Skip to main content

Identification of Biologically Significant Elements Using Correlation Networks in High Performance Computing Environments

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Abstract

Network modeling of high throughput biological data has emerged as a popular tool for analysis in the past decade. Among the many types of networks available, the correlation network model is typically used to represent gene expression data generated via microarray or RNAseq, and many of the structures found within the correlation network have been found to correspond to biological function. The recently described gateway node is a gene that is found structurally to be co-regulated with distinct groups of genes at different conditions or treatments; the resulting structure is typically two clusters connected by one or a few nodes within a multi-state network. As network size and dimensionality grows, however, the methods proposed to identify these gateway nodes require parallelization to remain efficient and computationally feasible. In this research we present our method for identifying gateway nodes in three datasets using a high performance computing environment: quiescence in Saccharomyces cerevisiae, brain aging in Mus Musculus, and the effects of creatine on aging in Mus musculus. We find that our parallel method improves runtime and performs equally as well as sequential approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  2. May, P., Ehrlich, H.-C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  4. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)

    Chapter  Google Scholar 

  5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Technical report, Global Grid Forum (2002)

    Google Scholar 

  6. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  7. Liu, Chen, Johns, Neufeld: Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J. Neurosci. 26(28), 7532–7540 (2006)

    Article  Google Scholar 

  8. Laporte, D., Lebaudy, A., Sahin, A., Pinson, B., Ceschin, J., Daignan-Fornier, B., Sagot, I.: Metabolic status rather than cell cycle signals control quiescence entry and exit. J. Cell Biol. 192(6), 949–957 (2011), doi:10.1083/jcb.201009028

    Article  Google Scholar 

  9. Barabasi, A.L., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nature Reviews. Genetics 5(2), 101–113 (2004)

    Article  Google Scholar 

  10. Bult, C.J., Eppig, J.T., Kadin, J.A., Richardson, J.E., Blake, J.A., and the members of the Mouse Genome Database Group.: The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Res. 36(database issue), D724–D728 (2008)

    Google Scholar 

  11. Dempsey, K., Ali, H.: On the discovery of Cellular subsystems in correlation networks using centrality measures. Current Bioinformatics 7(4) (2014)

    Google Scholar 

  12. Duraisamy, K., Dempsey, K., Ali, H.: S. Bhowmick.: A noise reducing sampling approach for uncovering critical properties in large scale biological networks. In: High Performance Computing and Simulation 2011 International Conference (HPCS), Istanbul, Turkey, July 4-8 (2011)

    Google Scholar 

  13. Dong, J., Horvath, S.: Understanding network concepts in modules. BMC Systems Biology 1, 24 (2007)

    Article  MATH  Google Scholar 

  14. Ewens, W.J., Grant, G.R.: Statistical methods in bioinformatics, 2nd edn. Springer, New York (2005)

    Book  MATH  Google Scholar 

  15. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nuc. Acid Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  16. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  17. Hao, D., Li, C.: The dichotomy in degree correlation of biological networks. PloS One 6, e28322 (2011), doi: 10.1371/journal.pone.0028322

    Google Scholar 

  18. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  19. Opgen-Rhein, R., Strimmer, K.: From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology 1, 37 (2007)

    Article  Google Scholar 

  20. Verbitsky, M., Yonan, A.L., Malleret, G., Kandel, E.R., Gilliam, T.C., Pavlidis, P.: Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learning & Memory (Cold Spring Harbor, N.Y.) 11(3), 253–260 (2004)

    Article  Google Scholar 

  21. Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gilette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wise expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  22. Yoon, J.S., Jung, W.H.: A GPU-accelerated bioinformatics application for large-scale protein interaction networks. APBC poster presentation (2011)

    Google Scholar 

  23. Newman, M.: Assortative Mixing in Networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  24. Aragon, A.D., Werner-Washburne, M.: Characterization of differentiated quiescent and non-quiescent cells in yeast stationary-phase cultures. Mol. Biol. Cell 19(3), 1271–1280 (2008)

    Article  Google Scholar 

  25. Miu, H., Muruganujan, A., Thomas, P.: PANTHER in 2013: Modeling the evolution of gene function, and other gene attrbutes, in the context of phylogenetic trees. Nucl. Acids Res. 41(database issue), D377–D386 (2012)

    Google Scholar 

  26. Thomas, P., Kejariwal, A., Guo, N., Mi, H., Campbell, M.J., Muruganujan, A., Lazareva-Ulitsky, B.: Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP tools. Nuc. Acids Res. 34(suppl. 2), W645-W650

    Google Scholar 

  27. Pawaskar, S., Warnke, J., Ali, H.: An energy-aware bioinformatics application for assembling short-reaads. In: High Performance Computing Systems, HPCS 2013, pp. 154–160. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dempsey Cooper, K., Pawaskar, S., Ali, H.H. (2015). Identification of Biologically Significant Elements Using Correlation Networks in High Performance Computing Environments. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics