Skip to main content

Systematic Comparison of Machine Learning Methods for Identification of miRNA Species as Disease Biomarkers

  • Conference paper
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Included in the following conference series:

Abstract

Micro RNA (miRNA) plays important roles in a variety of biological processes and can act as disease biomarkers. Thus, establishment of discovery methods to detect disease-related miRNAs is warranted. Human omics data including miRNA expression profiles have orders of magnitude with much more number of descriptors (p) than that of samples (n), which is so called “p > > n problem”. Since traditional statistical methods mislead to localized solutions, application of machine learning (ML) methods that handle sparse selection of the variables are expected to solve this problem. Among many ML methods, least absolute shrinkage and selection operator (LASSO) and multivariate adaptive regression splines (MARS) give a few variables from the result of supervised learning with endpoints such as human disease statuses. Here, we performed systematic comparison of LASSO and MARS to discover biomarkers, using six miRNA expression data sets of human disease samples, which were obtained from NCBI Gene Expression Omnibus (GEO). We additionally conducted partial least square method discriminant analysis (PLS-DA), as a control traditional method to evaluate baseline performance of discriminant methods. We observed that LASSO and MARS showed relatively higher performance compared to that of PLS-DA, as the number of the samples increases. Also, some of the identified miRNA species by ML methods have already been reported as candidate disease biomarkers in the previous biological studies. These findings should contribute to the extension of our knowledge on ML method performances in empirical utilization of clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruvkun, G.: Molecular biology, Glimpses of a tiny RNA world. Science 294, 797–799 (2001)

    Article  Google Scholar 

  2. Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., et al.: A uniform system for microRNA annotation. RNA 9, 277–279 (2003)

    Article  Google Scholar 

  3. Ebert, M.S., Sharp, P.: Roles for microRNAs in conferring robustness to biological processes. Cell 149, 215–424 (2012)

    Article  Google Scholar 

  4. Kozomara, A., Griffiths-Jones, S.: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014)

    Google Scholar 

  5. Medina, P.P., Nolde, M., Slack, F.: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467, 86–90 (2010)

    Article  Google Scholar 

  6. O’Connell, R.M., Kahn, D., Gibson, W.S., Round, J.L., Scholz, R.L., et al.: MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010)

    Article  Google Scholar 

  7. Jangra, R.K., Yi, M., Lemon, S.: Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J. Virol. 84, 6615–6625 (2010)

    Article  Google Scholar 

  8. Kovalchuk, O., Filkowski, J., Meservy, J., Ilnytskyy, Y., Tryndyak, V.P., et al.: Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 7, 2152–2159 (2008)

    Article  Google Scholar 

  9. Guo, J.-X., Tao, Q.-S., Lou, P.-R., Chen, X., Chen, J., et al.: miR-181b as a potential molecular target for anticancer therapy of gastric neoplasms. Asian Pac. J. Cancer Prev. 13, 2263–2267 (2012)

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R.: Efficient quadratic regularization for expression arrays. Biostatistics 5(3), 329–340 (2004)

    Article  MATH  Google Scholar 

  11. Fan, C., Oh, D.S., Wessels, L., Weigelt, B., Nuyten, D.S., et al.: Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006)

    Article  Google Scholar 

  12. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B 58, 267–268 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Friedman, J.: Multivariate adaptive regression splines. The Annals of Statistics 19, 1–67 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Søkilde, R., Vincent, M., Møller, A.K., Hansen, A., Høiby, P.E., et al.: Efficient identification of miRNAs for classification of tumor origin. J. Mol. Diagn. 16, 106–115 (2014)

    Article  Google Scholar 

  15. Zhang, H., Yang, S., Guo, L., Zhao, Y., Shao, F., et al.: Comparisons of isomiR patterns and classification performance using the rank-based MANOVA and 10-fold cross-validation. Gene (2014)

    Google Scholar 

  16. Taguchi, Y.-H., Murakami, Y.: Universal disease biomarker: can a fixed set of blood microRNAs diagnose multiple diseases? BMC Res. Notes 7, 581 (2014)

    Article  Google Scholar 

  17. R.A.: language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/

  18. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software 33 (1), 1–22, http://www.jstatsoft.org/v33/i01/

  19. Milborrow, S., Derived from mda:mars by Hastie, R., Tibshirani, R.: Uses Alan Miller’s Fortran utilities with Thomas Lumley’s leaps wrapper. earth: Multivariate Adaptive Regression Spline Models. R package version 3.2-7 (2014), http://CRAN.R-project.org/package=earth

  20. Kuhn, M.: Contributions from Wing, J., Weston, S., Williams, A., Keefer, A., Engelhardt. A., et al.: caret: Classification and Regression Training. R package version 6.0-37 http://CRAN.R-project.org/package=caret.2014

  21. Geisser, S.: Predictive Inference (1993) ISBN 0-412-03471-9

    Google Scholar 

  22. Wang, C., Yang, S., Sun, G., Tang, X., Lu, S., et al.: Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One 6, e25832 (2011)

    Google Scholar 

  23. Murakami, Y., Toyoda, H., Tanahashi, T., Tanaka, J., Kumada, T., et al.: Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS One 7, e48366 (2012)

    Google Scholar 

  24. Maertzdorf, J., Weiner III, J., Mollenkopf, H.J., TBornotTB Network and Bauer, T., et al.: Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc. Natl. Acad. Sci. 109, 7853–7858 (2012)

    Google Scholar 

  25. Vuppalanchi, R., Liang, T., Goswami, C.P., Nalamasu, R., Li, L., et al.: Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis. PLoS One 8, e74471 (2013)

    Google Scholar 

  26. Smigielska-Czepiel, K., van den Berg, A., Jellema, P., van der Lei, R.J., Bijzet, J., et al.: Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 15, 115–125 (2014)

    Article  Google Scholar 

  27. Plieskatt, J.L., Rinaldi, G., Feng, Y., Peng, J., Yonglitthipagon, P., et al.: Distinct miRNA signatures associate with subtypes of cholangiocarcinoma from infection with the tumourigenic liver fluke Opisthorchis viverrini. J. Hepatol. 61, 850–858 (2014)

    Article  Google Scholar 

  28. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., Sarnow, P.: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005)

    Article  Google Scholar 

  29. Nakasa, T., Miyaki, T., Okubo, S., Hashimoto, A., Nishida, M., et al.: Expression of micro RNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008)

    Article  Google Scholar 

  30. Estep, M., Armistead, D., Hossain, N., Elarainy, H., Goodman, Z., et al.: Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 32(3), 487–497 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Higuchi, C., Tanaka, T., Okada, Y. (2015). Systematic Comparison of Machine Learning Methods for Identification of miRNA Species as Disease Biomarkers. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics