Skip to main content

Reliable Platform for Enhanced Living Environment

  • Conference paper
  • First Online:

Abstract

The aim of this paper is to present an idea of the platform for enhanced living environment that will allow flexible and reliable use of cloud computing and sensor networks for highly customized services and applications. The architecture is based on sensors using IEEE 802.15.4 and zigbee protocols. Furthermore, the access to the cloud could be done by any available wired or wireless technology. We propose an application layer service using peer port for reliable and scalable data transmission. The presented solution is dynamic, flexible and conforms to the health and home automation standards.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ZigBee Document 075360r15. ZigBee Health CareTM, Profile Specification, ZigBee Profile: 0x0108. Revision 15, Version 1.0, March, Sponsored by: ZigBee Alliance (2010)

    Google Scholar 

  2. BlackBox ZigBee™ Test Client (ZTC), Reference Manual. Freescale Semiconductor Literature Distribution Center, Document Number: BSBBZTCRM, Rev. 1.2 (2011)

    Google Scholar 

  3. Severino, R., Koubâa, A.: On the Performance Evaluation of the IEEE 802.15.4 Slotted CSMA/CA Mechanism. IPP-HURRAY Technical Report, HURRAY-TR-080930, September 2008

    Google Scholar 

  4. Agarwal, A., Agarwal, M., Vyas, M., Sharma, R.: A study of Zigbee technology. Int. J. Recent Innov. Trends Comput. Commun. 1(4), 287–292 (2013). ISSN: 2321–8169

    Google Scholar 

  5. Kaur, G., et al.: QoS measurement of Zigbee home automation network using various modulation schemes. Int. J. Eng. Sci. Technol. (IJEST) 3(2), 1589–1597 (2011). ISSN: 0975-5462

    Google Scholar 

  6. Chen, F., Wang, N., German, R., Dressler, F.: Simulation study of IEEE 802.15.4 LR-WPAN for industrial applications. Wirel. Commun. Mob. Comput. 10, 609–621 (2010). doi:10.1002/wcm.736

  7. Zigbee Specification, Document 053474r17 (2008)

    Google Scholar 

  8. ZigBee RF4CE Specification, version 1.01, ZigBee Document 094945r00ZB (2010)

    Google Scholar 

  9. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent developments and potential synergies. J. Supercomput. 68, 1–48 (2013). doi:10.1007/s11227-013-1021-9. Springer Science + Business Media New York

  10. Ciobanu, R.-I., Marin, R.-C., Dobre, C., Cristea, V., Mavromoustakis, C.X.: ONSIDE: Socially-aware and interest-based dissemination in opportunistic networks. NOMS 2014, 1–6 (2014)

    Google Scholar 

  11. IEEE 802.15.4/ZigBee Measurements Made Easy Using the N4010A Wireless Connectivity Test Set. Agilent Technologies, Inc. (2009)

    Google Scholar 

  12. Tsitsipis, D.; Dima, S.M., Kritikakou, A., Panagiotou, C., Gialelis, J., Michail, H., Koubias, S.: Priority Handling Aggregation Technique (PHAT) for wireless sensor networks. In: 2012 IEEE 17th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1, 8, 17–21 Sept 2012. doi:10.1109/ETFA.2012.6489574

  13. Tung, H.Y., Tsang, K.F., Tung, H.C., Rakocevic, V., Chui, K.T., Leung, Y.W.: A WiFi-ZigBee building area network design of high traffics AMI for smart grid. Smart Grid Renew. Energy 3, 324–333 (2012) http://dx.doi.org/10.4236/sgre.2012.34043

  14. 315 MHz Radio Communications in Buildings, EnOcean white paper

    Google Scholar 

  15. EnOcean Technology – Energy Harvesting Wireless, EnOcean white paper (2011)

    Google Scholar 

  16. EnOcean Wireless Systems – Range Planning Guide, EnOcean white paper (2008)

    Google Scholar 

  17. ZigBee-2007 Layer PICS and Stack Profiles, ZigBee Document 08006r03, Revision 03 (2008)

    Google Scholar 

  18. Alves, M., Koubaa, A., Cunha, A., Severino, R., Lomba, E.: On the development of a test-bed application for the ART-WiSe architecture. In: Euromicro Conference on Real-Time Systems (ECRTS 2006), (WiP Session) July 2006

    Google Scholar 

  19. EnOcean_Equipment_Profiles_EEP_V2.5, EnOcean Serial Protocol, March 4 (2013)

    Google Scholar 

  20. Woo, S.-J., Shin, B.-D.: Efficient cluster organization method of Zigbee nodes. Int. J. Smart Home 7(3), 45–55 (2013)

    Google Scholar 

  21. ZigBee PRO Stack, User Guide, JN-UG-3048, Revision 2.4, NXP Laboratories UK (2012)

    Google Scholar 

  22. Krogmann, M., Heidrich, M., Bichler, D., Barisic, D., Stromberg, G.: Reliable, real-time routing in wireless sensor and actuator networks. International Scholarly Research Network ISRN Communications and Networking, vol. 2011, Article ID 943504, 8 p., (2011). doi:10.5402/2011/943504

  23. Zigbee Home Automation Public Application Profile, ZigBee Profile: 0x0104, Revision 26, Version 1.1 (2010)

    Google Scholar 

  24. Singhal, S., Gankotiya, A.K., Agarwal, S., Verma, T.: An investigation of wireless sensor network: a distributed approach in smart environment. In: Second International Conference on Advanced Computing & Communication Technologies (2012)

    Google Scholar 

  25. Koubaa, A., Severino, R., Alves, M., Tovar, E.: H-NAMe: Specifying, Implementing and Testing a Hidden-Node Avoidance Mechanism for Wireless Sensor Networks. IPP-HURRAY Technical Report, HURRAYTR-071113, April 2008

    Google Scholar 

  26. Boonma, P., Suzuki, J.: Self-Configurable Publish/Subscribe Middleware for Wireless Sensor Networks. 978-1-4244-2309-5/09. IEEE (2009)

    Google Scholar 

  27. Jurčík, P., Severino, R., Koubâa, A., Alves, M., Tovar, E.: Real-time communications over cluster-tree sensor networks with mobile sink behaviour. In: the 14th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2008), Kaohsiung, Taiwan (2008)

    Google Scholar 

  28. FP7-ICT-STREP Contract No. 258280, TWISNet, Trustworthy Wireless Industrial Sensor Networks. Deliverable D4.1.2, Hardware platform characterization/description (2012)

    Google Scholar 

  29. Cuomo, F., Luna, S.D., Monaco, U., Melodia, T.: Routing in ZigBee: benefits from exploiting the IEEE 802.15.4 association tree. ICC 2007 Proceedings (2007)

    Google Scholar 

  30. Terry, J.D., Jensen, C., Thai, S.: The Evolution of Spectrum Management: A Technical Framework for DSA Management. 978-1-4244-2017-9/08. IEEE (2008)

    Google Scholar 

  31. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems Concepts and Design. Adison Wesley, USA (2005)

    Google Scholar 

  32. El-Ansary, S., Haridi, S.: An overview of structured P2P overlay network. Swedish Institute of Computer Science (SICS), Sweden. Royal Institute of Technology – IMIT/KHT, Sweden (2004)

    Google Scholar 

  33. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE communication survey and tutorial, March (2004)

    Google Scholar 

  34. Mahlmann, P., Schindelhaue, C.: Peer-to-peer netzwerke: algorithmen und methoden. Springer, Berlin/Heidelberg, Germany (2007)

    Google Scholar 

  35. Huang, M.L., Lee, S., Park, S.-C.: A WLAN and bluetooth coexistence mechanism for health monitoring system. 978-1-4244-2309-5/09/$25.00 ©2009. IEEE (2009)

    Google Scholar 

  36. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for Internet applications. In: Proceedings of ACM SIGCOMM 2001, August (2001)

    Google Scholar 

  37. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, University of California at Berkeley, Computer Science Department (2001)

    Google Scholar 

  38. Buford, J.F., Yu, H., Lua, E.K.: P2P Networking and Applications. Morgan Kaufmann, USA (2009)

    Google Scholar 

  39. Stainov, R.: Peer ports for layered P2P streaming. In: Proceedings of the 6th International Conference in Computer Science and Education in Computer Science, CSECS 2010, 26–29 June, Fulda/Munich, Germany, ISBN: 978-954-535-573-8 (2010)

    Google Scholar 

  40. Stainov, R., Goleva, R., Genova, V., Lazarov, S.: Peer port implementation for real-time and near real-time applications in distributed overlay networks. In: 9th Annual International Conference on Computer Science and Education in Computer Science 2013 (CSECS 2013), 29 June, 2 July, Fulda-Wuertzburg, Germany, pp. 87–92 (2013)

    Google Scholar 

  41. Stainov, R.: Peer ports: mobility support in peer-to-peer systems. In: Proceedings of the 5th International Conference in Computer Science and Education in Computer Science, CSECS 2009, May 2009, Boston, USA (2009). ISBN 978-954-535-573-8

    Google Scholar 

  42. Sieber, C., Hossfeld, T., Zinner, T., Tran-Gia, P., Timmerer, C.: Implementation and user-centric comparison of a novel adaptation logic for DASH with SVC. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), pp. 1318, 1323, 27–31 May 2013

    Google Scholar 

  43. Tyson, G., Mauthe, A., Kaune, S., Grace, P., Taweel, A., Plagemann, T.: A middleware platform for supporting delivery-centric applications. ACM Trans. Internet Technol. 12(2) Article 4, 28 (2012). doi:10.1145/2390209.2390210. http://doi.acm.org/10.1145/2390209.2390210

Download references

Acknowledgments

Our thanks to ICT COST Action IC1303: Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE); Project No ИФ-02-9/15.12.2012, Gateway Prototype Modeling and Development for Wired and Wireless Communication Networks for Industrial and Building Automation; Comicon Ltd., Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossitza Goleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Goleva, R., Stainov, R., Savov, A., Draganov, P. (2015). Reliable Platform for Enhanced Living Environment. In: Agüero, R., Zinner, T., Goleva, R., Timm-Giel, A., Tran-Gia, P. (eds) Mobile Networks and Management. MONAMI 2014. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-16292-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16292-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16291-1

  • Online ISBN: 978-3-319-16292-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics