Skip to main content

Aggressive Moving Obstacle Avoidance Using a Stochastic Reachable Set Based Potential Field

  • Chapter
  • First Online:
Book cover Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

Identifying collision-free trajectories in environments with dynamic obstacles is a significant challenge. However, many pertinent problems occur in dynamic environments, e.g., flight coordination, satellite navigation, autonomous driving, and household robotics. Stochastic reachable (SR) sets assure collision-free trajectories with a certain likelihood in dynamic environments , but are infeasible for multiple moving obstacles as the computation scales exponentially in the number of Degrees of Freedom (DoF) of the relative robot-obstacle state space. Other methods, such as artificial potential fields (APF), roadmap-based methods, and tree-based techniques can scale well with the number of obstacles. However, these methods usually have low success rates in environments with a large number of obstacles. In this paper, we propose a method to integrate formal SR sets with ad-hoc APFs for multiple moving obstacles. The success rate of this method is 30 % higher than two related methods for moving obstacle avoidance, a roadmap-based technique that uses a SR bias and an APF technique without a SR bias, reaching over 86 % success in an enclosed space with 100 moving obstacles that ricochet off the walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)

    Article  Google Scholar 

  2. Cetin, O., Kurnaz, S., Kaynak, O., Temeltas, H.: Potential field-based navigation task for autonomous flight control of unmanned aerial vehicles. Int. J. Autom. Control 5(1), 1–21 (2011)

    Article  Google Scholar 

  3. Khuswendi, T., Hindersah, H., Adiprawita, W.: UAV path planning using potential field and modified receding horizon a* 3d algorithm. In: International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6 (2011)

    Google Scholar 

  4. Lam, C.P., Chou, C.T., Chiang, K.H., Fu, L.C.: Human-centered robot navigation towards a harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27(1), 99–112 (2011)

    Article  Google Scholar 

  5. Lee, H.C., Yaniss, T., Lee, B.H.: Grafting: a path replanning technique for rapidly-exploring random trees in dynamic environments. Adv. Robot. 26(18), 2145–2168 (2012)

    Article  Google Scholar 

  6. Narayanan, V., Phillips, M., Likhachev, M.: Anytime safe interval path planning for dynamic environments. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 4708–4715 (2012)

    Google Scholar 

  7. Malone, N., Lesser, K., Oishi, M., Tapia, L.: Stochastic reachability based motion planning for multiple moving obstacle avoidance. In: Hybrid Systems: Computation and Control, HSCC, pp. 51–60 (2014)

    Google Scholar 

  8. Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings IEEE International Conference on Robotics and Automation (ICRA), pp. 2366–2371 (2006)

    Google Scholar 

  9. Rodriguez, S., Lien, J.M., Amato, N.M.: A framework for planning motion in environments with moving obstacles. In: Proceedings IEEE International Conference on Intelligent Robots and Systems (IROS) (2007)

    Google Scholar 

  10. Jaillet, L., Simeon, T.: A PRM-based motion planner for dynamically changing environments. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS) (2004)

    Google Scholar 

  11. Al-Hmouz, R., Gulrez, T., Al-Jumaily, A.: Probabilistic road maps with obstacle avoidance in cluttered dynamic environment. In: IEEE Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 241–245 (2004)

    Google Scholar 

  12. Bohlin, R., Kavraki, L.E.: Path planning using Lazy PRM. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 521–528 (2000)

    Google Scholar 

  13. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  14. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)

    Article  Google Scholar 

  15. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44, 2724–2734 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Summers, S., Kamgarpour, M., Lygeros, J., Tomlin, C.: A stochastic reach-avoid problem with random obstacles. In: Proceedings of International Conference Hybrid Systems: Computation and Control (HSCC), pp. 251–260 (2011)

    Google Scholar 

  17. Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Discrete time stochastic hybrid dynamical games: verification and controller synthesis. In: IEEE Conference on Decision and Control, pp. 6122–6127 (2011)

    Google Scholar 

  18. Valavanis, K.P., Hebert, T., Kolluru, R., Tsourveloudis, N.: Mobile robot navigation in 2-d dynamic environments using an electrostatic potential field. IEEE Trans. Sys., Man, Cybern. 30(2), 187–196 (2000)

    Article  Google Scholar 

  19. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method. Autom. Robots 13(3), 207–222 (2002)

    Article  MATH  Google Scholar 

  20. Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invariance. In: Algorithmic Foundations of Robotics, pp. 543–558. Springer (2013)

    Google Scholar 

  21. Weijun, S., Rui, M., Chongchong, Y.: A study on soccer robot path planning with fuzzy artificial potential field. In: International Conference on Computing, Control and Industrial Engineering, vol. 1, June 2010, pp. 386–390

    Google Scholar 

  22. Vadakkepat, P., Tan, K.C., Ming-Liang, W.: Evolutionary artificial potential fields and their application in real time robot path planning. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 256–263 (2000)

    Google Scholar 

  23. Song, Q., Liu, L.: Mobile robot path planning based on dynamic fuzzy artificial potential field method. Int. J. Hybrid Inf. Technol. 5(4), 85–94 (2012)

    Google Scholar 

  24. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)

    Article  Google Scholar 

  25. Patil, S., Van Den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations using navigation fields. Trans. Vis. Comput. Graph. 17(2), 244–254 (2011)

    Article  Google Scholar 

  26. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  27. Margellos, K., Lygeros, J.: Hamilton-Jacobi formulation for reach-avoid problems with an application to air traffic management. American Control Conference, pp. 3045–3050 (2010)

    Google Scholar 

  28. Gillula, J.H., Hoffmann, G.M., Haomiao, H., Vitus, M.P., Tomlin, C.J.: Applications of hybrid reachability analysis to robotic aerial vehicles. Int. J. Robot. Res. (2011) 335–354

    Google Scholar 

  29. Takei, R., Huang, H., Ding, J., Tomlin, C.: Time-optimal multi-stage motion planning with guaranteed collision avoidance via an open-loop game formulation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 323–329 (2012)

    Google Scholar 

  30. Ding, J., Li, E., Huang, H., Tomlin, C.: Reachability-based synthesis of feedback policies for motion planning under bounded disturbances. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 2160–2165 (2011)

    Google Scholar 

  31. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Sci. 1 (2005)

    Google Scholar 

  32. Massari, M., Giardini, G., Bernelli-Zazzera, F.: Autonomous navigation system for planetary exploration rover based on artificial potential fields. In: Dynamics and Control of Systems and Structures in Space (DCSSS), pp. 153–162 (2004)

    Google Scholar 

Download references

Acknowledgments

Chiang, Lesser, and Oishi are supported in part by National Science Foundation (NSF) Career Award CMMI-1254990 and NSF Award CPS-1329878. Tapia and Malone are supported in part by the National Institutes of Health (NIH) Grant P20GM110907 to the Center for Evolutionary and Theoretical Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Tapia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiang, HT., Malone, N., Lesser, K., Oishi, M., Tapia, L. (2015). Aggressive Moving Obstacle Avoidance Using a Stochastic Reachable Set Based Potential Field. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics