Skip to main content

Learning Discriminative Hidden Structural Parts for Visual Tracking

  • Conference paper
  • First Online:
  • 1379 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Abstract

Part-based visual tracking is attractive in recent years due to its robustness to occlusion and non-rigid motion. However, how to automatically generate the discriminative structural parts and consider their interactions jointly to construct a more robust tracker still remains unsolved. This paper proposes a discriminative structural part learning method while integrating the structure information, to address the visual tracking problem. Particulary, the state (e.g. position, width and height) of each part is regarded as a hidden variable and inferred automatically by considering the inner structure information of the target and the appearance difference between the target and the background. The inner structure information considering the relationship between neighboring parts, is integrated using a graph model based on a dynamically constructed pair-wise Markov Random Field. Finally, we adopt Metropolis-Hastings algorithm integrated with the online Support Vector Machine to complete the hidden variable inference task. The experimental results on various challenging sequences demonstrate the favorable performance of the proposed tracker over the state-of-the-art ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lim, J., Ross, D.A., Lin, R.S., Yang, M.H.: Incremental learning for visual tracking. In: NIPS (2004)

    Google Scholar 

  2. Babenko, B., Yang, M.H., Belongie, S.J.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990 (2009)

    Google Scholar 

  3. Wen, L., Cai, Z., Lei, Z., Yi, D., Li, S.Z.: Robust online learned spatio-temporal context model for visual tracking. IEEE Trans. Image Process. 23, 785–796 (2014)

    Article  MathSciNet  Google Scholar 

  4. Mei, X., Ling, H.: Robust visual tracking using \(\ell 1\) minimization. In: ICCV, pp. 1436–1443 (2009)

    Google Scholar 

  5. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)

    Google Scholar 

  6. Wen, L., Cai, Z., Yang, M., Lei, Z., Yi, D., Li, S.Z.: Online multiple instance joint model for visual tracking. In: IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, pp. 319–324 (2012)

    Google Scholar 

  7. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)

    Google Scholar 

  8. Wen, L., Cai, Z., Lei, Z., Yi, D., Li, S.Z.: Online spatio-temporal structural context learning for visual tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 716–729. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, pp. 798–805 (2006)

    Google Scholar 

  10. Shahed, S.M.N., Ho, J., Yang, M.H.: Visual tracking with histograms and articulating blocks. In: CVPR (2008)

    Google Scholar 

  11. Kwon, J., Lee, K.M.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: CVPR (2009)

    Google Scholar 

  12. Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV, pp. 81–88 (2011)

    Google Scholar 

  13. Cehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking. In: ICCV, pp. 1363–1370 (2011)

    Google Scholar 

  14. Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV, pp. 1323–1330 (2011)

    Google Scholar 

  15. Shu, G., Dehghan, A., Oreifej, O., Hand, E., Shah, M.: Part-based multiple-person tracking with partial occlusion handling. In: CVPR, pp. 1815–1821 (2012)

    Google Scholar 

  16. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: CVPR, pp. 1838–1845 (2012)

    Google Scholar 

  17. Cai, Z., Wen, L., Yang, J., Lei, Z., Li, S.Z.: Structured visual tracking with dynamic graph. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 86–97. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR, pp. 2363–2370 (2013)

    Google Scholar 

  19. Hastings, W.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  20. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Khan, Z., Balch, T.R., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1805–1918 (2005)

    Article  Google Scholar 

  22. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  23. Yang, M., Liu, Y., Wen, L., You, Z., Li, S.Z.: A probabilistic framework for multitarget tracking with mutual occlusions, pp. 1298–1305 (2014)

    Google Scholar 

  24. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: SLIC Superpixels. Technical report (2010)

    Google Scholar 

  25. Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: CVPR, pp. 1940–1947 (2012)

    Google Scholar 

  26. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp. 1822–1829 (2012)

    Google Scholar 

  27. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Chinese National Natural Science Foundation Projects #61105023, #61103156, #61105037, #61203267, #61375037, #61473291, National Science and Technology Support Program Project #2013BAK02B01, Chinese Academy of Sciences Project No. KGZD-EW-102-2, and AuthenMetric R&D Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longyin Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wen, L., Cai, Z., Du, D., Lei, Z., Li, S.Z. (2015). Learning Discriminative Hidden Structural Parts for Visual Tracking. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics