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Abstract. Measurement in biological systems became a subject of con-
cern as a consequence of numerous reports on limited reproducibility
of experimental results. To reveal origins of this inconsistency, we have
examined general features of biological systems as dynamical systems
far from not only their chemical equilibrium, but, in most cases, also of
their Lyapunov stable states. Thus, in biological experiments, we do not
observe states, but distinct trajectories followed by the examined organ-
ism. If one of the possible sequences is selected, a minute sub-section of
the whole problem is obtained – sometimes in a seemingly highly repro-
ducible manner. But the state of the organism is known only if a com-
plete set of possible trajectories is known. And this is often practically
impossible. Therefore, we propose a different framework for reporting
and analysis of biological experiments, reflecting the view of non-linear
mathematics. This view should be used to avoid overoptimistic results,
which have to be consequently retracted or largely complemented. An
increase of specification of experimental procedures is the way for better
understanding of the scope of paths, which the biological system may
be evolving. And it is hidden in the evolution of experimental protocols.
Our system bioWes is a tool for objectivization of this knowledge.
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1 Introduction

Measurement in biological systems became a subject of concern as a consequence
of numerous reports on limited reproducibility of experimental results [1,2]. By
detailed examination, it was often found that many of the results are not exactly
fake, but represent a selection from actually obtained results. In the same time,
articles are accompanied by statistical analysis, which seemingly confirms the
normal, Gaussian, distribution of results.

To reveal this inconsistency, we have discussed the main features of biological
systems from the mathematical point of view. Biological systems are dynamical
systems maintained far from not only their equilibrium, but in most cases also of
recurrent, Lyapunov stable states [3]. In other words, in biological experiments,
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we do not observe states, but distinct trajectories followed by the examined
organism. These trajectories are characterized by a sequence of distinct spatial
structures of the organism, i.e., a sequence of cell states.

There are two points of view from which this problem must be approached:
(1) the properties of the experimental system itself and (2) technical potential
of the measurement.

2 Technical limits of the information content of the
measurement

A new system theory was introduced by Pavel Žampa [5]. The main differences
of the Žampa´s systems theory from other system theories are (1) inclusions of
the input and output into the system description, (2) a definition of the system
attribute as a distinct concept from the system variable, and (3) an introduction
of the system time as a time of measurement. From that, the concept of the
complete immediate cause as the list of values of all system attributes at all
time instants, preceding the examined system time necessary for its description,
naturally arises. Here we summarise selected parts of Žampa´s system theory
needed for discussion in this article.

The adequate model of the time, which we call a real time, is a variable t,

t ∈ T, (1)

whose definition set is a non-empty set T of all time events

tk, where k ∈ {0, 1, 2, ..., F}. (2)

If there exist a relation ti < tj for each two time instants ti, tj ∈ T , we say that
the time instant ti precedes the time instant tj .

We shall denominate the studied system attributes (abstract variables) – such
as a coordinate of position, coordinate of speed, position of a switch, verity of a
statement – by symbols ai, where i = 1, 2, ..., n. The set of all abstract variables
will be denominated by symbol A, and thus it holds:

A = {ai | i ∈ I}, (3)

where I is an appropriate nonempty index set. Adequate model of the i-th at-
tribute ai, i ∈ I is an abstract variable of the i-th attribute vi

vi ∈ Vi, for i ∈ I, (4)

whose definition set is a nonempty set Vi, where i ∈ I, with elements, which we
shall call values of the i-th attribute. The introduction of the variable t ∈ T and
the set of variables vi ∈ Vi for i ∈ I, formalised the notion of time and other
attributes of the system. We may now introduce a system variable v defined by
relations
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v = (v1, v2, ..., vn), (5)

v ∈ V, (6)

and

V = V1 × V2 × ...× Vn (7)

Thus, the system variable is an ordered set of n variables of system attributes.
Then, the ordered set

(T, V ) (8)

is the basis of the mathematisation of the problem of the definition of the system
trajectory as a mapping. The trajectory of an abstract system corresponds to
the mapping z

z : T × I →
⋃
i∈I

Vi such that z(t, i) ∈ Vi, i ∈ I (9)

If we denote the set of all system trajectories as Ω, we may write

Ω = {z | z : T × I →
⋃
i∈I

Vi such that z(t, i) ∈ Vi, i ∈ I}. (10)

The system event is marked B and defined as a sub-set of the set Ω of all
system trajectories:

B ⊂ Ω. (11)

We usually demarcate the system event as a set of trajectories z having a certain
property V (z), which we describe as

B = {z | V (z)}. (12)

Then, we may define an abstract deterministic system D as

D = (T, V, z). (13)

For technical as well as internal mechanism reasons, neither of the measur-
able systems is truly deterministic. By introduction of probabilistic instead of
deterministic mapping P (B), which is defined on the potency B of the set Ω of
all trajectories B ∈ B we may define stochastic (abstract) system S as

S = (T, V, P ). (14)

Finally, we shall formalise the problem of causality in a measured system
(Fig. 1). The system is measured at system times, nevertheless, it is also evolving
between them. In the same time, for the definition of the future evolution of the
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Fig. 1. The concept of causal relations and the importance of system model [6].
There is depicted a set of variables measured at a time instant (represented by circles
an ovals) and causal relation in the behaviour between measuring times. To determine
the set of measured values at time tl we must consider not only limited set of measured
values at times tj < tl but also appropriate causality in intermediate times, not defined
by the set of system time T . A set of variables at the time of measurement Dk,l is
then defined by two indexes k, l, where the first expresses the causality within the
measurement time interval, while the other is the index of the system time from the
set I. Then, unity Ck,l ⊂

⋃
(i,j)<(k,l) Di,j is the complete immediate cause, the set of all

variables necessary for prediction of the set Dk,l. From that, among other conclusions,
follows that at least for technical reasons the system may not be understood without
the knowledge of an appropriate system model.

system, it may not be sufficient to consider one time instant, no matter how
good our system model is.

We generally assume that the system trajectory is defined as mapping z with
a definition set D,

D = T × I, (15)

which is defined in parts by its internal mechanism. We thus define each segment
z | Dk,l of the trajectory z exactly once and that in the dependency on the
segment z | Ck,l, where for Ck,l holds

Ck,l ⊂
⋃

(i,j)<(k,l)

Di,j . (16)

Thus, the cause Ck,l determines the consequence Dk,l and is understood as a
complete immediate cause of the consequence Dk,l.

Thus, we need an appropriate model of the system mainly for two reasons:
to determine (1) system behaviour between the time instants and (2) the time
extent of the complete immediate cause.
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3 Phenomenological variables and measurement in
chemistry

The problem of Žampa´s system theory is the definition of a truly appropriate
system model. In most cases the models are rather limited, yet, in mechanics
or electronics, these limitations may be often overcome. In this discussion we
illustrate the problem of measurement in chemistry, which has clear consequences
for measurement in biological systems.

In each physico-chemical textbook is introduced the idea of the chemical
potential µi and the activity ai which are the real measures of the contribution
of each molecule to total Gibbs energy G of the examined system. It is not from
the first sight controversial to write the total Gibbs energy as

G =

n∑
i=0

µi, (17)

where index i determines the individual chemical component of n components
present in the mixture. We should, however, expand µi as

µi = µ0,i + νiRT ln(ai) = µ0,i + νiRT ln(ci ∗ γi) = µ0,i+

νiRT ln(ci) + νiRT ln(f(c1, c2...cn, T, p, V...)),
(18)

where µ0,i is the standard chemical potential of the i-th component of concentra-
tion ci, γi = f(c1, c2...cn, T, p, V...) is its activity coefficient, νi is the respective
stoichiometric coefficient, and R is the universal gas constant. The activity co-
efficient is in principle a function of concentrations ci of all components in the
mixture and all other relevant state variables such as temperature T , pressure
p, volume V , etc. The difference between the ideal course, where the γi = 1, and
a real situation may be demonstrated on such simple examples as distillation of
spirits and the existence of the azeotropic mixture.

From that comes the following moral for the construction of the model of
chemical system: we cannot construct our system using concentrations of com-
ponents as orthogonal variables if we want to obtain a multidimensional plane
G vs. ln(xi). In fact, such a construction is almost never practically possible
and the problem is solved by plotting experimental results, giving a complicated
surface far from the ideal one.

The experimentally determined shape of the real state function gives us in-
dices which features we should seek, namely in terms of molecular interactions
and their influences on phase behaviour. In the terminology introduced in Chap-
ter 2 we must consider that the definition of system attributes A and the defi-
nition of the appropriate variables V is inseparable from the system model, i.e.,
from the mapping z or the set of probability densities P .

In context of our improper and idealised model, our simply measurable con-
centrations are phenomenological variables. However, in the context of a proper
model, describing all molecular interaction and following, e.g., phase changes in
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macroscopic behaviour, concentrations will be internal orthogonal variables of
the system. But we completely lose the simple definition of chemical potential µi
through logarithm concentration. The relation between chemical potential and
concentration may be regained only through the logic of statistical mechanics,
specifically through definition of the grand canonic ensemble, and becomes rather
impractical. The proper and quite unsatisfying conclusion is that even in chem-
istry we have the choice between a rather simplified model of low predictive
value and the phenomenological model arising from interpolation between
experimental variables in the multidimensional space of variables.

4 Properties of the model of a biological experimental
system

Biological systems are permanently out of equilibrium state and, moreover, non-
homogeneous. In Chapter 3 was shown that even in the real world of equilibrium
chemistry, our idealised models bring us only a very limited insight into the
mechanism controlling the system. Nevertheless, they are good communication
tools and have been a good start for following, more specific models. In order to
get a similar common language, we need adequate discussion tools for biological
measurements.

The most important problem is the long coexistence of several different
phases in close distances and its sudden change upon a signal like that for cell
division. Biological patterns have been attributed to the periodically repeating
solution of the reaction-diffusion equation since the pioneering work of Turing
[7,8]. Similarly, the method of cellular automata has been in parallel developed,
i.e. [9]. In both cases, the final states have been only discussed. These states are
not homogeneous in the standard chemical sense, but satisfy the conditions of
Poincaré recurrence [10]. Such systems are structured and ergodic, which means
that, over sufficiently long periods of time, all accessible microstates are achieved
by the system. See, i.e., Birkhoff [11] for the exact formulation, but one must be
aware of the fact that there is a vivid discussion of this problem in physics.

Fig. 2. Model of the reaction diffusion system using cellular automata [12].
The calculation results in an interchanging, dynamic image, which resembles waves, spi-
rals, and related patterns in the Belousov-Zhabotinsky reaction, Dicyclostelium colony
growth, and other excitable media. The parameters of the models are various rules,
threshold interval, etc. The dynamics is sensitive namely to density and type of initial
states.
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There is an obvious physico-chemical problem with these simulations: they
ignore many obvious facts, namely coexistence of multiple phases in the living
organism. Also, biological systems are non-ergodic. For example, a living cell
never visits all possible physical and chemical structures in a time between cell
divisions. Quite the contrary – the cell division seems to be well controlled by
various mechanism of its timing (i.e., [13]). These are two main reasons for in-
sufficiency of contemporary models to provide qualitative basis for methodology
of measurement in biological systems.

One of the most visible analogies to the behaviour of biological systems may
be found in the domain of cellular automata [12,15,16]. The path through the
zone of attraction to various attractor basins may be relatively easily searched
through correct mathematical simulation of discrete states. Some of these find-
ings have been tracted under the name of discrete dynamic networks by Stuart
Kaufmann [17] (Fig. 3). Perhaps a bit unjustly, in the light of incompleteness of
the theory enabling inclusion of the phase transition [14], the discrete dynamic
networks have been criticized for giving a very little insight into the physico-
chemical mechanisms generating living cells. A cellular automaton including
three qualitatively different processes – the Dewndeys hodgepodge model of the
Belousov-Zhabotinsky reaction [18] (Fig. 4) – is an example. The hodgepodge
machine has been much less thoroughly analysed than the Turing pattern, since
it is more considered as a ”mathematical recreation” than a serious model.

Fig. 3. Illustration of basins of attraction in a simple discrete system [12].
The basin of attraction is a periodically behaving, recurrent, dynamical system, in
which structures periodically change or remain stable. In this example, we obtain just 8
non-equivalent basins of attraction. From various initial configurations through variant
but defined paths, the system arrives to one of the basins of attraction. In certain cases
(in a fixed point), the image remain still. In other cases, there is a periodic interchange
between configurations. As seen, paths may be quite long, merge, and diverge.

Since 1990, the recognition of patterns has been extensively studied with the
development of machine vision. Each of the recognition methods is based on a
certain assumption about the algorithmic principles of generation of the observed
image. In the least demanding case of some machine learning approaches, there
is an assumption of image statistics. We believe that in this realm we shall seek
inspirations for the definition of the proper model of the observed process.



8 Dalibor Štys et al.

Fig. 4. Sketch of the basin of attraction of hodgepodge machine (calculated as imple-
mented in the Netlogo software [19]).
One of the peculiarities of the hodgepodge model is that for its proper functionality it
requires only to select an interval of allowed state values (threshold range), or, better
expressed, a proper relation between the number of allowed states and the stepwise
”chemical reaction” component of the reaction-diffusion simulation. Therefore, it is a
good example of a semi-discrete behaviour.

We have recently contributed to the discussion on general identifiers of ob-
served structures by introduction of a point information gain, point information
gain entropy, and point information gain entropy density [4,20]. This approach is
based on most general assumption of origins of observed structures both through
self-organising processes in the observed object and its projection into the dataset
by the measuring device.

5 Measurement in biological systems

From the reasoning above we may begin to analyse conditions of the design of a
proper measurement of biological systems. The main questions are:
(a) What might be the system attributes – the set A – and what might be
variables – the set V – representing them?
(b) What is the proper model of the system?

We may start with the problem of discreteness. Usage of discrete entities
such as agents or pixels has provided many good analogies to observations in
biological and social systems. Unfortunately, the nature is not exactly discrete
but only partly discrete, i.e., each animal is composed of – distinct – organs,
organs of – distinct – cells etc. And these organs, cells etc. are again existent
in discrete states. The immediate objection to the previous statements is that
organs or cells are not as distinct as elementary pixels in the computer simulation
and their states can not be described with natural numbers. However, to some
extent, the biological experience does that and the biological literature is full of
precise statements on cell, organ, organism, etc. states.

Similarly, as we are unable to measure at the infinite number of the time
instants, we usually measure only a sub-set of possible variables. If only one of
the system trajectories or, even worse, one of the cell states is selected and
reported, a minute sub-section of the whole problem is obviously obtained. This
is neither a new nor surprising problem – in Feymann’s worlds ”you should always
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decide to publish it whichever way it comes out” [21]. But in biological systems
the problem is more serious, as it is complicated by the strong non-linearity
which is selecting the basin of attraction by initial conditions. Thus, the scope
of results is limited, sometimes in a highly reproducible manner. The problem of
irreproducibility of biological results arises from ”not publishing whichever comes
out” further amplified by the fact that a very constrained sub-set of outcomes is
obtained at given time, with given strain and set of chemicals. But that is only
due to a very specific set-up when many conditions are not recorded.

In Chapter 3 we have discussed the problem of chemical activity vs. concen-
tration with the conclusion that with the usage of an adequate model, concen-
tration may be a good orthogonal coordinate of the system model. Just, the sur-
face describing the multidimensional state equation G = f(c1, c2, ...cn, p, V, T, ...)
might be quite complicated. In the case of systems highly sensitive to initial con-
ditions we might expect an occurrence of highly divergent trajectories originating
from very well determined initial conditions. And these trajectories themselves
might be confined to rather small region of the phase space. In this case, we may
define true phenomenological variables as a set of variables leading to the same
state trajectory. In other words, the set of trajectories determining the system
event B is not arbitrary, but determined by system internal behaviour – which
may be also understood as the best possible model. We propose to name such a
distinct system event as a system phenomenon Φ, where

Φ ⊂ Ω, (19)

and propose that signs of the system phenomena should be defined and exam-
ined. As we explained before, there is a good, theoretically substantiated, reason
that even a quite small subset of the measured system variables will give a good
stochastic model. Based on this good discrimination, we may define a decompo-
sition F of the set Ω into disjunct subsets Φ:

Φ ⊂ F. (20)

The stochastic system S = (T, V, P ) may be replaced by the phenomenolog-
ical stochastic system F = (T, V, Pφ), where Pφ is the probability of transition
between individual phenomena at given combination (T, V ).

In case of knowledge of an appropriate non-linear model, it is enough to
know the resulting trajectory at the given set of conditions. Or, in other words,
we can examine the position of the border between the two zones of attraction
experimentally, instead of common ”constructive” examination of conditions,
i.e., variable values, at which the system works in a desired way.

The state of the organism is known only if a complete phenomenological
model F is known. This is in most cases practically impossible. It may be said
with certain exaggeration that the only statistically relevant biological experi-
ment is a record of the distribution of stock exchange indexes. Thus, we propose
a different framework for reporting and analysis of biological experiments. The
most precise possible description of each experimental step is a must. Under any
circumstances we must anticipate that the biological object may follow a wildly
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different trajectory due to subtle differences in the set-up, which were not re-
ported. The behaviour of biological systems has to be studied in the framework
of mathematics of non-linear systems outside the Lyapunov stability. And this
is so far almost unstudied problem, namely since it is not understood as such.

Instead of showing a biological example – which would be difficult to explain
in a sketchy way – we demonstrate our idea using a much simpler example of
chemical self-organisation, the Belousov-Zhabotinsky reaction. In Fig. 5 we show
the performance of this well known experiment using chemicals obtained from
two different providers. Although the ferroin indicator was in both cases declared
to be of p.a. quality, we have obtained two wildly different self-organising struc-
tures. To give an illustrative explanation let us consider following: if the presence
of the contamination in the chemical is guaranteed to be less than 0.1% , there
is still 1019 of undetected molecules in each mole of the chemical. In case of
sensitivity to initial conditions, the difference in the behaviour is not surprising.

Fig. 5. The course of the Belousov-Zhabotinsky reaction as a consequence of different
purity of a reactant.
The experiments were performed as described in the commercially available kit [22]
with the difference in a supplier of ferroin. Upper row – supplier Penta (the time
instants indexes i were 25, 50, and 100), lower row – supplier Fluka (i = 5, 15, and
30). Distance between time instants was 10 s.

6 Conclusions

There are two main domains in any experiment – the design of the experiment
and analysis of its results. In this article, we show that the usage of tools for
design of experiment, which have been well established in physical and many
chemical experiments is no guarantee for the proper experiment design in the
biological (and many chemical) experiments.
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Proper discussion of this discrepancy should be made in the frame of the
theory of dynamic systems (Chapter 2). The cybernetic systems analysis antic-
ipates that each of the experiments may be performed from the beginning, in
another words that the instant t0 of the experimental time is equal to t = 0 of
the time of the system dynamics – e.g., on/off change of the state of an electri-
cal switch. Or, more exactly, we assume that all time instants included in the
complete immediate cause Ck,l determining the behaviour of the system at time
of the measurement tk lie within the time extent of the set T . Also, in a stan-
dard experiment, we consider that we are able to determine values of sufficient
number of variables from the set V , which allow us to build good model of the
experiment.

In equilibrium physical chemistry, we rather assume the occurrence of the
system on the manifold of the state equation. This also assumes that for actual
values of state variables any history of the system is irrelevant, i.e., Ck,l = Dk,l.

In biology, we should instead a-priori assume that the complete immediate
cause Ck,l may not only contain all time instants covered by the measurement,
but that it may even include some events which occurred at time instants before
the experiment has started.

The contemporary unspoken common assumption is that biological system
may by described as a special chemical system. Since as early as 17th century,
some thinkers have been assuming that biological systems may be modelled as
(in present terminology) cybernetic machines. The possibility that the biological
system may be understood as an equilibrium chemical system is clearly incorrect.
But also the fact that a biological system may be, to some extent, modelled as
a cybernetic system comes from the biased interpretation of its non-linearity
and semi-discreteness. It is for that reason that we observe only few basins of
attraction and a few paths through the state space which lead to them. Finally,
the path, within which the phenomenological stochastic system F = (T, V, Pφ) is
evolving in time, may include a much smaller part of the whole phase space than
that in which a mechanical system with the Gaussian probability density function
is evolving. This may be mistaken with a good reproducibility of the biological
experiment when it is repeated with the same set of chemicals and within a
short time interval of repetition. It leads on one hand to relative sloppiness in
the definition of experimental conditions and on the other hand to bad surprises,
when the experiment needs to be reproduced or transferred to production line
[1,2].

The proper conclusion is that a biological experiment will never be complete,
simply because we can never reverse the time and we shall not know the true
starting point. One of the possibilities how to proceed in a proper analysis of
the biological experiment is to seek conditions at which the system begins to
follow another trajectory. It is similar to the qualitative analysis of the system
of non-linear differential equations when nullclines are sought [23]. However, we
must be aware of the fact that our system is in-part discrete, which means that
we rather seek trajectories to the basin of attraction in a cellular automaton as
shown by Wuensche [12]. This factor of semi-discretion leads to the positive role
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of noise in biology [24], which we may briefly describe as a constant faltering of
the system, which may more frequently occupy trajectory acquiring a broader
part of the phase space.

The biological system is also periodically internally re-started and
re-synchronised. Let us mention the control of the bacterial cell cycle by
MinD/MinE system [13] as an illustrative example. We have recently shown
[25] that the method of shaking influences strongly the outcome of the self-
organisation in the Belousov-Zhabotinsky reaction.

An obvious solution to the problem of measurement in biological systems is
to record as many experimental outcomes as possible and publish them. This
does not satisfy the human desire of understanding the system, i.e., making a
model for the given observation. Yet, we may gradually come close to the suitable
phenomenological description of the relatively narrow distribution of the distinct
possible outcomes. This possibility comes from strong non-linearity and results
in tendency to classify biological phenomena qualitatively, i.e., giving it a name
such as ”stress behaviour”, ”resting state”, etc. These are the phenomena Φ
discussed in Chapter 5. The persistent problem is how to define them properly.
In our opinion, many jewels are hidden in experimental protocols and their
evolution, whose analysis may lead to the proper classification and construction
of a really suitable model. Experimental protocols often evolve from a simple
set-up of chemical type into elaborate knowledge including provider of chemicals
and many tricks, often unspoken. But only such analysis eventually leads to a
successful biotechnological procedure or a relatively reproducible experiment.

Our knowledge-based data repository bioWes [26] provides solution to the
problem. Its key component is the protocol generator which records the evolution
of protocols. To each individual protocol is attached the respective dataset. We
believe that the bioWes approach may lead to true understanding of biological
systems as well as to, e.g., acceleration of development and increase of reliability
of biotechnological drugs.
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