Skip to main content

A New Approach to Obtain EFMs Using Graph Methods Based on the Shortest Path between End Nodes

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Abstract

Genome-scale metabolic networks let us to understand the behavior of the metabolism in the cells of live organisms. The availability of great amounts of such data gives scientific community the opportunity to infer in silico new metabolic knowledge. Elementary Flux Modes (EFM) are minimal contained pathways or subsets of a metabolic network that are very useful to achieve the comprehension of a very specific metabolic function (as well as dis-functions), and to get the knowledge to develop new drugs. Metabolic networks can have large connectivity and, therefore, EFMs resolution faces a combinational explosion challenge to be solved. In this paper we propose a new approach to obtain EFMs based on graph methods and the shortest path between end nodes. Our method finds all the pathways in the metabolic network and it is able to prioritize the pathway search accounting the biological mean pursued. Our technique has two phases, the exploration one and the characterization one, and we show how it works in a well-known case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Croes, D., Couche, F., Wodak, S.J., et al.: Metabolic PathFinding: Inferring relevant pathways in biochemical networks. Nucleic Acids Res. 2005(33), W326–W330

    Google Scholar 

  2. Dijkstra, E.W.: A note on two problems in connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. Roman, M.T., Flemming, B.O.: Palsson. Reconstruction and use of microbial metabolic networks: The core Escherichia coli metabolic model as an educational guide. In: Escherichia coli and Salmonella: Cellular and Molecular Biology, Chapter 10.2.1, Washington, DC (2010)

    Google Scholar 

  4. Elementary Flux Mode Tool, http://www.csb.ethz.ch/tools/efmtool

  5. De Figueiredo, L.F., et al.: Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics 24, 2615–2621 (2008)

    Article  Google Scholar 

  6. De Figueiredo, L.F., et al.: Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25, 3158–3165 (2009)

    Article  Google Scholar 

  7. Hunt, K.A., et al.: Complete enumeration of elementary flux modes through scalable, demand-based subnetwork definition. Bioinformatics (2014) (in press)

    Google Scholar 

  8. Jevremovic, D., Boley, D., Sosa, C.P.: Divide-and-Conquer Approach to the Parallel Computation of Elementary Flux Modes in Metabolic Networks. In: IEEE International Symposium on IPDPS 2011, pp. 50–511 (2011)

    Google Scholar 

  9. Klamt, S., Stelling, J.: Combinatorial complexity of pathway analysis in metabolic networks. Mol. Biol. Rep. 29(1-2), 233–236 (2002)

    Article  Google Scholar 

  10. Planes, F.J., Beasly, J.E.: A critical examination of stoichiometric and path-finding approaches to metabolic pathways. Briefings in Bioinformatics 9, 422–436 (2008)

    Article  Google Scholar 

  11. Pey, J., Prada, J., Beasley, J.E., Planes, F.: Path finding methods accounting for stoichiometry in metabolic networks. Genome Biol. 12(5), 49 (2011)

    Article  Google Scholar 

  12. Pey, J., Planes, F.J.: Direct calculation of Elementary Flux Modes satisfying several biological constraints in genome-scale metabolic networks. Bioinformatics (2014) (in press)

    Google Scholar 

  13. Rezola, A., et al.: Selection of human tissue-specific elementary flux modes using gene expression data. Bioinformatics 29, 2009–2016 (2013)

    Article  Google Scholar 

  14. Rezola, A., et al.: Advances in network-based metabolic pathway analysis and gene expression data integration. Bioinform in press, Brief (2014)

    Google Scholar 

  15. Schmidt, B.J., et al.: GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29, 2900–2908 (2013)

    Article  Google Scholar 

  16. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182 (1994)

    Article  Google Scholar 

  17. von Kamp, A., Schuster, S.: Metatool 5.0: Fast and flexible elementary modes analysis. Bioinformatics 22(15), 1930–1931 (2006)

    Article  Google Scholar 

  18. Seo, H., Lee, D.-Y., Park, S., Fan, L.T., Shafie, S., Bertk, B., Friedler, F.: Graph-theoretical identification of pathways for biochemical reaction. Biotechnology Letters 23, 1551–1557 (2001)

    Article  Google Scholar 

  19. Thiele, I., Palsson, B.: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010)

    Article  Google Scholar 

  20. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24, 2229–2235 (2008)

    Article  Google Scholar 

  21. Urbanczik, R., Wagner, C.: An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 21, 1203–1210 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Céspedes, J.F.H., De Asís Guil Asensio, F., Carrasco, J.M.G. (2015). A New Approach to Obtain EFMs Using Graph Methods Based on the Shortest Path between End Nodes. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_62

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics