
Learning Text Patterns using
Separate-and-Conquer Genetic Programming

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

DIA, Università degli Studi di Trieste, Italy
{bartoli.alberto,andrea.delorenzo,emedvet}@units.it

{fabiano.tarlao}@phd.units.it

Abstract. The problem of extracting knowledge from large volumes of
unstructured textual information has become increasingly important. We
consider the problem of extracting text slices that adhere to a syntac-
tic pattern and propose an approach capable of generating the desired
pattern automatically, from a few annotated examples. Our approach is
based on Genetic Programming and generates extraction patterns in the
form of regular expressions that may be input to existing engines without
any post-processing. Key feature of our proposal is its ability of discover-
ing automatically whether the extraction task may be solved by a single
pattern, or rather a set of multiple patterns is required. We obtain this
property by means of a separate-and-conquer strategy: once a candidate
pattern provides adequate performance on a subset of the examples, the
pattern is inserted into the set of final solutions and the evolutionary
search continues on a smaller set of examples including only those not
yet solved adequately. Our proposal outperforms an earlier state-of-the-
art approach on three challenging datasets.

Keywords: Regular Expressions, Multiple Pattern, Programming by
Example, Text Extraction

1 Introduction

The problem of extracting knowledge relevant for an end user from large volumes
of unstructured textual information has become increasingly important over the
recent years. This problem has many different facets and widely differing com-
plexity levels, ranging from counting the number of occurrences of a certain word
to extracting entities (e.g., persons and places) and semantics relations between
them (e.g., lives-in). In this work, we are concerned with the extraction of text
slices that adhere to a syntactic pattern. In particular, we investigate the feasi-
bility of a framework where the pattern is to be generated automatically from a
few examples of the desired extraction behavior provided by an end user.

A crucial difficulty involved in actually implementing a framework of this
sort consists in generating a pattern that does not overfit the examples while
at the same time providing high precision and recall on the full dataset to be
processed. This difficulty is magnified when the syntactic features of the examples

are hardly captured adequately by a single pattern. For example, dates may be
expressed in a myriad of different formats and learning a single pattern capable
of expressing all these formats may be very difficult. Similarly, one might want to
extract, e.g., dates and IP addresses, or URLs and Twitter hashtags. The learning
machinery should be able to realize automatically, based on the expressiveness
of the specific pattern formalism used, how many patterns are needed and then
it should generate each of these patterns with an appropriate trade-off between
specificity and generality.

In this paper we describe a system based on Genetic Programming that is
capable of supporting a framework of this sort, by generating automatically text
extractor patterns in the form of regular expressions. The user provides a text file
containing a few text slices to be extracted, which have to be annotated, and the
system automatically generates a set of regular expressions, where each element
is specialized for a partition of the examples: processing a text stream with all
these regular expressions will implement the desired extraction behavior. From
an implementation point of view, our system actually generates a single regular
expression composed of several regular expressions glued together by an OR
operator. This choice allows using the generated expression with existing regex
processing engines, e.g., those commonly used in Java or JavaScript, without
any post-processing.

A key feature of our proposal is that the system does not need any hint from
the user regarding the number of different patterns required for modelling the
provided examples. Depending on the specific extraction task, thus, the system
automatically discovers whether a single pattern suffices or a set of different pat-
terns is required and, in this case, of which cardinality. We obtain this property
by implementing a separate-and-conquer approach [1]. Once a candidate pat-
tern provides adequate performance on a subset of the examples, the pattern
is inserted into the set of final solutions and the evolutionary search continues
on a smaller set of examples including only those not yet solved adequately. Of
course, turning this idea into practice is difficult for a number of reasons, includ-
ing the identification of suitable criteria for identifying the “adequate” level of
performance.

We assess our proposal on several extraction tasks of practical complexity:
dates expressed in many different formats to be extracted from bills enacted
by the US Congress; URLs, Twitter citations, Twitter hashtags to be extracted
from a corpus of Twitter posts; and IP addresses and dates expressed in different
formats to be extracted from email headers. Our approach exhibits very good
performance and significantly improves over a baseline constituted by an earlier
proposal, the improvement being threefold: the generated patterns (i) exhibit
better extraction precision and recall on unseen examples, (ii) are simpler, and
(iii) are obtained with lower computational effort.

This work builds upon an earlier proposal for generating regular expressions
automatically from annotated examples and counterexamples [2]. The cited work
greatly improved over the existing state of the art for automatic generation of
regular expressions for text processing [3–9]. However, the cited proposal was

designed for generating a single pattern capable of describing all the examples:
as such, it is unable to effectively cope with scenarios requiring multiple patterns.
The present work extends the cited proposal from a conceptual and from a
practical point of view: the ability of discovering that multiple different patterns
are required may greatly extend the scope of technologies for automatic pattern
generation from examples.

Our separate-and-conquer approach bears several similarities to earlier ap-
proaches for rule induction, that aimed at synthesizing decision trees for solving
classification problems [10, 11]: partial solutions with adequate performance on
some partition are found with an evolutionary search; the data sample is re-
cursively partitioned according to performance-related heuristics; and, the final
solution is constructed by assembling the partial solutions. In fact, our approach
might be modelled as a single design point amongst those that were analyzed
by hyper-heuristic evolutionary search in the design space of rule induction for
classification [11]. While such a point of view may be useful, it is important
to remark that text classification and text extraction are quite different prob-
lems: the former may allow partitioning input units in two classes, depending
on whether they contain relevant slices (e.g., [12–14]); the latter also requires
identifying the boundaries of the slice—or slices—to be extracted.

The learning of text extractor patterns might be seen as a form of program-
ming by examples, where a program in a given programming language is to be
synthesized based on a set of input-output pairs. Notable results in this area have
been obtained for problems of string manipulation solved by means of languages
much richer than regular expressions [15–17]. The cited works differ from this
proposal since (i) they output programs rather than regular expressions, (ii) they
are tailored to fully specified problems, i.e., they do not need to worry about
overfitting the data, and (iii) they exploit active learning, i.e., they assume an
oracle exists which can mark extraction errors in order to improve the learning
process.

2 Problem statement

A text pattern p is a predicate defined over strings: we say that a string s matches
the pattern p if and only if p(s) is true.

A slice xs of a string s is a substring of s. A slice is identified by its starting
and final indexes in the associated string. For ease of presentation, we will denote
slices by their starting index and content, and we will specify the associated
string implicitly. For instance, bana0, na2, an3 and na4 are all slices of the string
banana. Slices of the same string are totally ordered by their starting index—
e.g., na2 precedes an3. We say that xs is a superslice of a slice x′

s (and x′
s is

a subslice of xs) if (i) x′
s is shorter than xs, (ii) the starting index of xs is

smaller than or equal to the starting index of x′
s, and (iii) the final index of xs

is greater than or equal to the final index of x′
s—e.g., bana0 is a superslice of

na2. We say that a slice xs overlaps a slice x′
s of the same string if the intervals

of the indexes delimited by their starting and ending indexes have a non empty
intersection—e.g., bana0 overlaps nana2.

An extraction of a set P of patterns in a string s is a slice xs which meets
the following conditions: (i) xs matches a pattern in P , (ii) for each superslice
x′
s of xs, x

′
s does not match any pattern in P , and (iii) for each other slice x′

s

which overlaps xs, either xs precedes x′
s or x′

s does not match any pattern in
P . We denote with e(s, P) the set of all the extractions of P in s. For instance,
let s = I said I wrote a ShortPaper and P a set of only one pattern which
describes (informally) “a word starting with a capital letter”, then e(s, P) =
{I0, I7, ShortPaper17}. Note that the slices Short17 and Paper22 do not belong
to e(s, P), despite matching a pattern in P , as they do not meet the condition ii
and iii above, respectively.

Finally, an example is a pair (s,X) where s is a string and X is a set of
non-overlapping slices of s.

Based on the above definitions, the problem of learning a set of patterns from
examples is defined as follows: given two sets of examples (E,E′), generate a set
P of patterns using only E so that (i) the F-measure of P on E′ is maximized
and (ii) the complexity of P is minimized. The F-measure of P on E′ is the
harmonic mean of precision Prec(P,E′) and recall Rec(P,E′), which are defined
as follows:

Prec(P,E′) :=

∑
(s,X)∈E′ |e(s, P) ∩X|∑

(s,X)∈E′ |e(s, P)|
(1)

Rec(P,E′) :=

∑
(s,X)∈E′ |e(s, P) ∩X|∑

(s,X)∈E′ |X|
(2)

The complexity of the set P of patterns depends on the formalism which is
used to represents a pattern. In this work, we represent patterns by means of
regular expressions and assume that the complexity of a regular expression is
fully captured by its length. Hence, the complexity of P is given by `(P) :=∑

p∈P `(p), where `(p) is the length of the regular expression represented by p.

3 Our approach

We propose the use of Genetic Programming for solving the problem of learning
a set of patterns—in the form of a set of regular expressions—from examples.
An individual of the evolutionary search is a tree which represents a regular
expression and we use common GP operators (crossover and mutation) in order
to generate new individuals.

We learn a set of patterns according to a separate-and-conquer strategy, i.e,
an iterative procedure in which, at each iteration, we learn a single pattern and
then remove from the set of examples those which are “solved” by the learned
pattern, repeated until no more examples remain “unsolved”. At the end, the
learned set of patterns is composed of the patterns learned at each iteration.

We describe the single evolutionary search (i.e., one iteration) in the next
section and our separate-and-conquer strategy in Section 3.2.

3.1 Pattern evolutionary search

A pattern evolutionary search takes as input a training set T and outputs a
single pattern p. The training set is composed of annotated strings, i.e., of tuples
(s,Xd, Xu), where Xd and Xu are sets of non-overlapping slices of string s (i.e.,
no slice in Xd overlaps any slice in Xu). Slices in Xd are desired extractions of
{p} in s, whereas slices in Xu are undesired extractions of {p} in s.

Our pattern evolutionary search is built upon the approaches proposed in [2,
12, 18], which we extend in three key aspects: (i) different fitness definitions (we
use three objectives rather than two objectives); (ii) different fitness comparison
criteria (we use a hierarchy between the fitness indexes rather than a Pareto-
ranking); and, (iii) a mechanism for enforcing diversity among individuals.

An individual is a tree which represents a regular expression, i.e., a candidate
pattern. The set of terminal nodes is composed of: (i) predefined ranges a-z,
A-Z and 0-9; (ii) character classes \w and \d; (iii) digits 0, . . . , 9; (iv) partial
ranges obtained from the slices in

⋃
(s,Xd,Xu)∈T Xd according to the procedure

described in [12]—a partial range being the largest interval of characters oc-
curring in a set of strings (e.g., a-c and l-n are two partial ranges obtained
from {cabin, male}), see the cited paper for full details); (v) other special char-
acters such as \., :, @, and so on. The set of function nodes is composed
of: (i) the concatenator ••; (ii) the character class [•] and negated character
class [^•]; (iii) the possessive quantifiers •*+, •++, •?+ and •{•,•}+; (iv) the
non-capturing group (?:•). A tree represents a string by means of a depth-first
post order visit in which the • symbols in a non-terminal node are replaced by
the string representations of its children.

The initialization of the population of npop individuals is based on the slices in⋃
(s,Xd,Xu)∈T Xd, as follows (similarly to [18]). For each slice xs ∈

⋃
(s,Xd,Xu)∈T Xd,

two individuals are built: one whose string representation is equal to the content
of xs where each digit is replaced by \d and each other alphabetic character is
replaced by \w; another individual whose string representation is the same as the
former and where consecutive occurrences of \d (or \w) are replaced by \d++
(or \w++). For instance, the individuals \d-\w\w\w-\d\d and \d-\w++-\d++
are built from the slice whose content is 7-Feb-2011. If the number of individ-
uals generated from T is greater than npop, exceeding individuals are removed
randomly; otherwise, if it is lower than npop, missing individuals are gener-
ated randomly with a Ramped half-and-half method. Whenever an individual
is generated whose string representation is not a valid regular expression, it is
discarded and a new one is generated.

Each individual is a candidate pattern p and is associated, upon creation,
with a fitness tuple f(p) := (Prec(p, T),Acc(p, T), `(p))—the first and second
components are based on two operators u and 	 defined over sets of slices as
follows. Let X1, X2 be two sets of slices of the same string s. We define two
operations between such sets. X1 	 X2 is the set of all the slices of s which
(i) are a subslice of or equal to at least one slice in X1, (ii) do not overlap any
slice in X2, and (iii) have not a superslice which meets the two first conditions.
X1 uX2 is the set of all the slices of s which (i) are a subslice of or equal to at

least one slice in X1, (ii) are a subslice of or equal to at least one slice in X2,
and (iii) have not a superslice which meets the two first conditions. For instance,
let X1 = {I0, I7, ShortPaper17} and X2 = {I0, Paper22}, then X1 	 X2 =
{I7, Short17}, X1 uX2 = {I0, Paper22}.

The first fitness component is the precision on the annotated strings:

Prec(p, T) :=

∑
(s,Xd,Xu)∈T |e(s, {p}) ∩Xd|∑

(s,Xd,Xu)∈T |e(s, {p}) u (Xd ∪Xu)|
(3)

The second component Acc(p, T) is the average of the True Positive Character
Rate (TPCR) and True Negative Character Rate (TNCR):

TPCR(p, T) :=

∑
(s,Xd,Xu)∈T ‖e(s, {p}) uXd‖∑

(s,Xd,Xu)∈T ‖Xd‖
(4)

TNCR(p, T) :=

∑
(s,Xd,Xu)∈T ‖(s	 e(s, {p}) uXu‖∑

(s,Xd,Xu)∈T ‖Xu‖
(5)

where ‖X‖ is the sum of the length of all the slices in X.
We compare individuals using a lexicographical order on their fitness tuples

(also called multi-layered fitness [19]): between two individuals, the one with the
greatest Prec is considered the best; in case they have the same Prec, the one
with the greatest Acc is considered the best; in case, finally, they have the same
Prec and Acc, the one with the lowest ` is considered the best. Figure 1 shows
an example of the fitness of two individuals on an annotated string and shows
which one is the best, according to the comparison criterion here defined.

s = 10th lap lasted from 7:02:11 to 11:10:13 of 02-03-79

Xd = {7:02:1121, 11:10:1332}
Xu = {10th lap lasted from 0, of 28, of 40}
p1 = \d{2,2}+.\d{2,2}+.\d{2,4}+
p2 = (?:[0-9]++-?+)++)

e(s, {p1}) = {11:10:1332, 02-03-7944}
e(s, {p2}) = {100, 721, 0223, 1126, 1132, 1035, 1338, 02-03-7944}

f(p1) =

(
1, 0.77 =

1

2

(
8

15
+

29

29

)
, 26

)
f(p2) =

(
0, 0.83 =

1

2

(
11

15
+

27

29

)
, 17

)

Fig. 1. Example of the fitness of two individuals p1 and p2 on an annotated string
(s,Xd, Xu): according to our fitness comparison criterion, p1 is better than p2.

The population P is iteratively evolved as follows. At each iteration (genera-
tion), 0.1npop new individuals are generated at random with a Ramped half-and-

half method, 0.1npop new individuals are generated by mutation and 0.8npop are
generated by crossover. Mutation and crossover are the classic genetic operators
applied to one or two individuals selected in P with a tournament selection:
ntour = 7 individuals are chosen at random in P and the best one is selected.
Whenever an individual is generated whose string representation is the same as
an existing individual, the former is discarded and a new one is generated—i.e.,
we enforce diversity among phenotypes. Among the resulting 2npop individuals,
the best npop are chosen to form the new population. The procedure is stopped
when either ngen iterations have been executed or the fitness tuple of the best
individual has remained unchanged for more than nstop consecutive iterations.

The resulting pattern p is the one corresponding to the best individual at
the end of the evolutionary search.

3.2 Separate-and-conquer strategy

We generate a set of patterns according to a separate-and-conquer strategy [1].
We execute an iterative procedure in which, at each iteration, we execute the
pattern evolutionary search described in the previous section and then remove
from the training set the slices correctly extracted by the set of patterns gener-
ated so far.

In order to avoid overfitting (i.e., in order to avoid generating a set P which
performs well on E yet poorly on E′), we partition the set E of examples of
the problem instance in two sets Et and Ev. The partitioning is made just once,
before executing the actual iterative procedure, and is made randomly so that
the number of the slices in the training and validation sets are roughly the
same, i.e.,

∑
(s,X)∈Et

|X| ≈
∑

(s,X)∈Ev
|X|. The training set Et will be used by

several independent executions of the iterative procedure, whereas Ev will be
used (together with Et) to assess the pattern sets obtained as outcomes of those
executions and select just one pattern set as the final solution.

In detail the iterative procedure is as follows. Initially, let the set of patterns
P be empty and let T include all the examples in the training set Et: for each
(s,X) ∈ Et, a triplet (s,X, {s} 	 X) is added to T (i.e., Xd := X and Xu :=
{s} 	X). Then, the following sequence of steps is repeated.

1. Apply an evolutionary search on T and obtain p.
2. If Prec(p, T) = 1, then set P := P ∪ {p}, otherwise terminate.
3. For each (s,Xd, Xu) ∈ T , set Xd := Xd \ e(s, {p});
4. If

⋃
(s,Xd,Xu)∈T Xd is empty, then terminate.

In other words, at each iteration we aim at obtaining a pattern p with perfect
precision (step 2). This pattern will thus extract only slices in Xd (i.e., slices
which are indeed to be extracted) but it might miss some other slices. The next
iterations will target the slices which are missed by p (step 3).

We insist on generating a pattern with perfect precision at each iteration
because, if a pattern extracted something wrong, no other pattern could correct
that error. As a consequence, we chose to use a multi-layered fitness during the

evolutionary search, where the most prominent objective is exactly to maximize
Prec(p, T).

We execute the above procedure njob independent times by varying the ran-
dom seed (the starting set T remains the same) and we obtain njob possibly
different sets of patterns. At the end, we choose the one with the highest F-
measure on E = Et ∪ Ev.

4 Experimental evaluation

We assessed our approach on three challenging datasets. Bills is composed of
600 examples where each string is a portion of a bill enacted by the US Congress
and the slices corresponds to dates represented in several formats. Tweets is
composed of 50 000 examples where each string is the text of a tweet (Twitter
post) and the slices corresponds to URLs, Twitter citations and hashtags. Fi-
nally, Headers is composed of 101 examples where each string is the header of an
email message and the slices corresponds to IP addresses and dates represented
in several formats. We built the Bills dataset by crawling the web site of the
US Congress and then applying a set of regular expressions to extract dates: we
made this dataset available online1 for easing comparative analysis. The Tweets
and Headers datasets are derived from those used in [2]: the strings are the same
but the slices are different. Table 1 shows 10 slices for each dataset, as a sample
of the different formats involved.

Bills Tweets Headers

18.12.2013 @joshua seaton 10.236.182.42

2007/01/09 #annoyed Thu, 12 Jan 2012 04:33:34 -0800

23/03/2009 http://t.co/Bw7A5sbI 93.174.66.112

14-09-2011 #Anonymous 209.85.216.53

23,July 2001 @YourAnonNews 24 Jan 2011 09:36:00 -0000

December 31, 2001 @zataz 27 Apr 2011 09:31:01.0953

2000.01.27 @ SweetDiccWilly Mon Oct 1 13:04:58 2012

Dec 31, 1991 http://t.co/bYxJ9NAE Mon, 01 Oct 2012 12:05:40 +0000

1997/12/31 #OpBlitzkrieg 151.76.78.168

1999-01-19 http://t.co/GrqKGECz Mon, 1 Oct 2012 14:04:58 +0200

Table 1. A sample of the slices in the the three datasets.

In order to obtain the slices from each string in a dataset, we manually built
a set P ? of regular expressions which we then applied to the strings. Table 2
shows salient information about the datasets, including the number |E ∪ E′| of
examples, the overall length

∑
(s,X)∈E∪E′ `(s) of the strings, the overall number∑

(s,X)∈E∪E′ |X| of slices, the overall length
∑

(s,X)∈E∪E′ ‖X‖ of the slices, and

the number |P ?| of regular expressions used to extract the slices.

1 http://regex.inginf.units.it/

Examples Slices
Dataset Number Length Number Length |P ?|
Bills 600 16 510 800 3085 38 960 3
Tweets 50 000 4 344 275 71 621 933 646 2
Headers 101 261 174 1554 32 022 3
Table 2. Salient information about the datasets.

We built 15 different problem instances (E,E′) for each dataset, by varying
the overall number

∑
(s,X)∈E |X| of slices in E and the random seed for par-

titioning the available examples in E and E′—25,50,100 slices, each obtained
from 5 different seeds. Then, we applied our method to each problem instance
and measured the F-measure of the generated P on E′. In order to provide a
baseline for the results, we also applied the method proposed in [2]—which itself
significantly improved over previous works on regular expression learning from
examples—to the same problem instances. Since the cited method generates a
single pattern p, for this method we set P := {p}.

We executed the experimental evaluation with the following parameter val-
ues: npop = 500, ngen = 1000, nstop = 200 and njob = 32. We set the same values
for the baseline, with the exception of nstop which is not available in that method.
We found, through an exploratory experimentation, that reasonable variations
in these parameter did not alter the outcome of the comparison between our
method and the baseline, which is summarized in Table 3.

Num. of Our method Baseline
Dataset slices Prec Rec Fm `(P) |P | CE Prec Rec Fm `(P) CE ∆Fm

Bills
25 0.47 0.60 0.49 56.4 3.2 2.3 0.22 0.51 0.24 26.4 2.5 104%
50 0.59 0.69 0.62 76.6 4.0 6.9 0.27 0.51 0.27 97.2 6.9 129%

100 0.68 0.81 0.73 88.6 4.6 11.3 0.41 0.52 0.39 104.6 11.6 87%

Tweets
25 0.99 0.92 0.94 24.6 2.4 0.6 0.90 0.86 0.87 25.6 1.1 8%
50 0.97 0.98 0.96 22.4 2.6 1.6 0.86 0.88 0.85 27.2 2.1 13%

100 0.98 0.99 0.99 25.6 3.0 3.2 0.85 0.96 0.90 46.2 4.1 10%

Headers
25 0.84 0.74 0.79 98.6 3.2 4.6 0.43 0.41 0.41 61.0 5.1 93%
50 0.92 0.88 0.90 116.4 3.6 7.6 0.42 0.46 0.44 54.8 7.7 104%

100 0.94 0.85 0.90 118.2 3.6 15.1 0.52 0.55 0.54 58.4 15.1 67%
Table 3. Results of the experimental evaluation. Computational Effort (CE) is ex-
pressed in 1010 character evaluations. |P | is always equal to 1 for the baseline. ∆Fm is
the relative improvement of F-measure (in percentage) obtained by our method with
respect to the baseline.

The most remarkable finding is the significant improvement of our method
over the baseline, summarized in the rightmost column of Table 3 in the form
of relative improvement of the F-measure on E′ (we remark that E′ are test
data not available to the learning procedure). Indeed, raw results show that our

method obtained a greater F-measure in each of the 45 problem instances. The
improvement is sharper for the Bills and Headers datasets (0.73 vs. 0.39 and 0.90
vs. 0.54, respectively, with 100 slices in the learning examples). These datasets
exhibit a broad set of formats thus the ability of our approach to automatically
discover the need of different patterns, as well as of actually generating them,
does make a significant difference with respect to the baseline. Furthermore,
there is an improvement also for the Twitter dataset, although the baseline
exhibits very high F-measure for this dataset.

Another interesting finding concerns the complexity of the generated set of
patterns. Though our method may generate, for a given problem instance, a set
composed of more than one pattern, whereas the baseline always generates ex-
actly one pattern, the overall complexity `(P) is lower with our method in 5 on
9 problem instances. The difference is more noticeable for the Bills dataset. It
is also important to remark that the average number of patterns discovered and
generated by our method (|P | column of Table 3) is close to the number of pat-
terns used for annotating the dataset (|P ?| column of Table 2): our separate-and-
conquer strategy does succeed in appropriately splitting the problem in several
subproblems which can be solved with simpler patterns.

Table 3 shows also the computational effort (CE) averaged across problem in-
stances with the same number of slices. We define CE as the number of character
evaluations performed by individuals while processing a problem instance—e.g.,
a population of 100 individuals applied to a set E including strings totaling 1000
characters for 100 generations corresponds to CE = 107. Note that this definition
is independent of the specific hardware used. It can be seen that our method
does not require a CE larger than the baseline. It can also be seen that for
the Tweets dataset—the one for which the improvement in terms of F-measure
and complexity of the solution was not remarkable—our method required a CE
sensibly lower than the baseline. We think that this finding is motivated by
our early termination criterion (determined by nstop, see Section 3.1) which al-
lows to spare some CE when no improvements are being observed during the
evolutionary search.

Finally, we provide the execution time for the two methods with 25 slices,
averaged over the 5 repetitions. Our method took 30 min, 3 min, and 29 min for
Bills, Tweets, and Headers, respectively; the baseline took 45 min, 6 min, and
21 min, respectively. Each experiment has been executed on a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with 8 GB of RAM.

5 Concluding remarks

We considered the problem of learning a set of text extractor patterns from
examples. We proposed a method for generating the patterns, in the form of
regular expressions, which is based on Genetic Programming. Each individual
represents a valid regular expression and individuals are evolved in order to meet
three objectives: maximize the extraction precision on a training set, maximize
the character accuracy on the training set, and minimize the regular expression

length (a proxy for its complexity). Several evolutionary searches are executed
according to a iterative separate-and-conquer strategy: the examples which are
“solved” at a given iteration are removed from the examples set of subsequent
iterations. This strategy allows our method to automatically discover if several
patterns are needed to solve a problem instance and, at the same time, to gen-
erate those patterns.

We assessed our method and compared its performance against an earlier
state-of-the-art proposal. The experimental analysis, performed on several ex-
traction tasks of practical complexity, showed that our method outperforms the
baseline along three dimensions: greater extraction precision and recall on unseen
examples, simpler patterns, and lower computational effort required to generate
them.

References

1. Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review
13(1) (1999) 3–54

2. Bartoli, A., Davanzo, G., De Lorenzo, A., Medvet, E., Sorio, E.: Automatic syn-
thesis of regular expressions from examples. Computer 47(12) (Dec 2014) 72–80

3. Barrero, D.F., R-Moreno, M.D., Camacho, D.: Adapting searchy to extract data
using evolved wrappers. Expert Systems with Applications 39(3) (February 2012)
3061–3070

4. Brauer, F., Rieger, R., Mocan, A., Barczynski, W.: Enabling information extraction
by inference of regular expressions from sample entities. In: ACM International
Conference on Information and knowledge management, ACM (2011) 1285–1294

5. Kinber, E.: Learning regular expressions from representative examples and mem-
bership queries. Grammatical Inference: Theoretical Results and Applications
(2010) 94–108

6. Barrero, D., Camacho, D., R-Moreno, M.: Automatic Web Data Extraction Based
on Genetic Algorithms and Regular Expressions. Data Mining and Multi-agent
Integration (2009) 143–154

7. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Arbor, A.: Regu-
lar Expression Learning for Information Extraction. Computational Linguistics
(October) (2008) 21–30

8. Cetinkaya, A.: Regular expression generation through grammatical evolution. In:
International Conference on Genetic and evolutionary computation. GECCO, New
York, NY, USA, ACM (2007) 2643–2646

9. Wu, T., Pottenger, W.: A semi-supervised active learning algorithm for information
extraction from textual data. Journal of the American Society for Information
Science and Technology 56(3) (2005) 258–271

10. Barros, R.C., Basgalupp, M.P., de Carvalho, A.C., Freitas, A.A.: A hyper-heuristic
evolutionary algorithm for automatically designing decision-tree algorithms. In:
Proceedings of the fourteenth international conference on Genetic and evolutionary
computation conference, ACM (2012) 1237–1244

11. Pappa, G.L., Freitas, A.A.: Evolving rule induction algorithms with multi-objective
grammar-based genetic programming. Knowledge and information systems 19(3)
(2009) 283–309

12. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Playing regex golf with genetic
programming. In: Proceedings of the 2014 conference on Genetic and evolutionary
computation, ACM (2014) 1063–1070

13. Lucas, S.M., Reynolds, T.J.: Learning deterministic finite automata with a smart
state labeling evolutionary algorithm. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 27(7) (2005) 1063–1074

14. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In: Gram-
matical Inference. Springer (1998) 1–12

15. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’11, New York, NY, USA, ACM
(2011) 317–330

16. Menon, A., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.: A machine learning
framework for programming by example. In: Proceedings of the 30th International
Conference on Machine Learning (ICML-13). (2013) 187–95

17. Le, V., Gulwani, S.: Flashextract: A framework for data extraction by examples. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM (2014) 55

18. De Lorenzo, A., Medvet, E., Bartoli, A.: Automatic string replace by examples. In:
Proceeding of the fifteenth annual conference on Genetic and evolutionary compu-
tation conference, ACM (2013) 1253–1260

19. Eggermont, J., Kok, J.N., Kosters, W.A.: Genetic programming for data classifica-
tion: Partitioning the search space. In: Proceedings of the 2004 ACM symposium
on Applied computing, ACM (2004) 1001–1005

