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Abstract. This paper investigates the impact of geometric semantic
crossover operators in a wide range of symbolic regression problems.
First, it analyses the impact of using Manhattan and Euclidean dis-
tance geometric semantic crossovers in the learning process. Then, it pro-
poses two strategies to numerically optimize the crossover mask based on
mathematical properties of these operators, instead of simply generating
them randomly. An experimental analysis comparing geometric semantic
crossovers using Euclidean and Manhattan distances and the proposed
strategies is performed in a test bed of twenty datasets. The results
show that the use of different distance functions in the semantic geomet-
ric crossover has little impact on the test error, and that our optimized
crossover masks yield slightly better results. For SGP practitioners, we
suggest the use of the semantic crossover based on the Euclidean dis-
tance, as it achieved similar results to those obtained by more complex
operators.

Keywords: semantic genetic programming, crossover, crossover mask
optimization

1 Introduction

The development of methods that take the semantics of the solutions being
evolved into account is a trend in the genetic programming community, with
special attention given to methods based on geometric semantic crossover op-
erators [12, 8]. The main reason for researchers interest in geometric semantic
crossover is that, by manipulating directly the semantics of solutions, it behaves
in a much more controlled way since the semantic impact of operators can be
easily bounded. It also has interesting properties regarding control of overfitting,
establishing upper bounds in test error. Furthermore, the fitness landscapes in-
duced by semantic operators are usually much simpler than regular landscapes,
making optimization easier.

This paper is particularly interested in the impact of geometric semantic
crossover operators into symbolic regression problems. Given a set of inputs I



and their respectively expected outputs O, the semantics of a function f being
evolved can be indirectly assessed by a quality measure, such as the error rate,
which calculates the differences between the expected outputs O and the ob-
tained outputs O′ = f(I). As different functions can map to the same value of
error, we can say this error measure performs a kind of syntactic–semantic (or
genotype-phenotype) mapping.

Considering that the semantics of a solution can be represented by its out-
put vector O′, different ways of measuring the semantic distance between two
functions have been proposed. In the case of symbolic regression, as the outputs
generated return real values, the Manhattan and Euclidean distances are appro-
priate functions for measuring error. These distance metrics can then be used to
measure the semantic distance between pairs of individuals.

Geometric semantic operators were defined to work into different spaces of
functions defined by the distance metrics previously described. In this way, the
geometric crossover is a function of the semantics of their parents. Given two
real-valued functions f1 and f2, a geometric semantic crossover returns a third
real-valued function f3 representing the convex combination of the parents. The
offspring is obtained by multiplying f1 and f2 by a crossover mask, which can
be represented by a constant, in the case of the Euclidean distance or a function
(e.g. logistic [13]), in the case of the Manhattan distance.

This paper investigates the impact of using Manhattan and Euclidean dis-
tance on geometric semantic crossovers in the learning process and proposes two
strategies to numerically optimize the crossover mask based on mathematical
properties of these operators, instead of simply generating them randomly. We
present an experimental analysis in which the different distance metric crossovers
and the proposed strategies are compared on a test bed composed of twenty
datasets with distinct properties from both real and synthetic domains.

The remainder of this paper is organised as follows. Section 2 presents an
overview of the methods that incorporate semantic awareness into GP. Section 3
introduces the two new optimization strategies applied to the crossover masks,
followed by the experimental analysis in the test bed in Section 4. Finally, con-
clusions and perspectives of future work are presented in Section 5.

2 Related Work

The study of programs or individuals semantics in GP has been developed mostly
in the last five years [12]. In [12], the authors divide semantic-aware techniques
into three groups: diversity methods, indirect semantic methods and direct se-
mantic methods.

Diversity methods were the first proposed, aiming to preserve or reinject
diversity throughout evolution. Although methods aiming at GP diversity are
not new, they usually considered only syntactic diversity. In [4], in turn, the
authors studied the impact of semantic diversity during population initializa-
tion, showing that greater diversity leads to improved results. Indirect semantic
methods, on the other hand, use regular GP operator, but only accept indi-



viduals if they respect some semantic-related criteria, such as their semantic
difference to their parents [3] or to a geometric (semantically intermediate) indi-
vidual of their parents [6]. Different versions of methods based on this approach
were subsequently proposed [10, 9], and although they led to improved results
over traditional crossover operators, they are trial-and-error techniques, without
any guarantees that solutions respecting the criteria established will be actually
generated.

In contrast to indirect methods, direct semantic methods use operators specif-
ically designed to operate in a semantic level, and are our subject of interest. In
[8], the authors proposed geometric semantic crossover and mutation operators
for three domains: boolean, categorical and real-valued. The geometric semantic
crossover operator follows Definition 1, which is essentially a convex combination
of two previously generated solutions. The function that combines the solutions,
c(x), is the crossover mask.

Definition 1 Let F be the set of functions mapping instances to real numbers
and f1(x), f2(x) ∈ F be two previously generated solutions. Then XO : F ×
F → F is called a semantic geometric crossover (for real-valued functions) if
XO(f1(x), f2(x)) = c(x) · f1(x) + (1− c(x)) · f2(x), where c(x) outputs values in
the interval [0, 1].

Note that for the crossover operator, if c(x) = β for all x, then its geometric
properties will be related to the Euclidean distance in the semantic search space.
However, if c(x) is allowed to output distinct values for distinct instances, then
its geometric properties will be related to the Manhattan distance.

Since the crossover operator performs a convex combination, a solution f3(x)
generated by this operator will be semantically intermediate of its parents f1(x)
and f2(x): dist(f1, f2) = dist(f1, f3) + dist(f3, f2), where dist may be the Eu-
clidean or Manhattan distance in the semantic search space depending on the
choice of crossover mask. For the Euclidean distance, this fact lead to the prop-
erty that the error committed by f3(x) is upper bounded by the error of the
worst of its parents. More interestingly, this property holds for both training
and test sets, thus being useful for controlling overfitting [8, 11].

Successive applications of the geometric semantic crossover, however, may
lead to an exponential growth in the size of solutions, as pointed out in [8]. In
fact, the number of nodes of a tree T3 obtained as the crossover of two other trees,
T1 and T2, is greater than the number of nodes of T1 and T2 altogether. Although
it is possible to simplify the functions represented by such trees, this would lead
to a large computational effort. In [5], the authors proposed an efficient way
of dealing with this problem by avoiding replicating subtrees that are part of
more than a solution. They also suggested the usage of a sigmoid (logistic)
function c(x) = (1 + e−r(x))−1 (r(x) being a randomly generated function),
which correctly outputs values in the required interval.



3 Optimized Semantic Crossover Operators

This section proposes two new versions of the semantic crossover operator showed
in Definition 1. These new versions were generated by optimizing the crossover
masks instead of randomly generating them.

3.1 Optimized Convex Geometric Semantic Crossover Operator

The first proposed operator was generated by finding the value of the crossover
mask that leads to the minimum training error. As we show in this section, this
new operator has an interesting property: it is non-degenerative, strengthening
the convex property regarding training error. While the convex property states
that the error of the function being generated will never be larger than the worst
of its parents, we can now state that the error of the function being generated
will never be larger than the best of its parents when considering training error,
as showed below.

Suppose that the crossover mask c(x) is a single constant, i.e, c(x) = β
for all x (and the crossover is based on the Euclidean distance in the semantic
space). Let f1(x), f2(x) be two previously generated solutions, and f3(x) =
XO(f1(x), f2(x)). Then, the sum of squared errors (SSE) of f3 can be expressed
in terms of β:

SSE(β) =

n∑
i=1

[yi − β · f1(xi)− (1− β) · f2(xi)]
2 (1)

where training data is represented as sequence of pairs {(xi, yi)}ni=1.

Since SSE(β) is continuous, we can calculate the derivative of Equation 1
and equals it to zero, finding

β∗ =

∑n
i=1[yi − f2(xi)][f2(xi)− f1(xi)]∑n

i=1[f1(xi)− f2(x2)]2
(2)

such that it minimizes the error of f3(x), as shown in Proposition 1. Note that
calculating the optimized coefficient can be done in O(n), the same time re-
quired for computing the semantic of the offspring. Therefore, the optimization
of coefficients does not change the asymptotic complexity of SGP.

However, β∗ as computed in Equation 2 may not fall in the [0, 1] interval.
This will happen whenever any convex combination of f1 and f2 is worse than
f1 and f2. To enforce the interval constraint, we use a distinct value β∗∗ such
that

β∗∗ = max(min(1, β∗), 0) (3)

Proposition 1 The argument β∗∗ as expressed in Equation 3 minimizes the
error function (Equation 1) while respecting the interval constraint.



Proof. Since limβ→c SSE(β) = SSE(c), ∀c ∈ R, SSE(β) is a continuous func-
tion in R and we can compute its derivate with relation to β.

δSSE

δβ
= 2 ·

n∑
i=1

[yi − f2(xi)][f2(xi)− f1(xi)] + β · [f2(xi)− f1(xi)]
2

By making the derivative equals to zero, we find a (local) minimum or max-
imum point.

β∗ =

∑n
i=1 [yi − f2(xi)][f1(xi)− f2(xi)]∑n

i=1 [f2(xi)− f1(xi)]2

We now need to show that β∗ is a minimization point. We compute the
second derivative of SSE(β) with relation to β.

δ2SSE(β)

δβ2
=

n∑
i=1

[f2(xi)− f1(xi)]
2

≥ 0

Since the second derivative obtained is always non-negative, we prove that
β∗ is a minimization point and SSE(β) is convex. Suppose now that β∗ > 1.
Then, β∗∗ = 1 and it minimizes SSE(β) while being in the interval [0, 1], since
SSE(β) is convex and β∗∗ is the closest point to β∗ in the interval. An analogue
reasoning implies that if β∗ < 0, β∗∗ = 0 minimizes the error function while
being in the required interval. Finally, if 0 ≤ β∗ ≤ 1, then β∗∗ = β∗ and is also a
minimization point in the required interval. Thus, we prove that β∗∗ minimizes
SSE(β) while respecting the interval constraint.

As β is optimized in the closed interval [0, 1], if 0 < β∗∗ < 1, then SSE(β∗∗) ≤
SSE(1) and SSE(β∗∗) ≤ SSE(0). Otherwise, β∗∗ would be 1 or 0 and the best
of the two functions used in crossover would be simply replicated (see Fig. 1).
This shows that the error of the function being generated will never be larger
than the best of its parents. Regarding test error, the geometric property is still
valid, since this modified version is still a convex combinations of functions.

3.2 Optimized Non-Convex Geometric Semantic Crossover
Operator

The convex geometric semantic crossover operator can be very constrained: the
fact that it can only generate solutions semantically intermediate of the functions
being used for crossover implies that the performance can be strongly determined
by the initial population. In order to build a more flexible operator, we propose
the following non-convex crossover operator, based on linear combinations (not
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Fig. 1. Application of the convex semantic geometric crossover over functions Y =
3X + 5 and Y = 2X + 2, and the target function Y = 1.5X. The gray area repre-
sents possible convex combination of the two functions. Note, however, that the target
function is outside of the gray area, meaning that any convex combination is worse (or
equal) than the second function.

necessarily convex). However, this means increasing the risk of overfitting, as we
now do not have any guarantees regarding test error.

XO(f1(xi), f2(xi)) = β1 · f1(xi) + β2 · f2(xi) (4)

Again, we can express the error of a function generated through Equation 4
in terms of β1 and β2.

SSE(β1, β2) =

n∑
i=1

[yi − β1 · f1(xi)− β2 · f2(xi)]
2 (5)

Since SSE(β1, β2) is continuous in R2, we can use the same strategy pre-
sented in the previous subsection to find β∗1 and β∗2 that minimizes Equation
5. Let F be a n-by-2 matrix where Fij = fj(xi) and Y be a column vector of
length n containing the target values of each training instance. Then(

β∗1
β∗2

)
= (F tF )−1F tY (6)

Note that similar approaches have been already proposed. In [2], the authors
propose to linearly combine subexpressions of programs to re-interpret their se-
mantics. In this work, however, we propose to apply a linear combination of two
distinct programs.

Proposition 2 The arguments β∗1 and β∗2 as expressed in Equation 6 minimize
the error function (Equation 5).



Proof. Since lim(β1,β2)→(c1,c2) SSE(β1, β2) = SSE(c1, c2) for an arbitrary pair
(c1, c2) ∈ R2, SSE(β1, β2) is continuous in R2 and we can compute its derivative
with relation to β1 and β2.

δSSE

δβ1
=

n∑
i=1

−2[yi · f1(xi)− β1 · f1(xi)
2 − β2 · f1(xi) · f2(xi)]

δSSE

δβ2
=

n∑
i=1

−2[yi · f2(xi)− β1 · f1(xi) · f2(xi)− β2 · f2(xi)
2]

Letting F be a n-by-2 matrix where Fij = fj(xi) and Y be a column vector of
length n containing the target values for each training instance. By making the
derivatives above equal to zero, we arrive in the following matrix formulation:

(F tF )

(
β∗1
β∗2

)
= F tY ⇒

(
β∗1
β∗2

)
= (F tF )−1F tY

Therefore, we only need to show that (β∗1 , β
∗
2) consists of a minimization (and

not maximization) point. For that, we will need second order derivatives of SSE.

δ2SSE

δβ2
1

= 2

n∑
i=1

f1(xi)
2

δ2SSE

δβ2
2

= 2

n∑
i=1

f2(xi)
2

δ2SSE

δβ1δβ2
= 2

n∑
i=1

f1(xi) · f2(xi)

Since

D =
δ2SSE

δβ2
1

(β∗1 , β
∗
2) · δ

2SSE

δβ2
2

(β∗1 , β
∗
2)− [

δ2SSE

δβ1δβ2
(β∗1 , β

∗
2)]2

= 4

n∑
i=1

f1(xi)
2

n∑
i=1

f2(xi)
2 − 4(

n∑
i=1

f1(xi) · f2(xi))
2

> 0

we can conclude that (β∗1 , β
∗
2) is indeed a minimization point.

The operator proposed in this section is also non-degenerative regarding
training error, since we are optimizing parameters over a set that includes
(β1 = 1, β2 = 0) and (β1 = 0, β2 = 1).

4 Experimental Results

The experiments reported in this section were performed to evaluate the role of
geometric semantic crossover on a large set of datasets with distinct properties.



The first experiment (reported in Section 4.1) was designed to show that, dif-
ferent from traditional crossover operators, semantic geometric operators have
nothing to do with a macro mutation [1], as they guarantee their offspring will
be semantically intermediate to its parents, and they also outperform strictly
mutation-based methods. The second experiment, showed in Section 4.2, com-
pares variations of convex semantic crossover operators using different distances
and optimized coefficients.

For all experiments, we used 20 datasets with distinct properties. Eight of
these dataset are synthetic and were recommended in [7], the others being real-
world datasets. For each real-world dataset, we did a 5-fold cross-validation with
10 replications, making 50 replications. For the synthetic ones (except keijzer-
6 and keijzer-7 ), we generated 5 samples and, for each sample, applied the
algorithms 10 times, again making 50 replications. For keijzer-6 and keijzer-7,
the test set is fixed, so we simply replicated the executions 50 times.

For all methods, a preliminary parameter study was performed, and we de-
fined the population size equal to 1,000 individuals, evolved for 2,000 generations
to ensure convergence. The operator set included basic arithmetic operations:
addition, subtraction, multiplication and protected division. The terminal set
included the variables of the problem and constant values in the interval [−1, 1].
The tournament size was defined as 10. Finally, both probabilities of crossover
and mutation were defined as 0.5.

It is important to point out that, in all Semantic Genetic Programming (SGP)
versions,the semantic mutation operator used was implemented as in [5]. This
is because this mutation operator presented better results in preliminary tests
than the mutation operator proposed in [8]. We believe this difference is due to
the fact that the semantic impact of the latter is still unbounded, which is not
true for the mutation operator used in this work. The mutation step required
by the mutation operator was defined as 10% of the standard deviation of the
training data. For each algorithm, the following variations of semantic crossover
were tested:

– SGXE: Euclidean-based geometric semantic crossover with random
crossover mask;

– SGXM: Manhattan-based geometric semantic crossover with random
crossover mask;

– SGXE-C: Optimized convex Euclidean-based geometric semantic crossover
operator (as in Equation 3);

– SGXE-L: Optimized non-convex Euclidean-based geometric semantic
crossover operator (as in Equation 6);

– SGP-Mut: SGP with crossover rate equal to 0.

All statistical tests considered a confidence level of 95%. Whenever multiple
tests were necessary, a Bonferroni correction was applied to assure that the
required confidence level was maintained.



Table 1. Median RMSEs (and IQR) obtained after 2,000 generations for each dataset,
considering 50 replications.

Dataset
SGP-Mut SGXM

median IQR median IQR
airfoil 2.28 0.16 2.65 0.91

bioavailability 33.09 3.39 30.63 4.48
concrete 5.61 0.80 4.92 0.50

cpu 37.22 9.82 30.09 12.42
energyCooling 1.34 0.18 1.19 0.16
energyHeating 0.82 0.14 0.63 0.16

forestfires 59.87 40.37 52.55 46.07
keijzer-5 0.31 0.07 0.08 0.17
keijzer-6 0.44 0.33 0.30 0.40
keijzer-7 0.05 0.02 0.03 0.10
korns-1 207.74 47.61 106.61 138.02
korns-2 476.71 60.66 687.22 2914.61
korns-12 1.13 0.11 1.02 0.01

ppb 32.38 6.27 29.22 4.87
tower 25.46 0.71 19.13 1.01
vlad-1 0.66 2.57 2.00 5.61
vlad-4 0.40 0.15 0.21 1.77

wine-red 0.65 0.07 0.59 0.05
wine-white 0.72 0.02 0.67 0.01

yacht 1.51 0.39 1.31 0.47

4.1 Measuring the Impact of Geometric Semantic Crossover

This section compares SGP-Mut and SGXM, the most recent geometric seman-
tic crossover operator proposed in literature. The reason for this comparison is
that, as already stated, the (semantic) fitness landscape induced by the fitness
function, the distance function and the set of solutions is quite simple: since the
fitness function is actually the distance function, we have that the landscape is
unimodal. This may indicate that methods based on local decisions are sufficient
for achieving good solutions, and hence crossover might have similar effects to
mutation.

Tables 1 shows the median results of Root Mean Squared Error (RMSE)
followed by the Interquartile Range (IQR) obtained by both configurations on
the 20 datasets used as benchmarks. The results leave no doubts that SGXM
performs better than SGP-Mut. In half of the datasets, SGXM was statistically
better than SGP-Mut, while being statistically worse in only two.

These results indicate that the geometric semantic crossover operator in SGP
is indeed beneficial and has a different effect from using mutation-only based
methods, despite the simplicity of the fitness landscape. The poor results ob-
tained by the mutation operator might be explained by the fact that the opera-
tor has access only to the observed fitness landscape (training set), and not the
complete one.

4.2 Comparing Different Distance Functions and Crossover Masks

Given that geometric semantic crossover is indeed necessary, we now turn our
attention to the impact of the crossover operator distance function, as well as
the performance of the two operators proposed here, which work by optimizing



Table 2. Median training RMSEs (and IQR) obtained after 2,000 generations for each
dataset, considering 50 replications.

Dataset
SGXE SGXM SGXE-C SGXE-L

median IQR median IQR median IQR median IQR
airfoil 1.82 0.21 1.89 0.46 1.68 0.16 1.66 0.14

bioavailability 5.12 1.17 4.67 1.44 4.77 1.43 6.12 1.01
concrete 3.19 0.14 2.61 0.15 2.96 0.15 4.26 0.17

cpu 3.49 0.61 2.03 0.38 1.80 0.38 7.65 1.57
energyCooling 0.89 0.05 0.70 0.06 0.81 0.05 1.14 0.05
energyHeating 0.42 0.03 0.36 0.06 0.37 0.04 0.65 0.08

forestfires 21.80 3.22 14.43 2.31 18.86 2.98 22.12 4.25
keijzer-5 0.03 0.01 0.03 0.01 0.03 0.01 0.05 0.01
keijzer-6 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00
keijzer-7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
korns-1 86.67 17.98 78.26 18.67 82.79 26.64 7.27 10.62
korns-2 301.20 437.22 131.13 140.62 228.16 320.80 220.05 268.34
korns-12 0.93 0.01 0.87 0.01 0.91 0.01 0.95 0.01

ppb 0.25 0.03 0.09 0.02 0.08 0.02 1.25 0.17
tower 17.45 0.29 16.58 0.57 16.93 0.29 21.20 0.84
vlad-1 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
vlad-4 0.03 0.00 0.02 0.00 0.03 0.00 0.05 0.00

wine-red 0.36 0.01 0.29 0.01 0.33 0.01 0.38 0.01
wine-white 0.57 0.00 0.53 0.00 0.55 0.00 0.60 0.01

yacht 0.48 0.07 0.38 0.05 0.39 0.07 0.78 0.17

the crossover masks. Therefore, this section compares SGXE, SGXM, SGXE-C
and SGXE-L using the same 20 datasets listed in the last section.

Table 2 shows the final training error obtained by each operator on each
dataset, while Table 4 shows the number of datasets where the operator posi-
tioned in the line beats the operator positioned in the column in the training set,
according to Wilcoxon test. As expected, in most datasets, SGXM and SGXE-C
are statistically better than SGXE. SGXE-L was consistently worse than SGXE-
C (and all other operators) despite considering a larger set of possible combi-
nations. Another interesting point is that SGXM is better than SGXE-C in 11
datasets and worse in 4 datasets, leading to the conclusion that the optimization
is easier when considering the Manhattan distance than when considering the
Euclidean distance, despite optimized coefficients.

Tables 3 and 4 show the same information as the two previous tables, now
considering test error. From these tables, we observe that SGXE-L is by far
the worst operator: it lost in 15 datasets and won in only 2. We attribute these
results to overfitting: for instance, on the cpu dataset, the training error achieved
by SGXE-L was 7.65, while the test error was 105.85. As expected, the removal
of the convex property increased risk of overfitting, as we eliminated any bounds
on the test error.

On the test set, SGXE, SGXM and SGXE-C achieved similar results. These
results indicate that both SGXE-C and SGXM may lead to overfitting, since
the good results obtained in the training set were not replicated in the test set.
In fact, this situation is even worse for SGXM, which obtained results slightly
worse than SGXE-C in the test set despite winning in the majority of datasets
when considering training error.



Table 3. Median test RMSEs (and IQR) obtained after 2000 generations for each
datasets, considering 50 replications.

Dataset
SGXE SGXM SGXE-C SGXE-L

median IQR median IQR median IQR median IQR
airfoil 2.28 0.29 2.65 0.91 2.21 0.27 2.17 0.31

bioavailability 31.06 3.85 30.63 4.48 31.49 4.48 38.06 12.00
concrete 4.82 0.44 4.92 0.50 4.68 0.50 6.19 0.91

cpu 28.95 11.95 30.09 12.42 28.04 15.74 136.51 128.12
energyCooling 1.21 0.14 1.19 0.16 1.20 0.12 1.76 1.12
energyHeating 0.59 0.09 0.63 0.16 0.55 0.07 1.51 2.06

forestfires 51.55 46.68 52.55 46.07 53.00 45.81 105.85 39.83
keijzer-5 0.07 0.19 0.08 0.17 0.09 0.20 0.19 0.35
keijzer-6 0.61 0.39 0.30 0.40 0.50 0.56 0.41 0.25
keijzer-7 0.03 0.03 0.03 0.10 0.02 0.03 8.56 15.89
korns-1 104.13 160.15 106.61 138.02 102.00 147.86 8.75 47.95
korns-2 702.62 3124.15 687.22 2914.61 930.37 3031.87 2263.33 6511.75
korns-12 1.03 0.01 1.02 0.01 1.04 0.01 1.02 0.01

ppb 29.21 5.49 29.38 5.67 30.15 4.97 44.64 54.36
tower 19.36 0.71 19.13 1.01 19.29 0.89 24.36 2.45
vlad-1 1.42 3.76 2.00 5.61 2.91 7.09 6.61 27.17
vlad-4 0.09 0.43 0.21 1.77 0.34 0.60 1.85 5.49

wine-red 0.60 0.05 0.59 0.05 0.60 0.06 0.65 0.06
wine-white 0.68 0.01 0.67 0.01 0.68 0.01 0.71 0.02

yacht 1.15 0.25 1.31 0.47 1.16 0.34 2.01 0.99

Therefore, we conclude that the distance function and the use of optimized
coefficients reduce training error drastically, but does not have the same impact
when considering test error. We also observe that the flexibility gained by using
linear combinations instead of convex combinations in the crossover operator was
not worth the loss of the convex property, which exhibited interesting results
regarding control of overfitting. Based on these results, we suggest the use of
SGXE, as it achieved similar results of more complex operators.

5 Conclusions

This work performed an extensive evaluation of the effects of the use of different
distance functions when defining the semantic distance between two symbolic re-
gression functions. It also proposed two new versions of the traditional operators
by optimizing the coefficients involved in the convex and linear combinations of
solutions.

Experimental results indicated that the use of a Euclidean or Manhattan dis-
tance function for semantic geometric crossover has little impact on test error,

Table 4. Number of datasets where the operator presented in the line was statisti-
cally better than the operator presented in the column according to a Wilcoxon test
considering training and test error.

Training Error Test Error
SGXE SGXM SGXE-C SGXE-L SGXE SGXM SGXE-C SGXE-L

SGXE 0 0 0 14 0 2 1 15
SGXM 19 0 11 17 2 0 2 15
SGXE-C 18 4 0 16 1 6 0 15
SGXE-L 3 3 1 0 2 2 2 0



even when using our proposed versions with optimized coefficients. The use of
linear combinations instead of convex combinations led to poor results, mainly
attributed to the lack of any property regarding generalization. For SGP prac-
titioners, we suggest the use of SGXE, as it achieved similar results to those
obtained by more complex operators.
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