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Abstract. Sequence mining combines the discovery of frequent itemsets and 
the order they appear in. Most of the sequence pattern discovery techniques 
present some handicaps like the generation of a huge number of rules and the 
lack of scalability. In this work the proposed algorithm concerns the analysis of 
the whole rather than the parts, thus providing a holistic view of the sequences. 
The algorithm analyzes event logs and allows a non-expert user to understand 
the sequences using a poly-tree visualization. The scalability associated with 
condensed data structures, which shrink the data without losing information, 
allows dealing with the Big Data challenge. Ramex was implemented in 
different scenarios. 
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1 Introduction 

The emergence of the Internet has changed the way people interact with computers. 
People can access information from personal computers or mobile devices (smart 
phones or tablets) anytime and anywhere. The mobile, or ubiquitous dimension 
associated with the Web 2.0 and the Internet of things generate a large volume of data 
with an increasing updating velocity.  The exponential growth of data, when 
compared to the linear growth of processing capabilities, leads to a decline in the 
capacity to extract useful knowledge from the stored data.  

In order to understand the activities of complex computer systems and the eventual 
diagnosis of problems, keeping a record of event logs is an essential task. 
Accordingly, the storage and analysis of event logs is a pertinent challenge. 

Pervasive Information Systems aim to study how information environments affect 
human interactions. Pervasive spaces go beyond the Human-Computer Interaction 
(HCI) in order to create socio-technical systems that benefit stakeholders and users. In 
particular, Pervasive Business Intelligence looks for holistic views which combine 
information from different latencies [17]. 

Most of the sequence pattern discovery techniques present three common 
handicaps: the need of parameters, the huge number of rules that do not permit a 
global view and the scalability problems: 

i) Parameters: The user must specify a minimum support threshold to find the 
desired patterns. A useless output can be expected by pruning either too many or too 
few items. The process must be repeated interactively, which becomes very time 
consuming for large databases.  
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ii) Number of Rules: The association rules' systems that support the itemset and 
sequence mining usually generate a huge number of rules, and therefore, it is difficult 
for the user to decide which rules to use.  

iii) Scalability: Since most of the existing algorithms use a lattice structure in the 
search space and need to scan the database more than once, they are not compatible 
with very large databases. 

In order to create holistic environments in data mining, micro-patterns and macro-
patterns must be differentiated [7]. The micro-patterns correspond to small 
percentages of data; for instance, in association rules, it is usual to have a measure of 
support that includes support values ≥ 5%, with high confidence rules being chosen. 
On the other hand, the macro-patterns involve a large percentage of data, for example 
in the regression model all data elements are used. The micro-patterns are 
characterized by high confidence, while macro-patterns are characterized by high 
support. There are other examples of micro-patterns: in sequence mining a support ≥ 
1% is frequent; in the classification problem, by using decision trees, each branch of 
the tree corresponds to a small percentage of the data; in the classification problem 
using the k-nearest neighbor, the comparisons are made using a reduced number of k 
elements. Finally, regarding macro-patterns in techniques such as regression, 
hypothesis testing, clustering or reduction of attributes, all data are taken into account.  

The proposed algorithm was coined with the Latin name, Ramex, meaning “branch 
of a tree”. Ramex introduces a new vision for classic problems of sequence mining, 
considering the accumulation of events, and allowing the search of macro-patterns, 
instead of searching only for micro-patterns. 

Ramex provides a comprehensive view of the sequences, providing the user the 
visualization of the data sequences with a special kind of tree, a poly-tree, which 
shows all the items, but only the most relevant sequences retrieving the x-ray of the 
dataset.  

Ramex has been implemented in different scenarios: web mining [6] and financial 
studies [16], [20]. This paper also includes part of the work of [8]. 

In Section 2, the related work with sequence and process mining is presented. In 
Section 3, the proposed algorithm is reported and a numeric example is presented. In 
Section 4, computational results are reported using the IBM Quest Synthetic datasets 
generator. Finally, in Section 5, we draw some conclusions. 

2 Related Work 

In this section concepts are presented and definitions are established in order to be 
reused in the following sections. Sequence Mining is referred, Process Mining is 
introduced and the definition of Poly-tree is established. 

2.1 Sequence Mining 

The problem of pattern discovery is to extract interesting patterns from the data. It is 
difficult to define what the ingredients of an interesting pattern are. The temporal data 
mining can be divided into four different approaches: Periodic Patterns [22], 
Sequential Discovery [4], Frequent Episodes [15] and Markov Chain Models [5].   
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The first approach to this problem was given by the KMP string matching 
algorithm [14], where the aim is to find a short pattern in a long text. The concept of 
meta-pattern was presented in order to enable the representation of a set of basic 
patterns in a concise way [22]. The meta-pattern model works in a structured 
framework similar to a grammar structure, where the meta-pattern may be composed 
of patterns or meta-patterns. 

Sequence Mining Discovery involves a sequence of steps in time that can be 
exemplified with a customer transaction event log. The frequent temporal pattern 
might express buying patterns that many customers exhibit. Most of the Frequent 
Sequence Mining algorithms use lattice structures in the search space. These 
algorithms include for the breadth-first search, the AprioriAll algorithm [4] and the 
GSP (Generalized Sequential Pattern) [19] and for the depth-first search the SPADE 
(Sequential PAttern Discovery using Equivalence classes) [23].  

Another approach to discover temporal patterns in sequential data is the frequent 
episode discovery presented by [15]. In this sequential pattern framework, a set of 
events is given and the aim is to discover frequent sequences, or frequent episodes, 
that occur in the timeline. The data referred here as an event sequence are denoted by 
E={(e(1),t(1)), (e(2),t(2)), …(e(n), t(n))} where e(i) takes values from an event-type 
set and t(i) is an integer denoting the time stamp of the ith event.  

The Markov chain is an acyclic graph with a set of states associated with a set of 
transitions between states. In the market basket each state corresponds to an item and 
in the user web navigation each state is a page. Markov models have been used to 
represent and analyze users’ web navigation data [5]. At each time interval the system 
can change from a current state to the next state. The transition between states is 
quantified using probabilities. For each state in the transition matrix P(i,j) is the 
probability of moving from state i to state j in one step, and the sum of the 
probabilities of each state is equal to one. The first-order chain, is usually represented 
by a square matrix of the probabilities of the transitions from the current states to the 
following states. A second-order Markov chain takes into account the previous and 
the current state probability of the transition to the next state. The nth-order matrix, 
with n>1, grows into new dimensions ceasing to be square, as the first-order matrix. 
The higher-order chains consider sets of previous states leading to ordered sequences 
of states, while expanding the dimension of the original matrix and also the 
complexity of the problem.      

2.2 Process Mining 

Process Mining [1] is a recent approach that aims to create a bridge between Data 
Mining and Business Process Modelling (BPM) by discovering paths in event log 
data. 

The Petri nets technique is an established tool for modelling processes that is often 
used in Process Mining. Petri nets like the Markov chain allows an aggregate view of 
the process workflow. 

The Process Mining Manifesto [3] is supported by 53 organizations, 77 expert 
consultants and is available in 13 languages. The manifesto presents six guiding 
principles and eleven challenges, clarifying the aim of this new concept.  
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In a connected directed graph G, an acyclic sub-graph B is a branch in G if the in-
degree of each vertex is at the most 1. Let w(B) be the sum of the weighted arcs in  
branch B. The maximum weight branching problem is the optimization problem that 
finds the largest possible branch B and was proposed in [10] known as Edmonds’ 
branching algorithm. The algorithm is described in two steps: the condensation 
process, to remove the cycles, and the unraveling process where the branch is created. 

Fulkerson [11] presents the same problem with an additional constraint, the branch 
must start in a vertex called the root. His algorithm for the maximum packing rooted 
directed cuts in a graph is equal to the weight of the minimum spanning tree directed 
away from the root. The algorithm is also described in two steps. 

Both algorithms [10] and [11] generated trees, with in-degree zero or one. To find 
the maximum weighted poly-tree, there are few or inexistent bibliographic references. 

3 Ramex Algorithm  

The aim of this approach is to create a poly-tree of events, with as many branches as 
needed to visit all the vertexes. The Ramex algorithm uses a Poly-tree Sequence 
model with two phases: the transformation of the problem into a network and the 
search of the sequences.   

Algorithm 1. Ramex, Two Phase Algorithm to get the Poly-tree Sequence Model 

Input: raw data (#id, event stream); 
Output: a poly-tree of events; 
1)  Problem transformation, by creating next-events and accumulating into the network 
2)  Search for the most weighed Poly-tree sequence of events 

3.1 Problem Transformation  

The event log is represented in a structure with two columns (#id, event stream). Our 
approach uses a two-phase algorithm: the transformation of a database into a network 
and the search of the maximum weighted poly-tree.  

For each line in the table, starting with the first event, a new attribute next-event is 
created, and continues until the last event. Then a network, i.e. a graph G with a 
source and a sink is created, where each sequence has an initial node called source 
and a final node called sink. The network, where cycles are allowed, condenses the 
information of the database by incorporating all the event sequences. In network G 
each state corresponds to an event and each transition represents the sequence from 
one event to the next-event.  The weight of each arc corresponds to the number of 
times that one item precedes the next-item.  

The transformation of a database into a network is identical in the Markov Chain or 
Petri nets approaches. As the patterns that occur in nature, the accumulation of 
elements produces a specific shape. For example, a dune, created by wind is 
composed by several layers of sand and has a recognized configuration. The 
advantage is getting a macro view of the system, instead of extracting rules from a 
small subset of data, as sequence/episode mining algorithms do. 
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The Poly-tree Sequence approach has strong connections with the Markov Chain 
Models. In the Markov Chain Model each state is an item and in the transition matrix, 
each P(i,j) is the probability of moving from state i to state j in one step. This 
approach, like the Markov Chain Models, also presents a global view since all the 
items are taken into consideration. In our approach instead of the relative frequencies, 
the absolute frequencies are used. Another difference between this approach, using 
poly-trees and the Markov Chain is that it can handle cyclic graphs while the Markov 
Chain deals only with acyclic ones. As has already been mentioned, we use heuristics 
based on the Prim algorithm in order to reach a good scalability. 

3.2 Searching Heuristics 

In this paper, two heuristics are shown: The Forward Heuristic, that generates a tree 
of items, and the Back-and-Forward Heuristic that is able to create poly-trees.  

In our approach, we can find an identical tree by using the Forward Heuristic, 
Algorithm 2, based on the Prim algorithm. 

Algorithm 2. Forward Heuristic 

Input: Network G;  
Output: Tree S; 
Initialize S; 
For each vertex in G 
    For each edge in G 
           x = arg_max(weighted forward-vertex not visited in G and connected with S)   
    End-for; 
   Update solution S with x; 
End-for; 

 
For the Back-and-Forward mode, Algorithm 3, we developed the following 

heuristic also based on the Prim algorithm. 

Algorithm 3. Back-and-Forward Heuristic 

Input: Network G;  
Output: Poly-tree S; 
Initialize S; 
For each vertex in G 
    For each edge in G 
             x = arg_max(weighted forward-vertex not visited in G and connected with S;             
                                weighted back-vertex not visited in G and connected with S)   
     End-for; 
     Update solution S with x; 
End-for; 
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Prim algorithm finds the minimum or maximum spanning-tree in undirected 
graphs. Back-and-Forward heuristic finds the Maximum Weighted Poly-tree by 
applying the same technique to directed graphs. The time complexity of the Back-
and-Forward heuristic is equal to the Prim algorithm, which is Θ(E + V. log V) with E 
edges and V vertexes. 

3.3 Numeric Example 

To exemplify the different approaches a numeric example is presented. We are going 
to use an event log created by [2] and presented in Table 1.  

In Figure 2, a numeric example is shown. Figure 2.a shows the original cyclic 
network provided by the first phase of the algorithm. For the second phase two 
approaches are possible. Figure 2.b shows the maximum weighted tree that results 
from the application of the Forward heuristic. In Figure 2.c the maximum weighted 
poly-tree is shown. Note that in vertex 4 the in-degree is two and the edge (4, 5) was 
found using the maximum weighted back-vertex mode. Note also, that the sum of the 
weights is greater than the previous one, showing that the poly-tree structure always 
represents more weighted patterns.  

Table 1. Event Log order by frequency 

event stream #count  event stream #count 
acdeh    
abdeg  
adceh  
abdeh  
acdeg  
adceg  
adbeh  
acdefdbeh  
adbeg  
acdefbdeh  
 

455 
191 
177 
144 
111 
82 
56 
47 
38 
33 

 

 acdefbdeg  
acdefdbeg 
adcefcdeh  
adcefdbeh  
adcefbdeg  
acdefbdefdbeg  
adcefdbeg  
adcefbdefbdeg  
adcefdbefbdeh  
adbefbdefdbeg  
adcefdbefcdefdbeg 

14 
11 
9 
8 
5 
3 
2 
2 
1 
1 
1 

 
Different applications can use the Forward or Back-and-Forward heuristic. The 

Forward heuristic must be chosen if a starting node is given.  Node ‘a’ was chosen in 
the example. For instance, most of the web mining problems start in a root node, so 
we suggest this first mode [6]. If there is no information about the starting node, the 
best edge should be chosen, and the Back-and-Forward heuristic was applied in 
previous works [16] and [20]. 
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Table 2. Parameters for IBM Data Generator 

Symbol Meaning 
T average number items per stream  
N number of different items in thousands 

 
We tested the datasets by varying the parameters of the IBM data generator as 

shown in Table 3. The dataset T?N1 shows how the algorithms perform by varying 
average number of items per stream and the dataset T10N? is used to study the 
variation of numbers of different items in thousands. 

Table 3. Varying parameters of the datasets 

T?N1 average number of items per stream CPU Time (second) 
t2n1 2 13,3 
t4n1 4 13,1 
t6n1 6 13,2 
t8n1 8 13,1 

t10n1 10 13,3 
   

T10N? number of different items in thousands CPU Time (second) 
t10n1 1 13,3 
t10n2 2 15,9 
t10n4 4 16,3 
t10n6 6 16,7 
t10n8 8 16,6 

 
Our algorithm performed very well in all the experiments with a running time 

around 15 seconds, showing an excellent scalability. The robustness of the Back-and-
Forward Heuristic is based on the use of condensed data and takes advantage of 
polynomial algorithms that are able to find poly-trees in networks. 

4.2 Data Visualization 

The output of Ramex uses DOT language in order to be visualized by [12] and [21]. 
In Figure 3 a poly-tree with 7472 nodes and 7471 edges is provided from the t10n8 

dataset.  Note that there is a subset of inner nodes in the graph highlighted by the 
chars ‘a’, ‘b’, ‘c’ and ‘d’. The fork “abcd” is the origin of the radial poly-tree. 

Given the holistic view of the dataset, Tulip software allows the user to zoom in on 
the radial poly-tree and discover micro-sequences.  
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