Skip to main content

Realistic Walkthrough of Cultural Heritage Sites-Hampi

  • Conference paper
  • First Online:
Book cover Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Included in the following conference series:

  • 1979 Accesses

Abstract

In this paper we discuss the framework for a realistic walkthrough of cultural heritage sites. The framework includes 3D data acquisition, different data processing steps, coarse to fine 3D reconstruction and rendering to generate realistic walkthrough. Digital preservation of cultural heritage sites is an important area of research since the accessibility of state of the art techniques in computer vision and graphics. We propose a coarse to fine 3D reconstruction of heritage sites using different 3D data acquisition techniques. We have developed geometry based data processing algorithms for 3D data super resolution and hole filling using Riemannian metric tensor and Christoffel symbols as a novel set of features. We generate a walkthrough of the cultural heritage sites using the coarse to fine 3D reconstructed models. We demonstrate the proposed framework using a walkthrough generated for the Vittala Temple at Hampi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3d scanning of large statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH 2000, pp. 131–144. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)

    Google Scholar 

  2. Ikeuchi, K., Oishi, T., Takamatsu, J., Sagawa, R., Nakazawa, A., Kurazume, R., Nishino, K., Kamakura, M., Okamoto, Y.: The great buddha project: digitally archiving, restoring, and analyzing cultural heritage objects. Int. J. Comput. Vis. 75, 189–208 (2007)

    Article  Google Scholar 

  3. Ikeuchi, K., Sato, Y.: Modeling from Reality. Kulwer Academic Press, Boston (2001)

    Book  MATH  Google Scholar 

  4. Wasserman, J.: Michelangelo’s Florence Peita. Princeton University Press, Princeton (2003)

    Google Scholar 

  5. Stamos, I., Allen, P.K.: Automatic registration of 2-d with 3-d imagery in urban environments. In: ICCV, pp. 731–737 (2001)

    Google Scholar 

  6. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. ACM Trans. Graph. 25, 835–846 (2006)

    Article  Google Scholar 

  7. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1362–1376 (2010)

    Article  Google Scholar 

  8. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology. UIST 2011, pp. 559–568. ACM, New York, NY, USA (2011)

    Google Scholar 

  9. Ganihar, S., Joshi, S., Patil, N., Mudenagudi, U., Okade, M.: Voting-based decision framework for optimum selection of interpolation technique for 3d rendering applications. In: Students’ Technology Symposium (TechSym), pp. 270–275. IEEE (2014)

    Google Scholar 

  10. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer Universitat texts, New York (2005)

    MATH  Google Scholar 

  11. Kumaresan, S.: A Course in Differential Geometry and Lie Groups. Texts and Readings in Mathematics. Hindustan Book Agency, Cambridge (2002)

    Google Scholar 

  12. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  13. Misner, C., Thorne, K., Wheeler, J.: Gravitation. W.H. Freeman and Company, San Francisco (1973)

    Google Scholar 

  14. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  15. Liepa, P.: Filling holes in meshes. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. SGP 2003, pp. 200–205. Eurographics Association, Aire-la-Ville, Switzerland (2003)

    Google Scholar 

  16. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville, Switzerland (2006)

    Google Scholar 

  17. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5, 349–359 (1999)

    Article  Google Scholar 

  18. Corsini, M., Dellepiane, M., Ponchio, F., Scopigno, R.: Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties. Comput. Graph. Forum 28, 1755–1764 (2009)

    Article  Google Scholar 

  19. Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G., Paragios, N.: Single view reconstruction using shape grammars for urban environments. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1795–1802 (2009)

    Google Scholar 

  20. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (3DIM) (2001)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Department of science and technology (DST), India, under grant NRDMS/11/201/Phase-III/ as a part of India Digital Heritage project. We thank DST, NIAS Banglore and IIT Delhi for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Altaf Ganihar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mudenagudi, U. et al. (2015). Realistic Walkthrough of Cultural Heritage Sites-Hampi. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics