Skip to main content

Image Enhancement by Gradient Distribution Specification

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Included in the following conference series:

Abstract

We propose to use gradient distribution specification for image enhancement. The specified gradient distribution is learned from natural-scene image datasets. This enhances image quality based on two facts: First, the specified distribution is independent of image content. Second, the distance between the learned distribution and the empirical distribution of a given image correlates with subjectively perceived image quality. Based on those two facts, remapping an image such that the distribution of its gradients (and therefore also Laplacians) matches the specified distribution is expected to improve the quality of that image. We call this process “image naturalization”. Our experiments confirm that naturalized images are more appealing to visual perception. Moreover, “naturalness” can be used as a measure of image quality when ground-truth is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, S., Mumford, D.: Prior learning and Gibbs reaction-diffusion. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 19, 1236–1250 (1997)

    Article  Google Scholar 

  2. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27, 73 (2008)

    Google Scholar 

  3. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. Adv. Neural Inform. Proc. Sys. 22, 1–9 (2009)

    Google Scholar 

  4. Cho, T.S., Zitnick, C.L., Joshi, N., Kang, S.B., Szeliski, R., Freeman, W.T.: Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 34, 683–694 (2012)

    Article  Google Scholar 

  5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  6. El-Fallah, A.I., Ford, G.E.: Mean curvature evolution and surface area scaling in image filtering. IEEE Trans. Image Proc. 6, 750–753 (1997)

    Article  Google Scholar 

  7. Lee, S.H., Seo, J.K.: Noise removal with Gauss curvature-driven diffusion. IEEE Trans. Image Proc. 14, 904–909 (2005)

    Article  MathSciNet  Google Scholar 

  8. Gong, Y., Sbalzarini, I.F.: Local weighted Gaussian curvature for image processing. In: International Conference on Image Processing (ICIP), pp. 534–538 (2013)

    Google Scholar 

  9. Roth, S., Black, M.J.: Fields of experts. IJCV 82, 205–229 (2009)

    Article  Google Scholar 

  10. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21, 249–256 (2002)

    Article  Google Scholar 

  11. Agrawal, A., Raskar, R.: Gradient domain manipulation techniques in vision and graphics. In: ICCV Short Course (2007)

    Google Scholar 

  12. Gong, Y., Paul, G., Sbalzarini, I.F.: Coupled signed-distance functions for implicit surface reconstruction. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1000–1003 (2012)

    Google Scholar 

  13. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28, 1–10 (2009)

    Google Scholar 

  14. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27, 67:1–67:10 (2008)

    Article  Google Scholar 

  15. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  16. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  17. Chang, H.W., Yang, H., Gan, Y., Wang, M.H.: Sparse feature fidelity for perceptual image quality assessment. IEEE Trans. Image Process. 22, 4007–4018 (2013)

    Article  MathSciNet  Google Scholar 

  18. Coltuc, D., Bolon, P., Chassery, J.M.: Exact histogram specification. IEEE Trans. Image Process. 15, 1143–1152 (2006)

    Article  Google Scholar 

  19. Gastal, E.S.L., Oliveira, M.M.: Adaptive manifolds for real-time high-dimensional filtering. ACM TOG 31, 33:1–33:13 (2012)

    Article  Google Scholar 

  20. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM TOG 30, 69:1–69:12 (2011). Proceedings of SIGGRAPH 2011

    Article  Google Scholar 

  21. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30(6), 147 (2011)

    Google Scholar 

  23. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31, 139:1–139:10 (2012)

    Google Scholar 

  24. Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera shake. In: ICCV, pp. 463–470 (2011)

    Google Scholar 

  25. Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: CVPR, CVPR 2013, pp. 1107–1114. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  27. Farbman, Z., Fattal, R., Lischinski, D.: Convolution pyramids. ACM Trans. Graph. 30, 175:1–175:8 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo F. Sbalzarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gong, Y., Sbalzarini, I.F. (2015). Image Enhancement by Gradient Distribution Specification. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics