Skip to main content

Planning Curvature and Torsion Constrained Ribbons in 3D with Application to Intracavitary Brachytherapy

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

  • 3472 Accesses

Abstract

A “ribbon” is a surface traced out by sweeping a constant width line segment along a spatial curve. We consider the problem of planning multiple disjoint and collision-free ribbons of finite thickness along curvature and torsion constrained curves in 3D space. This problem is motivated by the need to route multiple smooth channels through a 3D printed structure for a healthcare application and is relevant to other applications such as defining cooling channels inside turbine blades, routing wires and cables, and planning trajectories for formations of aerial vehicles. We show that this problem is equivalent to planning motions for a rigid body, the cross-section of the ribbon , along a spatial curve such that the rigid body is oriented along the unit binormal to the curve defined according to the Frenet-Serret frame. We present a two stage approach. In the first stage, we use sampling-based rapidly exploring random trees (RRTs) to generate feasible curvature and torsion constrained ribbons. In the second stage, we locally optimize the curvature and torsion along each ribbon using sequential quadratic programming (SQP). We evaluate this approach for a clinically motivated application: planning multiple channels inside 3D printed implants to temporarily insert high-dose radioactive sources to reach and cover tumors for intracavitary brachytherapy treatment. Constraints on the curvature and torsion avoid discontinuities (kinks) in the ribbons which would prevent insertion. In our experiments, our approach achieves an improvement of \(46\,\%\) in coverage of tumor volumes as compared to an earlier approach that generates each channel in isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: a sampling framework for planning with Markov motion uncertainty. In: Robotics: Science and Systems (RSS) (2007)

    Google Scholar 

  2. Belta, C., Kumar, V.: Optimal motion generation for groups of robots: a geometric approach. J. Mech. Des. 126(1), 63–70 (2004)

    Article  Google Scholar 

  3. Biggs, J., Holderbaum, W.: Planning rigid body motions using elastic curves. Math. Control Signals Syst. 20(4), 351–367 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bishop, R.L.: There is more than one way to frame a curve. American Mathematical Monthly pp. 246–251 (1975)

    Google Scholar 

  5. Bretl, T., McCarthy, Z.: Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configurations. Int. J. Robot. Res. 33(1), 48–68 (2014)

    Article  Google Scholar 

  6. Choset, H.: Coverage for robotics-A survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)

    Article  Google Scholar 

  7. Coumans, E.: Bullet Collision Detection and Physics Library. http://bulletphysics.org (2013)

  8. Cripps, R., Mullineux, G.: Constructing 3D motions from curvature and torsion profiles. Comput. -Aided Des. 44(5), 379–387 (2012)

    Article  Google Scholar 

  9. Devlin, P.: Brachytherapy: Applications and Techniques. Lippincott Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  10. Duan, Y., Patil, S., Schulman, J., Goldberg, K., Abbeel, P.: Planning locally optimal, curvature-constrained trajectories in 3D using sequential convex optimization. In: Proceedings of the International Conference Robotics and Automation (ICRA), to appear (2014)

    Google Scholar 

  11. Duindam, V., Xu, J., Alterovitz, R., SastrySastry, S., Goldberg, K.: Three-dimensional motion planning algorithms for steerable needles using inverse kinematics. Int. J. Robot. Res. 29(7), 789–800 (2010)

    Article  Google Scholar 

  12. Farin, G.E.: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Code. Academic Press, Inc. (1996)

    Google Scholar 

  13. Farmer, T.: A new model for ribbons in \(\mathbb{R}^3\). Math. Mag. 79(1), 31 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garg, A., Patil, S., Siauw, T., Cunha, J.A.M., Hsu, I.C., Abbeel, P., Pouliot, J., Goldberg, K.: An algorithm for computing customized 3D printed implants with curvature constrained channels for enhancing intracavitary brachytherapy radiation delivery. In: IEEE International Conference on Automation Science and Engineering (CASE), vol. 4, pp. 3306–3312 (2013)

    Google Scholar 

  15. Goemans, O., Overmars, M.: Automatic generation of camera motion to track a moving guide. In: Algorithmic Foundations of Robotics VI, pp. 187–202. (2005)

    Google Scholar 

  16. Goriely, A., Shipman, P.: Dynamics of helical strips. Phys. Rev. E 61(4), 4508–4517 (2000)

    Article  MathSciNet  Google Scholar 

  17. Han, J.C., Datta, S., Ekkad, S.: Gas Turbine Heat Transfer and Cooling Technology. CRC Press (2013)

    Google Scholar 

  18. Hanson, A.J.: Quaternion Frenet frames: making optimal tubes and ribbons from curves. Technical Report 407, Indiana University Computer Science Department (1994)

    Google Scholar 

  19. Krontiris, A., Louis, S., Bekris, K.E.: Simulating formations of non-holonomic systems with control limits along curvilinear coordinates. In: Motion in Games, pp. 121–133 (2010)

    Google Scholar 

  20. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  21. Lipson, H., Kurman, M.: Fabricated: The New World of 3D Printing. Wiley (2013)

    Google Scholar 

  22. Moll, M., Kavraki, L.E.: Path planning for deformable linear objects. IEEE Trans. Robot. 22(4), 625–636 (2006)

    Article  Google Scholar 

  23. Murray, R.M., Shankar, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  24. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  25. Park, W., Wang, Y., Chirikjian, G.: The path-of-probability algorithm for steering and feedback control of flexible needles. Int. J. Robot. Res. 29(7), 813–830 (2010)

    Article  Google Scholar 

  26. Patil, S., Burgner, J., Webster III, R.J., Alterovitz, R.: Needle steering in 3D via rapid replanning. IEEE Trans. Robot, to appear (2014)

    Google Scholar 

  27. Saccon, A., Hauser, J., Aguiar, A.P.: Optimal control on Lie groups: the projection operator approach. IEEE Trans. Autom. Control 58(9), 2230–2245 (2013)

    Article  MathSciNet  Google Scholar 

  28. Schulman, J., Ho, J., Lee, A., Bradlow, H., Awwal, I., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems (RSS) (2013)

    Google Scholar 

  29. Selig, J.: Characterisation of Frenet-Serret and bishop motions with applications to needle steering. Robotica 31(06), 981–992 (2013)

    Article  Google Scholar 

  30. Shkolnik, A., Walter, M., Tedrake, R.: Reachability-guided sampling for planning under differential constraints. In: Proceedings of the International Conference Robotics and Automation (ICRA). pp. 2859–2865 (2009)

    Google Scholar 

  31. Sprott, K., Ravani, B.: Kinematic generation of ruled surfaces. Adv. Comput. Math. 17(1–2), 115–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Swensen, J.P., Cowan, N.J.: Torsional dynamics compensation enhances robotic control of tip-steerable needles. In: Proceedings of the International Conference Robotics and Automation (ICRA), pp. 1601–1606 (2012)

    Google Scholar 

  33. van den Berg, J., Patil, S., Alterovitz, R., Abbeel, P., Goldberg, K.: LQG-based planning, sensing, and control of steerable needles. In: Proceedings Workshop Algorithmic Foundations of Robotics (WAFR), pp. 373–389 (2010)

    Google Scholar 

  34. Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. (TOG) 27(1), 2 (2008)

    Google Scholar 

  35. Webster III, R.J., Kim, J.S., Cowan, N.J., Chirikjian, G.S., Okamura, A.M.: Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25(5–6), 509–525 (2006)

    Article  Google Scholar 

  36. Willemsen, P., Kearney, J.K., Wang, H.: Ribbon networks for modeling navigable paths of autonomous agents in virtual environments. IEEE Trans. Vis. Comput. Graph. 12(3), 331–342 (2006)

    Article  Google Scholar 

  37. Xu, J., Duindam, V., Alterovitz, R., Pouliot, J., Cunha, J.A., Hsu, I., Goldberg, K.: Planning fireworks trajectories for steerablemedical needles to reduce patient trauma. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp. 4517–4522 (2009)

    Google Scholar 

  38. Zefran, M., Kumar, V., Croke, C.B.: On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded in part by AFOSR-YIP Award #FA9550-12-1-0345, by NSF under award IIS-1227536, by a DARPA Young Faculty Award #D13AP00046, CITRIS Seed Grant, and by a Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patil, S., Pan, J., Abbeel, P., Goldberg, K. (2015). Planning Curvature and Torsion Constrained Ribbons in 3D with Application to Intracavitary Brachytherapy. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics