clustering for Efficient Recognition

As it is mentioned in Sect. 2, to solve the problem of pose variations the sequence
of each subject in the gallery is divided into multiple instances over time. The
same procedure is applied to probe sequences. So, each 3D temporal fragment
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Fig. 3. Face recognition based on the match of multiple 3D temporal fragments derived
from gallery and probe sequences: The sequences in the gallery (top of the figure)
and the probe sequence (bottom of the figure) are divided into multiple 3D temporal
fragments; each 3D temporal fragment is then regarded as a point on the Grassmannian
manifold (mapping on Gk(R

n), in the middle of the figure); the geodesic distance on the
manifold is computed between every pair of fragments; the final recognition decision
exploits majority voting over the time of successive instances (2D plots on the right)

of a probe is compared with all the 3D temporal fragments in the gallery. This
exhaustive search can be avoided by clustering gallery instances according to the
main pose of the 3D frames. After applying this unsupervised clustering, each
cluster uses the Karcher mean [11] of the final elements included in the cluster as
representative element. In this way, each probe sequence is compared just with
the clusters’ representative in order to recognize to which cluster it belongs to.
Then, the comparison is extended to the instances that belong to this cluster in
the gallery. This method significantly reduces the recognition time by avoiding
the comparison of the probe instance with all the gallery instances.

The proposed clustering is performed using the K-means algorithm on the
Grassmann manifold [22], as reported in Algorithm 1. This directly descends
from the modeling of each 3D temporal fragment as a linear subspace (that is,
an element on the Grassmann manifold with a well defined geodesic distance
between any two elements). Let us consider a set of points on the Grassmann
manifold P = {Pi}ni=1. They should be clustered in k clusters C = {Ci}ki=1. Each
cluster has a mean on the Grassmann manifold (μ1, μ2, . . . , μk). Each mean
point should satisfy this condition: the sum of geodesic distances between the
class mean and its elements is minimized. To solve this problem, an expectation
maximization (EM) method is used. First, k points from P are initialized at
random as cluster centers (μ0

1, μ
0
2, . . . , μ

0
k). Each point in P is then assigned

to the nearest center in the E-step. Then, in the M-step, the cluster centers
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Algorithm 1. Intrinsic K-means clustering on Gk(Rn)
Require: Pi(1≤i≤m) ∈ Gk(R

n), N : Number of iterations,
Initialize cluster centers (μ0

1, . . . , μ
0
k) at random

j ← 0
while (j < N) do

Assign each Pi to the nearest cluster Ct by computing d2(Pi, μt) ← |exp−1
µt

(Pi)|2,
being μt the center of Ct

Recompute cluster centers (μj
1, . . . , μ

j
k) using Algorithm 2

j ← j + 1
end while

Ensure: C = Ct(1≤t≤K) the obtained clusters

are recomputed using the Karcher mean algorithm described in Algorithm 2
as detailed in [22]. Applying this clustering procedure to the gallery instances
results in aggregations, which are produced according to the instance poses. As
a consequence, instances from the same subject or from different subjects that
have similar poses fall in the same cluster.

Algorithm 2. Computation of Karcher Mean on Gk(Rn)
Require: Pi(0≤i≤n) ∈ Gk(R

n), ε > 0
Initialize μ0 ← P0, i ← 0,
repeat

Compute νi ← exp−1
µi

(Pj) for j = 0, . . . , n
Compute the average tangent vector ν̄ ← 1

n

∑
νi

Move μi according to μi+1 ← expµi(εμ̄)
i ← i + 1

until (||ν̄|| �= ε)
Ensure: μ: Karcher Mean of {Pi}

4 Experimental Results

The proposed approach for face recognition from 3D dynamic sequences has
been evaluated on the BU-4DFE dataset, in order to compare our solution with
results reported by state of the art solutions, and on a new 3D dynamic face
database that we present in Sect. 4.2.

4.1 Evaluation on BU-4DFE Database

Binghamton University 4D Facial Expression (BU-4DFE) database [24] is a 3D
dynamic facial expression public database containing 101 subjects. For each
subject there are 6 different facial expression sessions. Each session lasts about 4
seconds containing approximately 100 3D scans (frames). The number of vertices



334 T. Alashkar et al.

in each 3D frame is between 35,000 to 40,000. All the frames show a frontal
pose without any kind of occlusion. The same evaluation protocol used in [20]
for expression dependent experiment is followed to validate our framework on
the same database and to compare the performances, even though it is not the
best settings for face recognition challenges. The six sessions of each subject are
divided into two halves, each comprising 50 frames: the first half is used for
training and the second for testing. For each subject there are 6 instances in the
gallery, each of them belonging to one of the different basic expression session
(i.e., angry, disgust, fear, happy, sad and surprise), and the same as probe. For
this experiment, 60 subjects are selected as in [20]. Each instance in the gallery
and the probe are modeled as a 10-dimensional linear subspace. The number of
vertices in each scan is downsampled to n = 10, 000. Comparison is performed
over the Grassmann manifold by finding the smallest geodesic distance between
the probe instance and gallery instances. The achieved recognition rate using
single-based method is 92%. In [20], Sun et al. achieved 97.5%. However, 22 facial
landmarks are manually annotated for vertex flow tracking, while the proposed
approach uses an automatic tracking method. In [20], a training stage is also
applied on the gallery data before recognition. Table 1 reports a comparison of
the two approaches by considering efficiency and effectiveness aspects.

Table 1. Performance analysis and comparison

Sun et al. [20] This work

One frame processing 15 sec 3 sec

One probe recognition 5 sec 3 sec

CPU used 3.2 GHz 2.66 GHz

FR rate 97.5% 92%

4.2 Experimental Results on a New 3D Dynamic Face Dataset

Few 3D dynamic face databases, such as the BU-4DFE [24], D3DFACS [6], Hi4D-
ADSIP [13] have recently appeared for the purpose of facial expressions and/or
action units recognition. However, other FR challenges, like pose variation and
occlusion are not considered. As an additional contribution of this work, we con-
structed a 3D dynamic face database, which presents the following features: (1)
It includes most of the FR challenges that occur in realistic scenarios, like pose
variation, facial expressions, talking, internal and external occlusions, which are
not considered in current 3D dynamic databases; (2) The collected scans have
low resolution, which is more convenient for real-world applications (for exam-
ple, the number of vertices in each scan is about 4, 000, which is 10 times less
than BU-4DFE); (3) The field of view of the used 3D scanner is wide enough to
permit non-cooperative free movement of the subject; (4) A single-view struc-
tured light system is used for 3D dynamic sequence acquisition, which permits
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Fig. 4. Example 3D dynamic sequences from our face database acquired under uncon-
strained conditions: (a) neutral; (b) expressive; (c) talking; (d) internal occlusions
(hand, hair); (e) and external occlusions (glasses, scarf)

real time capturing. Such system is more convenient in real world applications
than multiple view systems used for current dynamic databases, which need long
offline registration stages and highly conditioned acquisition environments.

In the proposed database, for each subject we have: (i) A full 3D static
model with texture acquired using the Artec MHT 3D scanner, without any
kind of occlusion or expression in the daylight with closed eyes; (ii) Six 3D
dynamic sessions recorded using the Artec L 3D scanner. Each session lasts over
20 seconds, with 15fps as a temporal resolution (i.e., 300 frames in each session).
These sessions represent five different unconstrained scenarios, namely: neutral
(Ne), facial expression (Fe), talking (Tk), external occlusion (Eo) by scarf or
sun glasses, and internal occlusion (Io) by hand or hair (examples are shown
in Fig. 4). Two sessions are acquired for the neutral case, and one session for
the other four scenarios. All the six 3D dynamic sessions are acquired under
uncontrolled pose variations around pitch and yaw axes, where subjects are free
to move at normal speed. So far, 58 subjects have been collected, 23 females and
35 males. The average number of vertices is about 4,000 per frame (or mesh) for
3D dynamic videos, and around 50,000 for 3D models. The dataset is made freely
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available by request. Comparison with other existing 3D dynamic face datasets
is given in Table 2.

Table 2. Comparison between existing 3D dynamic face datasets

Dataset
#subjects

Temporal
resolution

Spatial
resolution

Illumination
conditions

Pose
changes

Posed
BU-4DFE [24]

101 25 35,000 controlled No

Spontaneous
BU-4DFE [25]

41 25 40,000 controlled Limited

D3DFACS [6] 10 60 30,000 controlled No

Hi4D-ADSIP [13] 80 60 20,000 controlled No

Our Database 58 15 4,000 un-controlled Free

Evaluation on the Proposed 3D Dynamic Face Dataset. In a first experi-
ment, we considered a subset of 13 subjects, with one of the two neutral sessions
used as gallery and four sessions (i.e., neutral, facial expression, talking, and
external occlusion) as probes. The goal behind doing these experiments on a
small set of our database is to show how the performance of our framework vary
according to different settings. This allows us to select the best setting to run on
the whole subjects as it is reported in the next experiment. In so doing, we down
sampled the 3D scans to n = 3, 500 vertices, with a radius of R = 15mm for the
neighborhood sphere in the 3D normal estimation. The effect of varying the win-
dow size ω used to derive the 3D temporal fragment is explored by repeating the
experiment for ω = {5, 10, 15, 20}. This value is also used to change the number
of eigenvectors which are considered after applying k-SVD (i.e., the obtained
basis of a subspace). Each session contains about 300 frames, and the number
of instances in the gallery differs according to ω (e.g., for ω = 15 each subject
has 20 instances, with 260 total instances in the gallery). In the testing, the four
different testing sessions (i.e., Ne, Fe, Tk, Eo) for each subject are divided into
multiple instances too. Each instance in the probe sessions is considered as a
separate probe and is compared against the 260 instances of a neutral session in
the gallery. The Nearest-Neighbor (NN) classifier given in Eq. (1) is applied to
find the identity of the probe instances.

Recognition rates are reported in Fig. 5(a), for the four scenarios and the dif-
ferent window size. The best recognition rate is obtained for ω = 15, confirming
the intuition that embodying motion information, coming from the temporal
variability on the face surface, provides additional discriminative features for
face recognition. For ω = 20 and greater values, this approach scores lower
recognition rate due to large pose variations, which make no more possible to
track all the vertices from the first to the last frame of a 3D temporal fragment.
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Fig. 5. (a) Single-instance based FR results as a function of the window size ω; (b)
Multiple-instances based recognition rates

It also results that the most challenging problem is the occlusion by glasses,
where the facial shape is corrupted and presents missing data in the eyes region,
as illustrated in Fig. 4(e).

In the previous experiment, only one instance out of the probe session is
used for recognition. Due to noise and low resolution of the 3D videos this can
be not effective. Using multiple instances of the probe session it is expected to
improve the performance. To verify this intuition, the effect on the recognition
rate deriving by the application of majority voting is investigated. In this case,
the recognition rate is evaluated by combining decisions of multiple successive
instances (5, 10 and 20, in addition to the single instance) of the probe session
and considering them as one probe. Then, the majority voting is applied to
determine which subject in the gallery obtains more votes from the successive
probe instances. Figure 5(b) shows the results, where the whole session over 20
seconds and 20 instances are considered (ω = 15 frames per instance are used).
It clearly emerges that using more instances as one probe for voting provides
better recognition rate in all the investigated scenarios.

ClusteringBased FaceRecognition. The matching approach proposed above
is based on an exhaustive comparison of the 3D temporal fragments constituting
a probe against all the gallery 3D temporal fragments, which results in a time con-
suming recognition process. To optimize the recognition time, the unsupervised
clustering method described in Sect. 3 is applied. The 260 instances in the gallery
are clustered into five clusters representing the main poses of the face. Experi-
mentally, this number of classes gives better recognition rate than others. The
results of clustering based 3D dynamic FR are reported for both single instance
and multiple-instances based methods. In Fig. 6, exhaustive vs. clustering based
recognition rates are presented for all the five scenarios. For the solution using a
3D single-instance (i.e., in the figure it corresponds to the required time of 1s, since
this includes the 15 3D frames of a fragment), the clustering-based approach gives
lower recognition rate than exhaustive search for all the cases, since the gallery
neutral sessions are acquired under unconstrained random pose variations. Thus,
it is not necessary to find the pose of each probe instance in the gallery session of
this subject. Nevertheless, after applying majority voting on multiple-instances
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based results, the recognition rates start to converge to exhaustive search rates
when using 5 and 10 instances for voting. When the whole session, i.e., 20 instances
is used as one probe, the clustering based recognition rate overcomes the exhaus-
tive search method for theNe scenario and they are comparable for the other three
scenarios (Fe, Tk and Eo). The number of comparisons needed in the Ne scenario
with clustering is 4 times less than in the exhaustive search method.

Fig. 6. Clustering-based vs. exhaustive recognition results for each test scenario, when
the time required for recognition (i.e., number of 3D temporal fragments in majority
voting) is varied

Results of these pilot experiments, have been used to set the best parameters
for the approach (i.e., window size ω=15, that is 20 instances are used for each
subject, with majority voting applied using all the instances). Using this setting,
an experiment on all the 58 subjects of the dataset has been conducted. The
recognition rate for the four scenarios (Ne, Fe, Tk, and Eo) resulted equal to
72%, 62%, 65%, and 36%, respectively. Compared to the results reported in
Fig. 5 for the train sample of the dataset, and for the same number of instances
used in the majority voting (i.e., 20), it can be observed just a small decrease in
the performance for the Tk case. A more marked decrease is observed instead in
the cases of neutral (Ne), facial expressions (Fe), and external occlusion (Eo).

5 Conclusions

In this work, a geometric framework based on Grassmann manifold represen-
tation for face recognition is proposed, which exploits the advantages of 3D
dynamic faces. This approach allows us to compare two 3D face videos and to
compute statistics (e.g., mean, clustering of a set of 3D face videos). Applying
our approach on BU-4DFE [24] database, we have obtained a recognition rate of
92%. The proposed approach does not require to manually annotate landmarks
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of the face for vertex tracking, and can naturally handle several challenges, like
large pose variations, facial expressions, talking and external occlusions. In order
to address face recognition in such challenging conditions, a 3D dynamic face
recognition database has been also constructed and made publicly available.
Single and multiple-instances based recognition results are reported on this new
dataset, showing that a majority voting strategy improves the performance in
all the scenarios.
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