Skip to main content

Analysis of Diversity Methods for Evolutionary Multi-objective Ensemble Classifiers

  • Conference paper
  • First Online:
Book cover Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

Abstract

Ensemble classifiers are strong and robust methods for classification and regression tasks. Considering the balance between runtime and classifier accuracy the learning problem becomes a multi-objective optimization problem. In this work, we propose an evolutionary multi-objective algorithm based on non-dominated sorting that balances runtime and accuracy properties of nearest neighbor classifier ensembles and decision tree ensembles. We identify relevant ensemble parameters with a significant impact on the accuracy and runtime. In the experimental part of this paper, we analyze the behavior on typical classification benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This observation could be confirmed in our experiments and is difficult to observe in Fig. 1(a) due to the limited plot resolution.

References

  1. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  6. Huang, C.L., Wang, C.J.: A ga-based feature selection and parameters optimizationfor support vector machines. Expert Syst. Appl. 31, 231–240 (2006)

    Article  Google Scholar 

  7. Hu, Q.-H., Yu, D.-R., Wang, M.-Y.: Constructing rough decision forests. In: Ślzak, D., Yao, J.T., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 147–156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Ishibuchi, H., Yamamoto, T.: Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1077–1088. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Abbass, H.A.: Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation. vol. 3, pp. 2074–2080. IEEE (2003)

    Google Scholar 

  10. Opitz, D.W., Shavlik, J.W.: Actively searching for an effective neural network ensemble. Connect. Sci. 8, 337–354 (1996)

    Article  Google Scholar 

  11. Tumer, K., Oza, N.C.: Input decimated ensembles. Pattern Anal. Appl. 6, 65–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Oei, C.K., Goldberg, D.E., Chang, S.J.: Tournament selection, niching, and the preservation of diversity. Urbana 51, 61801 (1991)

    Google Scholar 

  13. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 1–34 (1994)

    MathSciNet  Google Scholar 

  14. Deb, L., et al.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 2012. Wiley, Chichester (2001)

    MATH  Google Scholar 

  15. Schwefel, H.P.: Adaptive mechanismen in der biologischen evolution und ihr einfluß auf die evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe Bionik und Evolutionstechnik am Institut für Mess-und Regelungstechnik 215 (1974)

    Google Scholar 

  16. Joines, J.A., Houck, C.R.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In: First IEEE Conference on Evolutionary Computation, pp. 579–584. IEEE (1994)

    Google Scholar 

  17. Fumera, G., Roli, F., Serrau, A.: A theoretical analysis of bagging as a linear combination of classifiers. IEEE Trans. Pattern Anal. Mach. Intel. 30, 1293–1299 (2008)

    Article  Google Scholar 

  18. Parmanto, B., Munro, P.W., Doyle, H.R.: Improving committee diagnosis with resampling techniques. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, pp. 882–888. MIT Press, Cambridge (1995)

    Google Scholar 

  19. Raviv, Y., Intrator, N.: Bootstrapping with noise: an effective regularization technique. Connet. Sci. 8, 355–372 (1996)

    Article  Google Scholar 

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the ministry of science and culture of Lower Saxony for supporting us with the graduate schools Safe Automation of Maritime Systems (SAMS) and System Integration of Renewable Energies (SEE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Oehmcke .

Editor information

Editors and Affiliations

A Benchmark Problems

A Benchmark Problems

The experiments in this paper are based on the following benchmark problems. MakeClass is a classification data set generated with the scikit-learn [20] method make_classification. MakeClass consists of \(N=13 500\) patterns with three classes and \(d=20\) features, of which four are informative. In 0.002 % of the patterns, labels have been changed. Waveform2 by Breiman et al.  [3] consists of \(N=5000\) patterns with \(d=59\) features. The data set is an artificial one consisting of waveform data with three waveforms BreastCancer from the UCI repository comprises \(N=699\) patterns with two labels (cancer and no cancer) and \(d=9\) features. ImageSegmentation from the UCI repository consists of \(N=2310\) with seven classes corresponding to seven images. Each pattern consists of an image region of size \(3 \times 3\) pixels.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Oehmcke, S., Heinermann, J., Kramer, O. (2015). Analysis of Diversity Methods for Evolutionary Multi-objective Ensemble Classifiers. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics