Skip to main content

A Robust Learning Framework Using PSM and Ameliorated SVMs for Emotional Recognition

  • Conference paper
  • First Online:
  • 1937 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Abstract

This paper proposes a novel machine-learning framework for facial-expression recognition, which is capable of processing images fast and accurately even without having to rely on a large-scale dataset. The framework is derived from Support Vector Machines (SVMs) but distinguishes itself in three key technical points. First, the measure of the samples normalization is based on the Perturbed Subspace Method (PSM), which is an effective way to improve the robustness of a training system. Second, the framework adopts SURF (Speeded Up Robust Features) as features, which is more suitable for dealing with real-time situations. Third, we use region attributes to revise incorrectly detected visual features (described by invisible image attributes at segmented regions of the image). Combining these approaches, the efficiency of machine learning can be improved. Experiments show that the proposed approach is capable of reducing the number of samples effectively, resulting in an obvious reduction in training time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freund, Y., Schapire, R.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) Computational Learning Theory. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  2. Valiant, L.G.: A Theory of the Learnable. Communications of the ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  3. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I-511-I-518 (2001)

    Google Scholar 

  4. Li, J., Zhang, Y.: Learning SURF Cascade for Fast and Accurate Object Detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3468–3475 (2013)

    Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV)

    Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR) 1, 886–893 (2005)

    Google Scholar 

  8. Dailey, M.N., Joyce, C., Lyons, M.J., Kamachi, M., Ishi, H., Gyoba, J., Cottrell, G.W.: Evidence and a computational explanation of cultural differences in facial expression recognition. Emotion 10, 874–893 (2010)

    Article  Google Scholar 

  9. Kamachi, M., Lyons, M., Gyoba, J.: The Japanese Female Facial Expression (JAFFE) Database, vol. 21 (1998). http://www.kasrl.org/jaffe.html

  10. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1424–1445 (2000)

    Article  Google Scholar 

  11. Bartlett, M., Littlewort, G., Fasel, I., Movellan, J.: Real time face detection and facial expression recognition: development and applications to human computer interaction. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), vol. 5, pp. 53–53 (2003)

    Google Scholar 

  12. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), pp. 94–101 (2010)

    Google Scholar 

  13. Anderson, K., McOwan, P.W.: A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36, 96–105 (2006)

    Article  Google Scholar 

  14. Chen, J., Ariki, Y., Takiguchi, T.: Robust facial expressions recognition using 3d average face and ameliorated adaboost. In: Proceedings of the 21st ACM International Conference on Multimedia (ACM MM), pp. 661–664 (2013)

    Google Scholar 

  15. Chu, W.S., Huang, C.R., Chen, C.S.: Gender classification from unaligned facial images using support subspaces. Inf. Sci. 221, 98–109 (2013)

    Article  Google Scholar 

  16. Decoste, D., Schölkopf, B.: Training invariant support vector machines. Mach. Learn. 46, 161–190 (2002)

    Article  MATH  Google Scholar 

  17. Li, J., Wang, T., Zhang, Y.: Face detection using surf cascade. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2183–2190 (2011)

    Google Scholar 

  18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  19. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  20. Platt, J.: Probabilities for SV Machines. In: Advances in Large Margin Classifiers (2000)

    Google Scholar 

  21. Lin, H.T., Lin, C.J., Weng, R.C.: A note on platts probabilistic outputs for support vector machines. Mach. Learn. 68, 267–276 (2007)

    Article  Google Scholar 

  22. Sun, Z., Ampornpunt, N., Varma, M., Vishwanathan, S.: Multiple kernel learning and the SMO algorithm. In: Advances in Neural Information Processing Systems (NIPS), pp. 2361–2369 (2010)

    Google Scholar 

  23. Alldrin, N., Smith, A., Turnbull, D.: Classifying facial expression with radial basis function networks, using gradient descent and K-means. In: CSE253 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, J., Kitano, Y., Li, Y., Takiguchi, T., Ariki, Y. (2015). A Robust Learning Framework Using PSM and Ameliorated SVMs for Emotional Recognition. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics