Skip to main content

Enhancing the Parallelization of Non-bonded Interactions Kernel for Virtual Screening on GPUs

  • Conference paper
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Abstract

Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, usually derived from the interpretation of the protein crystal structure. But it has been demonstrated that in many cases, diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact.However, this fact increases the computationally complexity exponentially. In this work we enhance the parallelization of non-bonded interactions kernel for VS methods on Nvidia GPU architectures. We show several parallelization strategies that lead to a speed up factor of 15x compared to previous GPU implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMD. Nvidia corporation. the kepler architecture (2013)

    Google Scholar 

  2. Guerrero, G.D., Pérez-Sánchez, H., Wenzel, W., Cecilia, J.M., García, J.M.: Effective Parallelization of Non-bonded Interactions Kernel for Virtual Screening on GPUs. In: Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (eds.) PACBB 2011. AISC, vol. 93, pp. 63–69. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Irwin, J.J., Shoichet, B.K.: ZINC–a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling 45(1), 177–182 (2005)

    Article  Google Scholar 

  4. Jorgensen, W.L.: The Many Roles of Computation in Drug Discovery. Science 303, 1813–1818 (2004)

    Article  Google Scholar 

  5. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 79(2), 926–935 (1983)

    Article  Google Scholar 

  6. Kadau, K., Germann, T.C., Lomdahl, P.S.: Molecular Dynamics Comes of Age: 320 Billion Atom Simulation on BlueGene/L. International Journal of Modern Physics C 17(12), 1755–1761 (2006)

    Article  Google Scholar 

  7. Kuntz, S.K., Murphy, R.C., Niemier, M.T., Izaguirre, J., Kogge, P.M.: Petaflop computing for protein folding. In: In Proceedings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing, pp. 12–14

    Google Scholar 

  8. Meng, E.C., Shoichet, B.K., Kuntz, I.D.: Automated docking with grid-based energy evaluation. Journal of Computational Chemistry 13(4), 505–524 (1992)

    Article  Google Scholar 

  9. NVIDIA Corporation. NVIDIA CUDA C Programming Guide 6.5 (2014)

    Google Scholar 

  10. Pérez-Sánchez, H., Wenzel, W.: Optimization methods for virtual screening on novel computational architectures. Curr. Comput. Aided Drug. Des. 7(1), 44–52 (2011)

    Article  Google Scholar 

  11. Prakhov, N.D., Chernorudskiy, A.L., Gaiin, M.R.: VSDocker: A tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters. Bioinformatics 26(10), 1374–1375 (2010)

    Article  Google Scholar 

  12. Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J.M., García, J.M.: High-throughput parallel blind virtual screening using bindsurf. BMC Bioinformatics 13(suppl. 14), S13 (2012)

    Google Scholar 

  13. Sánchez-Linares, I., Pérez Sánchez, H.E., García, J.M.: Accelerating grid kernels for virtual screening on graphics processing units. In: PARCO, pp. 413–420 (2011)

    Google Scholar 

  14. Wang, J., Deng, Y., Roux, B.: Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with Restraining Potentials. Biophys. J. 91(8), 2798–2814 (2006)

    Article  Google Scholar 

  15. Zhou, Z., Felts, A.K., Friesner, R.A., Levy, R.M.: Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. Journal of Chemical Information and Modeling 47(4), 1599–1608 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Imbernón, B., Llanes, A., Peña-García, J., Abellán, J.L., Pérez-Sánchez, H., Cecilia, J.M. (2015). Enhancing the Parallelization of Non-bonded Interactions Kernel for Virtual Screening on GPUs. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics