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Abstract. This paper presents a new representation for root images
based on Reeb graphs. The representation proposed captures lengths and
distances in root structures as well as locations of branches, numbers of
lateral roots and the locations of the root tips. An analysis of root images
using Reeb graphs is presented and results are compared to ground truth
measurements. This paper shows, that the Reeb graph based approach
not only captures the characteristics needed for phenotyping of plants,
but it also provides a solution to the problem of overlapping roots in
the images. Using a Reeb graph based representation, such overlaps can
be directly detected without further analysis, during the computation of
the graph.

Keywords: Root representation · Root structure analysis · Topological
graphs · Reeb graphs · Graph-based shape representation

1 Introduction

While hidden from view, plant roots represent a significant portion of the plant
body and are of crucial importance for plant growth and productivity. For phe-
notyping of roots characteristics such as the number of branches, position of
branches, branching angles and the length of roots are analyzed. These charac-
teristics can be captured based on root images and represented using graphs.
An important property of root image representations, besides capturing the
needed characteristics, is to handle common problems that may occur for the
root images, as for example overlaps of roots in the image.

Topological graphs capture branching points and endpoints of roots as nodes
in the graph, while the edges in the graphs represent the root’s connectivity.
Root properties as the number of branches (primary root and lateral roots),
length of individual branches or branching angles are therefore obtained as well.
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Such topological graphs are for example the medial axis based graphs which
were introduced by Blum in [2] (further description by Lee in [10]). Another type
of topological graphs are Reeb graphs (for example described by Biasotti et al.
in [1]). Topology studies properties of space that are preserved under continuous
deformation (these are for example stretching or bending). Therefore, topolog-
ical properties are for example connectedness and continuity. In comparison,
geometry analyzes properties as for example the shape of an object (contour,
corners), its size or relative positions. While two shapes may be different regard-
ing geometry (as are for example a square and a circle) these two shapes may
be identical regarding topology (here both the square and the circle form one
connected component).

For plant phenotyping based on root images a topological analysis of these
images possesses advantages over a geometric analysis as roots may transform
non-rigidly. Roots may for example bend around an obstacle when growing or
they may be be rearranged or bended when grown in soil but taken out of the
soil for an image. Such actions change the shape of the root and thus its geo-
metric properties. In contrast the roots’ connectedness and branching structure,
thus its topological properties, are not affected by these actions. Due to this
invariance of the topological characteristics to actions as rearranging of roots or
bending around an obstacle, these properties provide a stable representation of
root images. Such a representation allows for comparison of roots on different
days of growth or of different plants on the same day. The approach presented
in this paper utilizes these advantages and is therefore based on a topological
image analysis and representation.

A medial axis based graph representation is a common representation of root
images based on topological graphs. Leitner et al. for example show an analysis
of root systems based on a medial axis approach [11]. Galkovskyi et al. as well
rely on a medial axis approach to derive a root skeletonization [6]. Iyer-Pascuzzi
et al. use the medial axis to compute root lengths [8].

However, this paper presents an automatic image analysis based on Reeb
graphs. A first attempt to use Reeb graphs to represent root structures was pre-
sented in [9]. Within the scope of this paper, we show that the properties needed
in plant phenotyping (length and angles of branches, numbers of branches, etc.)
are captured using a Reeb graph based representation of root images. Further-
more, we show that, compared to a medial axis, Reeb graphs possess the ability
of solving the problem of overlaps of lateral roots of one plant without additional
post-processing. Using a Reeb graph such overlaps can be detected and resolved
immediately. Reeb graphs therefore not only provide a simple solution to the
problem of overlapping branches but they first of all provide a representation of
root images that captures the characteristics needed in plant phenotyping, while
at the same time being invariant to continuous deformations and handling the
problem of overlaps.

This paper is structured as follows: the dataset as well as the analyzed prop-
erties are presented in Section 2. A theoretical introduction to Reeb graphs is
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given in Section 3 and the actual approach is described in Section 4, while Section
5 discusses the results. Section 6 concludes the paper.

2 Dataset

For this dataset roots of the plant Arabidopsis thaliana, a model organism in
plant sciences [7], were grown and imaged on day 7 and day 10 of their growth
period.

The plants were grown on a plate of 0.2 Murashige and Skoog (MS) basal
media (0.2 MS), with 1% sucrose as a carbon source and pH=5.7 for 7 days.
Each plate holds 20 plants, five seeds for any of the four genotypes: Columbia
(Col-0), Landsberg erecta(Ler-1), Fei-0 and Bch-1. An example image of such a
plate is shown in Figure 1.
After these 7 days of growth, the roots were transferred to plates with a medium
of different hormone treatments and were imaged on the following three days.
The following hormone treatments were tested: 3-Indolacetic acid (auxin, IAA),
Kinetin (cytokinin, CK), Abscisic acid (ABA) and IAA and CK combined. A
similar dataset setup is for example described by Ristova et al. in [12].

he approach presented in this paper was evaluated on 66 plants on day 7 and
day 10 (132 root images) out of a dataset of 160 plants (320 root images).

On the dataset the following measurements were performed and are available
as ground truth: primary root length on the transfer day, day7 (P1); primary
root length growth after three days from the transfer day, day 10 (P2); lateral
root numbers in day 10 (LR#), length of primary root between first and last
lateral root for the day 10 (R) and average lateral root length for the day 10
(LRl), and primary root length on day 10 (P).

Fig. 1. Dataset example image: Arabidopsis thaliana roots on day 10, under IAA treat-
ment
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The ground truth measurements were obtained using Fiji (Image J) by draw-
ing on the original images and extracting the length values.

3 Reeb Graphs and Related Morse Theory

The analysis of the presented dataset is based on Reeb graphs. These graphs
are named after the French mathematician Georg Reeb and are based in Morse
theory [3]. Reeb graphs describe the topological structure of a shape (e.g. 2D or
3D content) as the connectivity of its level sets [5]. A shape is analyzed according
to a Morse function to derive a Reeb graph. Two common Morse functions were
tested and used for our data:

– Height Function:
The height function in 2D is defined as the function f that associates for
each point p = (a, b) of a function f(x, y) the value b as the height of this
point p: f(x, y) �→ y.

– Geodesic Distance:
The geodesic distance is defined as the shortest distance in a curved space
or a restricted area measured between two points of this area or space.

A comparison of the function values generated by these two Morse functions is
shown in Figure 2. Figure 2a shows the input image, the Morse function values
are shown in Figure 2b for the height function and respectively Figure 2c for the
geodesic distance. Here the function values vary strongly for these two Morse
functions. However, for a shape, for which changes in topology appear in a mainly
vertical direction, both height function and geodesic distance (with the source
pixel set in the topmost pixel line) will result in similar function values.

The nodes of a Reeb graph correspond to critical points computed on a
shape according to a Morse function. At critical points the topology of the ana-
lyzed shape changes, thus the number of connected components in the level-set

(a) spiral image (b) height function (c) geodesic distance

Fig. 2. Example images for the two Morse functions: the height function is computed
top-down, the seed point for the geodesic distance is in the center of the topmost pixel
line of the foreground. Red indicates high function values, blue low function values.
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changes. At regular points the topology remains unchanged. Edges connecting
critical points describe topological persistence.

A point (a, b) of a function f(x, y) is called a critical point if both derivatives
fx(a, b) and fy(a, b) are equal 0 or if one of these partial derivatives does not
exist. Such a critical point p is called degenerate if the determinant of the Hessian
matrix at that point is zero, otherwise it is called non-degenerate (or Morse)
critical point [14].

According to Morse theory Reeb graphs are defined in the continuous domain
as follows:

A smooth, real-valued function f : M → R is called a Morse function if it
satisfies the following conditions for a manifold M with or without boundary:

– M1 : all critical points of f are non-degenerate and lie inside M ,
– M2 : all critical points of f restricted to the boundary ofM are non-degenerate,
– M3 : for all pairs of distinct critical points p and q, f(p) �= f(q) must hold [4].

Although originally defined for the continuous domain, Reeb graphs have been
extended to the discrete domain. For the definition of a discrete Reeb graph, we
need to define connective point sets and level-set curves first:

– Two point sets are connected if there exists a pair of points (one point of each
point set) with a distance between these two points below a fixed threshold.

– If all non-empty subsets of a point set, as well as its complements, are con-
nected, such a point set is called connective.

– A group of points that have the same Morse function value and that form a
connective point set, is called a level-set curve [16].

Fig. 3. Reeb graph according to height function and the geodesic distance (here they
generate identical critical points), computed for the white foreground region



80 I. Janusch et al.

The nodes in a discrete Reeb graph represent level-set curves, the edges
connect two adjacent level-set curves, therefore the underlying point sets are
connected [16].

In 2D three types of nodes in a Reeb graph correspond to critical points:
minima, maxima or saddles [4]. We will further distinguish saddle nodes of type
split (increase in the number of connected components) and merge (reduction
in the number of connected components). Minimum and maximum nodes are
of degree 1 (one adjacent node in the graph), saddle nodes are of degree 3 (3
adjacent nodes in the graph). An example Reeb graph containing all possible
types of nodes is shown in Figure 3. The nodes in this graph correspond to the
critical points of two Morse functions: the height function as well as the geodesic
distance both result in this set of nodes.

4 Reeb Graphs in Plant Phenotyping

The methods presented in this section requires a pre-segmented image as an
input. Therefore an image segmentation is done as a first pre-processing step.
The segmentation is based on the approach presented by Slovak et al. [13]. The
transition between shoots and roots is found based on the color information.

The Reeb graphs are computed for the segmented images based on the
geodesic distance inside the region of the root (foreground). For each foreground
pixel the distance to one predefined source pixel is computed as the chessboard
distance. This source pixel is located at the transition between shoots and roots,
therefore at the top of the root. Thus, there is only one node of type maximum in
a Reeb graph based on the geodesic distance which is the source pixel. Minimum
nodes (root tips) are found as the position of a maximal geodesic distance in a
branch (local maxima). Saddle points are determined as locations at which fore-
ground parts with the same geodesic distance to the source pixel are split in two
connected components or are merged from two into one connected component.

he so found nodes are connected in the Reeb graph according to the root
region. For the root dataset evaluated in this paper, a modified approach was
used to connect the nodes. Due to noise introduced by the image segmentation
the roots of this dataset show a high number of nodes (for example 56 nodes
for the root in Figure 6). As in this dataset we only deal with primary roots
and lateral roots that do not further branch, we can modify the Reeb graph
computation as described in Algorithm 1.

For two nodes (accordingly two critical points) at the same distance (the same
Morse function value) a unique Reeb graph cannot be built as this configuration
contradicts condition three of the conditions of Morse functions (condition M3
in Section 3). Therefore for two nodes at the same geodesic distance (chessboard
distance) a second distance measurement, the Euclidean distance is used for the
decision.
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Algorithm 1. Reeb graph computation
connect maximum node to the split saddle node of the smallest geodesic distance
for each split saddle node do

look for closest split node in each branch (s1, s2);
look for most distant minimum node in each branch (m1,m2);
if m1 < m2 then

connect current split saddle node sc to m1 and s2.
if distance between sc and m1 < 10 pixel then

discard connection again.
end if

else
connect current split saddle node sc to m2 and s1.
if distance between sc and m2 < 10 pixel then

discard connection again.
end if

end if
end for

The approach described in Algorithm 1 results in a graph for which every min-
imum node (root tips) represents the end point of a lateral root, respectively
the primary root and every saddle node of type split represents the start point
of a lateral root. The maximum node represents the start point of the root.

Fig. 4. Segmentation artefacts due to root hairs
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Based on a such a Reeb graph the measurements described in Section 2 can be
done based on the geodesic distance values of the individual nodes. The segmen-
tation that is done as pre-processing step introduces artefacts as for example
frayed borders (see Figure 4). For these artefacts spurious branches (additional
lateral roots) may be added to the graph. Therefore a simple graph pruning is
used and branches that are shorter than 10 pixels are discarded. This length was
determined empirically to minimize the number of discarded true branches (false
negatives) as well as the number of accepted false branches (false positives).

An example for such a Reeb graph computed on a root image is shown in
Figure 6 in Section 5.

The Reeb graph based approach as presented above provides some advantages
when compared to a medial axis based representation:

– Detection of Overlaps:
Due to the projection of the 3D root shape to a 2D image, roots of one plant
may overlap in the image. In a graph such an overlap introduces a cycle. For
a cycle in the graph a saddle node of type merge is introduced in the Reeb
graph (see node number 3 in Figure 3). Based on this particular node, the
overlap can be automatically detected in a Reeb graph. To resolve such an
overlap, the merge node can be doubled and each node can be connected to
one of the adjacent nodes at higher distances. For correct connections the
continuity of the direction of growth of a root can be considered. Figure 5
shows an example image (from a different dataset) for such an overlap, the
merge node is highlighted in red.

Fig. 5. An overlap of branches in the root image introduces a cycle in the graph and
therefore a merge node (highlighted in red) in a Reeb graph
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For a medial axis based graph an overlap is not detected automatically. It
may be found looking for cycles in the graph. Since the medial axis has no
explicit start point of the root, there is no order induced by distances from
the start point. Consequently the crossing of two root branches cannot be
resolved as simple as in the Reeb graph.

– Length Measurement:
For a Reeb graph based on a geodesic distance with the source pixel located
at the transition between shoots and roots, the geodesic distance provides
an implicit measurement of length. The geodesic distance for an endpoint
of a root (a minimum node in the Reeb graph) correlates with the length
(in pixels) between the source point and this endpoint. Therefore the length
between the top of the root and a tip of the root can be easily measured.
In the same way the length of lateral roots can be measured as the length
between the corresponding saddle node (branching point) and the minimum
node (tip of root) which is the difference of their distances to the source
pixel.

Such a measurement is not implicitly given by a medial axis based repre-
sentation, but needs to be computed based on the skeleton. Here the length
can be obtained as the number of skeleton pixels between two nodes. A
weighted approach (as for example discussed in [15]) that considers differ-
ent weights for 4- and 8-connected pixels may further be used for a better
approximation of the actual root length.

– Analysis of Root Structure:
Due to the different types of nodes in a Reeb graph, numbers of lateral
roots can be counted simply as the number of minimum nodes in the graph.
Furthermore locations of branches can be easily found as they are represented
by saddle nodes of type split.

5 Results on the Dataset

For the evaluation of the approach introduced in Section 4 the method presented
is tested on the dataset described in Section 2. For this data ground truth mea-
surements are available and are compared with the results obtained by the Reeb
graphs. A subset of 66 of the 160 plants in the dataset was used for the evalua-
tion. For the rest of the dataset the image segmentation was either not available
or the quality of the segmentation was too low (for example the primary root
was not segmented as foreground in the segmentation image). Therefore these
images could not be used in the evaluation of the presented approach.

Figure 6 shows an example for a Reeb graph computed on a root image of
the dataset. The branching points indicating the branching positions of lateral
roots as well as the tips of the individual roots are represented by nodes in the
graph while the edges represent the root structure. According to the ground
truth this root has eight lateral roots, the Reeb graph based approach detects
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Fig. 6. Resulting Reeb graph for root 29 06 on day 10

six lateral roots only, as the two additional roots are too short. Therefore they
are discarded as spurious branches.

The number of lateral roots can be determined based on the number of nodes
representing branching points or on the number of nodes representing root tips.
For the Reeb graph based on the geodesic distance measurements of length can
be computed directly on the Morse function value as the geodesic distance with
the source pixel set to the start of the root (at the transition between roots
and shoots) measures the distance inside the root region to this source pixel.
This distance corresponds to the intrinsic length in pixel between the top of the
root and any position along the root. When measuring the length of roots one
possible option is to measure the Euclidean distance between the start point of
the root (top of root or branching point for lateral roots) and the endpoint of
the root (tip of the root). However, for the Euclidean distance curvature of the
root is not taken into account. For the geodesic distance the length is measure
inside the root region, and curvature is included in the length. Therefore the
geodesic distance measurement approximates the actual root length better.
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Table 1. Comparison of average measurements according to ground truth and to
Reeb graphs for the subset of 66 plants of the dataset described in Section 2. The
mean deviation of the Reeb graph measurements from the ground truth is shown as
well. The abbreviations of the measured characteristics are described in Section 2.

Comparison of Measurements - Dataset

Characteristic Average Ground Truth Average Reeb Graph Mean Deviation from GT

P1 in mm 17.0416 17.2670 0.6893

P in mm 21.7741 23.0805 1.8149

LR# 7 (7.4545) 7 (7.3333) 2 (1.7880)

R in mm 11.2849 12.4798 2.6220

LRl in mm 0.8631 0.6582 0.2902

For the root images of the dataset evaluated in this paper, a ruler was imaged
with the plants to use as a reference measurement. Therefore the computed
geodesic distances in pixels were converted to millimeters to compare them to
the ground truth measurements.

Table 1 shows an overview of the Reeb graph based measurements compared
to the ground truth. While Table 2 shows detailed results for a selection of eight
root images of the dataset and the corresponding ground truth. The measure-
ments shown in these tables are:

– P1: length of primary root on day 7
– P: length of primary root on day 10
– LR#: number of lateral roots on day 10
– R: length of primary root between first and last lateral root on day 10
– LRl: average length of lateral roots on day 10

In general, the length measured for the primary roots according to the Reeb
graphs is longer than the ground truth length. The ground truth measurements
were done manually by drawing on the root image, while the Reeb graph mea-
surements are based on the geodesic distance (from an automatically detected
start point) measured on a segmented image. Differences in the measured length
may therefore arise due to the position of the automatically (based on color
information) detected start point and due to the image segmentation. The aver-
age length measurements for the set of 66 plant images in Table 1 show that the
Reeb graph based measurements approximate the ground truth measurements
for day 7 well (difference of 0,23mm). The difference in the measurements for
day 10 is larger (difference of 1,31mm). As the length according to the Reeb
graph representation is measured as the geodesic distance between the top of
the root and the tip of the root, curvature is taken into account by this measure-
ment. The roots on day 7 grow in a mainly vertical direction. The older roots on
day 10 show more deviation from the vertical direction of growth, they are more
likely to bend. As this length due to bending is directly captured by the geodesic
distance, the lengths obtained by this measurement are in general longer.

While the automatically measured lengths of the primary roots match the
ground truth well, the other characteristics such as the number of lateral roots or
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Table 2. Comparison of individual measurements according to ground truth and to
Reeb graphs for eight plants of the dataset described in Section 2

Comparison of Measurements - Individual Plants

Root Type P1 in mm P in mm LR# R in mm LRl in mm

29 04
GT 17.6445 18.0255 9 15.0199 0.4929
RG 17.8814 18.0297 5 10.9534 0.3771

29 05
GT 17.6670 18.1525 9 16.9672 0.6830
RG 18.2839 18.6017 8 16.6525 0.4396

29 06
GT 11.7433 11.5993 8 10.9051 0.8901
RG 12.8602 12.5000 6 10.4873 0.7521

29 07
GT 12.8270 13.0810 9 12.4460 0.6670
RG 12.2034 13.3729 8 11.2288 0.6674

29 11
GT 20.3030 21.0058 10 18.6270 0.7612
RG 20.8475 23.1992 8 14.9364 0.5826

29 14
GT 17.1027 17.7546 9 14.2071 0.8852
RG 18.4958 18.6017 8 14.6186 0.5244

29 19
GT 21.5053 21.8101 14 18.3642 0.5056
RG 21.3347 20.0847 11 15.2331 0.5104

29 20
GT 27.4320 27.3558 15 21.8863 0.5904
RG 26.5890 25.6992 10 17.0339 0.4788

the average length of the lateral roots vary from ground truth to Reeb graph mea-
surements. This difference in the measurements is based on the pre-processing
steps needed for the automatic Reeb graph analysis. The ground truth measure-
ments were done on the original root image, while the Reeb graph measurements
were done on a segmented image. Lateral roots may be missing in this segmenta-
tion, just as segmentation artefacts may be classified as lateral roots. Especially
root hairs introduce segmentation artefacts, that resemble small lateral roots
and that may be mistaken as roots in the Reeb graph approach. Because of
segmentation artefacts, a graph pruning approach was applied to discard small
spurious branches. True lateral roots may be discarded by this procedure in case
they resemble spurious branches (length shorter than 10 pixels).

Table 2 shows detailed individual results for eight plants to provide a direct
comparison of ground truth and Reeb graph based measurements. For each of
the four genotypes in the dataset two plants were selected for this subset and all
eight plants were grown on the same plate (with IAA and CK treatment). Plant
04 and 05 are of type Bch-1, plant 06 and 07 of type Fei-0, plant 11 and 14 are
of type Col-0 and plant 19 and 20 are of type Lan.

In case a shorter length is measured for the primary root on day 10 com-
pared to day 7 (as it is for example the case for plant 20 in Table 2), this is a
measurement error, due to differently detected start points of the roots on these
two days.

As shown for the overall results of the dataset, the length measurements for
the primary roots based on the Reeb graphs approximate the human ground
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truth. The number of lateral roots in the ground truth and the Reeb graph
representations differ for all of these eight plants. This is caused by the image
segmentation and graph pruning needed for the Reeb graph based approach.

6 Conclusion

The approach presented in this paper builds a Reeb graph representation based
on the geodesic distance for a pre-segmented root image. Measurements regard-
ing lengths or numbers of roots can be derived directly from the graph. Which
is not as easily possible for a medial axis approach, as distances between nodes
are not stored as function values in a medial axis representation. Another advan-
tage of Reeb graphs is the automatic detection of overlapping branches in the
root image, as such an overlap introduces a cycle in the graph and therefore a
particular node in a Reeb graph.

However, a Reeb graph representation, as well as a medial axis representation
uses a segmented image as its input. The segmentation that is done as a pre-
processing step is on the one hand likely to introduce noise and artefacts which
may be represented as root structure in the graphs. On the other hand actual
parts of the root may be lost during the segmentation process. The quality of a
graph representation based on a segmented image depends on the segmentation.
Reeb graphs just as well as medial axis representations need a segmentation
that does not introduce noise and segmentation artefacts as frayed borders, that
resemble small branches of the roots.

Graph representations are suitable for branching structures as roots. Espe-
cially Reeb graphs are able to capture the characteristics needed for phenotyping
of plants. However the true bottleneck of such an approach is the segmentation.
The graph representation can only provide reliable results for a correct segmen-
tation.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
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